Flexible electronic structure

Information

  • Patent Grant
  • 9159635
  • Patent Number
    9,159,635
  • Date Filed
    Sunday, May 27, 2012
    13 years ago
  • Date Issued
    Tuesday, October 13, 2015
    10 years ago
Abstract
Flexible electronic structure and methods for fabricating flexible electronic structures are provided. An example method includes applying a first layer to a substrate, creating a plurality of vias through the first layer to the substrate, and applying a second polymer layer to the first layer such that the second polymer forms anchors contacting at least a portion of the substrate. At least one electronic device layer is disposed on a portion of the second polymer layer. At least one trench is formed through the second polymer layer to expose at least a portion of the first layer. At least a portion of the first layer is removed by exposing the structure to a selective etchant to providing a flexible electronic structure that is in contact with the substrate. The electronic structure can be released from the substrate.
Description
BACKGROUND

Flexible electronics are expected to revolutionize the next generation of devices. Due to the high degree of flexibility of flexible electronics, they can be integrated into many different shapes. This flexibility and diverse integration options can provide for a large number of useful device configurations that would not be possible with the more rigid electronics that are fabricated based on silicon. Applications envisioned for flexible electronics include thin, flexible mobile devices, bendable and conformable displays, rollable and foldable flexible displays, and paper-like displays. Additionally, new forms of flexible electronic enable significant strain or stretch.


Some portions of such flexible electronics may be fabricated in solution. In addition, flexible substrates may be used in the fabrication of the flexible electronics. The flexible substrates enable fabrication by high speed printing techniques capable of generating electronic devices over large substrate at low cost. The flexible electronics also may be fabricated using independent fabricated components followed by assembly onto a single device substrate.


Fabricating flexible electronics that exhibit good electronic performance can be challenging. For example, fabrication techniques developed for the semiconductor fabrication industry are incompatible with some flexible materials. The temperatures used to generate high quality inorganic semiconductor components (for example, temperatures greater than 1000 degrees Celsius) are incompatible with many polymers, plastics and elastomeric materials. In addition, inorganic semiconductors are poorly soluble in the types of solvents that facilitate formation of the flexible electronics. While amorphous forms of silicon are fabricated using lower temperatures, it may not be compatible with the flexible electronic structure. Organic or hybrid organic-inorganic semiconductors can be processed at relatively low temperatures; however these materials do not form electronic structures with the performance capability needed for the next generation of flexible, foldable and bendable products.


Flexible electronics may be formed through incorporating inorganic semiconductor components into a polymer-based matrix. The flexible electronics can be fabricated on a rigid substrate or a flexible substrate. At one or more stages in the fabrication process, the flexible electronics is subjected to processing in solvents that are incompatible with the inorganic components. Therefore, polymer encapsulation of the inorganic device components has been suggested.


A challenge to large-scale production of the flexible electronics is the difficulty with separating the fabricated flexible electronics from the substrate on which the flexible electronics are fabricated. Mechanical removal may damage the flexible electronics by introducing stresses in the structure. Many chemical-based methods of separating the fabricated flexible electronics from the support substrate can cause damage to the flexible electronics.


SUMMARY

In view of the foregoing, the Inventors have recognized and appreciated various significant improvements to fabrication processes for flexible electronics that facilitate higher yield and generally improve the integrity of electronics devices resulting from the fabrication process. One example of such an improvement involves a “sacrificial release layer” disposed on a substrate on which some portion of the flexible electronics are fabricated. In particular, the Inventors have recognized and appreciated that, when fabricating electronic, optical, or mechanical systems, it is desirable to construct the system over a substrate that has a sacrificial release layer disposed on its surface. In one exemplary implementation illustrating the inventive concepts disclosed herein, such an electronic, optical and/or mechanical system is built (i.e., fabricated) on top of the sacrificial release layer, and the sacrificial release layer is then selectively removed (by etching) so that the system is either free-standing, floating or sufficiently de-adhered from the substrate, such that it can be separated from the substrate.


Fabrication processes according to various embodiments of the present invention involving such a sacrificial release layer may be used in the fabrication of stretchable electronic systems. The deformable electronics can be manufactured in a highly planar format, after which the deformable electronics may be separated from the original support substrate via removal of a sacrificial release layer (e.g., by an etch process). In some instances, the removal process involving the sacrificial release layer may be difficult to control and may lead to loss of the deformable electronics upon separation from the original support substrate (e.g., the deformable electronics may float away in an etchant and become twisted, tangled or broken as a result).


To mitigate the foregoing problems that may arise in some fabrication processes involving a sacrificial release layer, various embodiments of the invention disclosed herein relate generally to fabrication methods in which a loss of deformable electronics arising from separation of the deformable electronics from their original support substrate (e.g., by over etching) is significantly reduced or substantially prevented. In some embodiments, systems and devices fabricated using these inventive processes are also provided.


For example, according to one embodiment of an inventive fabrication process for deformable electronics involving a sacrificial release layer, a plurality of anchors is formed between an encapsulated electronic device array and a substrate. In one aspect, the anchors serve to adhere the encapsulated electronic device array to the substrate, and keep the encapsulated electronic device array substantially attached to the substrate when the sacrificial layer is removed. In another aspect, the encapsulated electronic device array can be separated from the substrate when a force is applied. In one example implementation, the force is applied using an elastomeric transfer stamp, as disclosed in U.S. Publication No. 20090199960 entitled “Pattern Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp” filed Jun. 9, 2006, which publication is hereby incorporated herein by reference it is entirety.


An example method for fabricating the flexible electronic structures can include applying a first layer to a portion of a substrate, removing selected portions of the first layer to provide a plurality of vias such that a portion of the vias extend substantially to a surface of the substrate, and disposing a second polymer layer, such that portions of the second polymer layer conform to a dimension of at least one of the plurality of vias and forms a plurality of anchors that contact at least a portion of the substrate. The second polymer layer is more resistant to a selective etchant than the first layer. The example method can further include disposing at least one electronic device layer above a portion of the first layer and/or the second polymer layer, forming at least one trench through the second polymer layer and the at least one electronic device layer to expose at least a portion of the first layer, exposing at least a portion of the first layer to the selective etchant through the at least one trench, and removing, by the selective etchant, portions of the first layer, thereby providing the flexible electronic structure. At least one anchor of the plurality of anchors can remains in contact with at least a portion of the substrate.


In an example, a method for fabricating the flexible electronic structure can further include applying a third polymer layer to at least a portion of the at least one electronic device layer; and forming the at least one trench through the third polymer layer, the second polymer layer, and the at least one electronic device layer to expose at least a portion of the first layer.


In an example, the first layer can include polymethylmethacrylate, silicon dioxide, chromium, or titanium. In an example, the second polymer layer can include polyimide, polyethylene naphthalate, polybenzobisoxazole, benzocyclobutene, siloxane, or a liquid crystal polymer.


In an example, an average width of each of the plurality of vias can be in a range from about 10 μm to about 50 μm. In another example, an average width of each of the plurality of vias is in a range from about 0.1 μm to about 1000 μm.


In an example, respective ones of the plurality of vias can be spaced apart by an average separation ranging from about 50 μm to about 1,000 μm. In another example, respective ones of the plurality of vias are spaced apart by an average separation ranging from about 0.2 to about 10,000 μm. In yet another example, respective ones of the plurality of vias are spaced apart by an average separation ranging from about 200 to about 800 μm.


In an example, a method for fabricating the flexible electronic structures can include applying a first layer to a portion of a substrate, removing selected portions of the first layer to provide a plurality of vias such that a portion of the vias extend substantially to a surface of the substrate, and disposing a second polymer layer, such that portions of the second polymer layer conform to a dimension of at least one of the plurality of vias and forms a plurality of anchors that contact at least a portion of the substrate. The second polymer layer is more resistant to a selective etchant than the first layer. The example method can further include disposing at least one electronic device layer above a portion of the first layer and/or the second polymer layer, forming at least one trench through the second polymer layer and the at least one electronic device layer to expose at least a portion of the first layer, exposing at least a portion of the first layer to the selective etchant through the at least one trench, and removing, by the selective etchant, portions of the first layer, thereby providing the flexible electronic structure. At least one anchor of the plurality of anchors can remain in contact with at least a portion of the substrate. The example method can further include separating the flexible electronic structure from the substrate.


A flexible electronic structure fabricated according to one embodiment of an inventive fabrication process can include a second polymer layer having a first surface and a second surface, where the first surface includes a plurality of anchors, and at least one electronic device layer disposed above the second surface of the second polymer layer.


In another example, the flexible electronic structure can include a base polymer layer having a first surface and a second surface, where the first surface includes a plurality of anchors, and at least one electronic device layer disposed above a portion of the second surface of the base polymer.


In another example, the flexible electronic structure can include a base polymer layer having a first surface and a second surface, where the first surface includes a plurality of anchors, at least one electronic device layer disposed above a portion of the second surface of the base polymer, and a top polymer layer that is disposed above at least a portion of the at least one electronic device layer.


In another example, the flexible electronic structure can include a base polymer layer having a first surface and a second surface, where the first surface includes a plurality of anchors, and wherein at least one of the plurality of anchors contacts a substrate, and at least one electronic device layer disposed above a portion of the second surface of the base polymer.


In another example, the flexible electronic structure can include a base polymer layer having a first surface and a second surface, where the first surface includes a plurality of anchors, and wherein at least one of the plurality of anchors contacts a substrate, at least one electronic device layer disposed above a portion of the second surface of the base polymer, and a top polymer layer that is disposed above at least a portion of the at least one electronic device layer.


In another example, a flexible electronic structure disposed on a substrate is provided. The flexible electronic structure can include a first layer disposed on a portion of the substrate and a second polymer layer having a first surface and a second surface. The first surface can include a plurality of anchors. The plurality of anchors can extend through selected portions of the first layer and contact at least a portion of the substrate. The flexible electronic structure can further include at least one electronic device layer disposed above the second surface of the second polymer layer.


In another example, a flexible electronic structure disposed on a substrate can include a first layer disposed on a portion of the substrate, a second polymer layer having a first surface and a second surface, at least one electronic device layer disposed above the second surface of the second polymer layer, and a third polymer layer disposed above at least a portion of the at least one electronic device layer. The first surface of the second layer can include a plurality of anchors. The plurality of anchors extends through selected portions of the first layer and contact at least a portion of the substrate.


A flexible electronic structure disposed on a substrate and fabricated according to one embodiment of an inventive fabrication process herein can include a first layer disposed on a portion of the substrate, a second polymer layer having a first surface and a second surface, and at least one electronic device layer disposed above the second surface of the second polymer layer. The first surface of the second polymer can include a plurality of anchors, and the plurality of anchors can extend through selected portions of the first layer and contact at least a portion of the substrate. The plurality of anchors can have a diameter of about 50 μm and have a pitch ranging from about 200 μm to about 800 μm.


A flexible electronic structure fabricated according to one embodiment of an inventive fabrication process herein can include a base polymer layer having a first surface and a second surface and at least one electronic device layer disposed above the second surface of the base polymer layer. The first surface can include a plurality of anchors that have a diameter of about 50 μm and have a pitch ranging from about 200 μm to about 800 μm.


Any other applicable technique may be employed to fabricate a device according to the principles described herein. As non-limiting examples, the following patent publications (which are hereby incorporated herein by reference in their entireties, including drawings) describe applicable techniques that can be used, all or in part, in tandem with various inventive concepts disclosed herein, for device fabrication according to various embodiments of the present invention:


U.S. publication no. 2006 0038182-A1, published Feb. 23, 2006, filed Jun. 2, 2005, and entitled “STRETCHABLE SEMICONDUCTOR ELEMENTS AND STRETCHABLE ELECTRICAL CIRCUITS;”


U.S. publication no. 2008 0157234-A1, published Jul. 3, 2008, filed Sep. 6, 2006, and entitled “CONTROLLED BUCKLING STRUCTURES IN SEMICONDUCTOR INTERCONNECTS AND NANOMEMBRANES FOR STRETCHABLE ELECTRONICS;”


U.S. publication no. 2010 0002402-A1, published Jan. 7, 2010, filed Mar. 5, 2009, and entitled “STRETCHABLE AND FOLDABLE ELECTRONIC DEVICES;”


U.S. publication no. 2010 0087782-A1, published Apr. 8, 2010, filed Oct. 7, 2009, and entitled “CATHETER BALLOON HAVING STRETCHABLE INTEGRATED CIRCUITRY AND SENSOR ARRAY;”


U.S. publication no. 2010 0116526-A1, published May 13, 2010, filed Nov. 12, 2009, and entitled “EXTREMELY STRETCHABLE ELECTRONICS;”


U.S. publication no. 2010 0178722-A1, published Jul. 15, 2010, filed Jan. 12, 2010, and entitled “METHODS AND APPLICATIONS OF NON-PLANAR IMAGING ARRAYS;”


U.S. publication no. 2010 027119-A1, published Oct. 28, 2010, filed Nov. 24, 2009, and entitled “SYSTEMS, DEVICES, AND METHODS UTILIZING STRETCHABLE ELECTRONICS TO MEASURE TIRE OR ROAD SURFACE CONDITIONS;”


U.S. publication no. 2010-0298895, published Nov. 25, 2010, filed Dec. 11, 2009, and entitled “SYSTEMS, METHODS AND DEVICES USING STRETCHABLE OR FLEXIBLE ELECTRONICS FOR MEDICAL APPLICATIONS;” and


PCT publication no. WO 2010/102310, published Sep. 10, 2010, filed Mar. 12, 2010, and entitled “SYSTEMS, METHODS, AND DEVICES HAVING STRETCHABLE INTEGRATED CIRCUITRY FOR SENSING AND DELIVERING THERAPY.”


It should be appreciated that all combinations of the foregoing concepts and additional concepts described in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter described herein. All combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter described herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the figures, described herein, are for illustration purposes only, and that the drawings are not intended to limit the scope of the described teachings in any way. In some instances, various aspects or features may be shown exaggerated or enlarged to facilitate an understanding of the inventive concepts described herein (the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the teachings). In the drawings, like reference characters generally refer to like features, functionally similar and/or structurally similar elements throughout the various figures.



FIG. 1 shows a cross-sectional view of an example substrate used in an example method for manufacturing an electronic structure.



FIG. 2 shows a cross-sectional view of an example structure formed in an example process for manufacturing an electronic structure.



FIG. 3 shows a cross-sectional view of another example structure formed in an example process for manufacturing an electronic structure.



FIG. 4 shows cross-sectional and top views of another example structure formed in an example process for manufacturing an electronic structure.



FIG. 5 shows a cross-sectional view of another example structure formed in an example process for manufacturing an electronic structure.



FIG. 6 shows cross-sectional and top views of another example structure formed in an example process for manufacturing an electronic structure.



FIG. 7 shows a cross-sectional view of another example structure formed in an example process for manufacturing an electronic structure



FIG. 8 shows cross-sectional and top views of another example structure formed in an example process for manufacturing an electronic structure



FIG. 9 shows a cross-sectional view of another example structure formed in an example process for manufacturing an electronic structure.



FIG. 10 shows a cross-sectional view of an example electronic structure formed in an example process.



FIG. 11 shows a cross-sectional view of another example electronic structure formed in an example process.



FIG. 12A-12L show cross-sectional views of an example process for manufacturing of an electronic structure.



FIG. 13 shows an example substrate with a fabricated array of electronic structures.



FIG. 14 shows an example of the application of a removable medium to a substrate with a fabricated array of electronic structures.



FIG. 15 shows an example of the removal of an array of electronic structures from a substrate using a removable medium.



FIG. 16 shows an example of the exposure of a removable medium to an oxygen plasma.



FIG. 17 shows an example of the deposition of a metal followed by an oxide using a shadow mask.



FIG. 18 shows an example process for exposing an array of electronic structures, a medium, and a second substrate to an oxygen plasma.



FIG. 19 shows an example application of a removable medium and an array of electronic structures to a second substrate.



FIG. 20 shows an example of the removal of a removable medium from an array of electronic structures.





DETAILED DESCRIPTION

Following below are more detailed descriptions of various concepts related to, and examples of, electronic, optical and/or mechanical apparatus and systems, and methods for fabricating same involving sacrificial release layers and associated anchors. It should be appreciated that various concepts introduced above and described in greater detail below may be implemented in any of numerous ways, as the described concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.


As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on.


With respect to description herein concerning the surface(s) of a substrate a layer, any references to “top” surface and “bottom” surface are used primarily to indicate relative position, alignment and/or orientation of various elements/components with respect to the substrate and each other, and these terms do not necessarily indicate any particular frame of reference (e.g., a gravitational frame of reference). Thus, reference to a “bottom surface of a substrate” does not necessarily require that the indicated surface be facing a ground surface. Similarly, terms such as “over,” “under,” “above,” “beneath” and the like do not necessarily indicate any particular frame of reference, such as a gravitational frame of reference, but rather are used primarily to indicate relative position, alignment and/or orientation of various elements/components with respect to the substrate and each other.


Provided herein are methods for selectively anchoring an array of electronic devices to a supporting substrate. In an example, a method includes providing a sacrificial layer on the supporting substrate, patterning trenches in the sacrificial layer, and providing a first encapsulating layer to support the array of electronic devices whereby the first encapsulating layer comes into contact with the supporting substrate via the trenches. An array of electronic devices is fabricated on the first encapsulating layer. The array of electronic devices are sealed with a second encapsulating layer. The sacrificial layer is removed by immersion in a suitable solvent. The encapsulated electronic devices can remain adhered to the support substrate due to forces of adhesion between the encapsulating layer and the support substrate.


In an example, the electronic structure is a flexible electronic structure.



FIG. 1 shows an example substrate that can be used to fabricate an example electronic structure. FIGS. 2 to 10 show example structures that are formed in the fabrication of the example electronic structure. In FIG. 2, a first layer 2 is applied to the substrate 1. In FIG. 3, selected portions of the first layer 2 are removed to provide a plurality of vias 6 that extend through the first polymer 2 layer substantially to the substrate 1. A second polymer layer 4 is applied to the first layer. As shown in the cross-sectional view of FIG. 4, in an example, portions of the second polymer layer 4 can be caused to conform to a dimension of a number of the vias 6 and to form anchors 3 that contact at least a portion of the substrate 1. In another example, a different polymer material can be caused to conform to a dimension of a number of the vias 6 and form the anchors 3, and the second polymer layer 4 is disposed above the first layer 2 interspersed with the anchors 5. As shown in the top view of FIG. 4, the anchors can be formed in a pattern.


As shown in the cross-sectional view of FIG. 5, at least one electronic device layer 5 is disposed on a portion of the second polymer layer. In a non-limiting example, the electronic device layer 5 may be subjected to further processing steps to fabricate differing types of electronic device components based on the at least one electronic device layer 5. For example, as shown in the cross-sectional view of FIG. 6, portions of the at least one electronic device layer 5 can be removed, e.g., by an etching process, to form electronic device components. As shown in the top view, portions of the at least one electronic device layer 5 may be positioned above the anchors 3. As shown in FIG. 7, a third polymer layer 8 is applied to at least a portion of the at least one electronic device layer 5. The second polymer layer 4 and the third polymer layer 8 are selected so that they are more resistant to a selective etchant than the first layer 2.


In an example, the third polymer layer is the top layer of the electronic structure.


In an example, the thickness of the third polymer layer (or, in an example, the top layer) is configured to cause the location of a resultant neutral mechanical plane of the electronic structure to correspond to strain-sensitive layers of the electronic structure. The neutral mechanical plane is a region of the electronic structure where a strain-sensitive layer can be isolated from stresses and strains applied to the electronic structure, e.g., from bending, rolling, or folding. For example, the thickness of the third polymer layer (or, in an example, the top layer) can be selected such that the at least one electronic device layer is located at or near a neutral mechanical plane of the electronic structure.


At least one trench 9 is formed through the third polymer layer 8 and the second polymer layer 4 to expose at least a portion of the first layer 2 (see cross-sectional view of FIG. 8). In an example, the least one trench 9 can be formed through sections of the structure that does not include portions of the electronic device layer 5. In another example, the at least one trench 9 may be formed through sections of the structure that include portions of the electronic device layer 5. For example, the at least one trench 9 can be formed through portions of the electronic device layer 5 that are not functional or structural components of the electronic device.


The structure of FIG. 8 can be exposed to the selective etchant to provide the structure of FIG. 9. As shown in FIG. 9, portions of the first layer that are exposed to the selective etchant through the trench 9 may be selectively removed by the selective etchant. The anchors 3 remain in contact with the substrate 1 after the etching using the selective etchant. FIG. 9 shows an example of an electronic structure 10 that can be formed according to the methods described herein. The electronic structure 10 can be a flexible electronic structure.


In an example, the flexible electronic structure can include an integrated circuit, a semiconductor, a transistor, a diode, a logic gate, arrays of electronic components, an optical system, a temperature sensors, a pressure sensor, electrical-conductivity sensors, electrodes for pH sensors, chemical sensors, sensors for enzymatic activity, resistors, capacitors, passive devices, light emitting diodes (LEDs), photodiodes (PDs), photodetectors, a battery, a transducer, an emitter, a receiver, or a transceiver.


In another example, the at least one electronic device layer includes at least one of a multifunctional sensor (including a temperature, strain, and/or electrophysiological sensor), a microscale light-emitting diode (LED), an active to passive circuit elements (including a transistor, a diode, a resistor, and/or a memristor), wireless power coils, and devices for radio frequency (RF) communications (including a high-frequency inductor, capacitor, oscillator, and/or antenna). The active elements of the at least one electronic device layer can include electronic materials such as silicon and gallium arsenide in the form of filamentary serpentine nanoribbons and micro- and nano-membranes. In an example, the at least one electronic device layer includes may be configured to provide solar cells and/or wireless coils to serve as a power supply.


The electronic structures herein, which can include interconnects, can exhibit ultrathin layouts, and employ neutral mechanical plane configurations and optimized geometrical designs.


In the example of FIG. 9, the electronic structure 10 is contacted with the substrate 1 via the anchors 3. In another example, the electronic structure 10 is separated from the substrate 1. As described in greater detail below, the electronic structure 10 may be removed using a removable medium.


In an example of the process, the electronic device layer 5 may be formed with multiple layers, including several layers and/or several portions of metal, electronic devices, polymers, semiconductor material, dielectric material, and any other material used for creating electronic devices. For example, as shown in FIGS. 10 and 11, a multiple layered electronic device layer 5a can be fabricated above the second polymer layer 4. The different layers of the electronic device layer 5a can be connected by conduits 7. The conduits 7 may be created using any applicable technique in the art, including an oxygen plasma etch. In an example, the oxygen plasma etch can be an oxygen reactive ion etch. The third polymer layer 8 can be applied to the electronic device layer 5a. For example, the third polymer layer 8 can be applied through spin coating. However, other techniques, including, e.g., spray coating, lamination, casting, or vapor deposition may be used to apply the third polymer layer.


As shown in FIGS. 10 and 11, a conduit 7 also can be formed in the third polymer layer 8. As described in connection with FIGS. 8 and 9, at least one trench can be formed in structures of FIGS. 10 and 11 to expose at least one portion of the first layer, and a selective etchant can be used to remove the remaining portions of the first layer, forming an electronic structure that is in contact with the substrate 1. The electronic structure may be removed using a removable medium.


In an example, the first polymer 2 is a sacrificial release layer. Removal of the sacrificial release facilitates the fabrication of the electronic structure. In an example, the electronic structure 10 is a stretchable electronic system. In the manufacture of a stretchable electronic system, deformable electronics can fabricated initially in a planar format and are released from the original substrate 1 by an etch process. This etch process can be difficult to control and may lead to loss of electronic arrays that may float away in the etchant, and become twisted, tangled or broken as a result. The processes, systems and devices described herein can prevent this loss of devices by preventing over etching. The anchors 3 can be created from portions of the second polymer layer 4 or can be formed from a different polymer material. The second polymer layer 4 can be an electric/electronic array encapsulation. The anchors 3 provide enough adhesion to keep the stretchable electronic system arrays attached to the support substrate 1 when the sacrificial layer is removed. The stretchable electronic system arrays may be readily separated from the support substrate 1 when an external force is applied (as a non-limiting example, a force applied by elastomeric transfer stamp as disclosed in United States Published Patent Application No. 20090199960 entitled “Pattern Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp” filed Jun. 9, 2006, which is incorporated herein by reference it is entirety).


In an example, vias 6 are patterned in the sacrificial layer 2 prior to fabrication of the electronic device layer 5. The vias 6 may begin at the surface of the sacrificial layer and end at the interface with the support substrate 1. The support substrate 1 may be a silicon wafer in an example. A non-limiting example of a suitable material to form a first layer, and in some examples, to serve as a sacrificial layer, is polymethylmethacrylate (PMMA). In another non-limiting example, the first layer is formed from silicon dioxide, chromium, or titanium. A non-limiting example of a suitable material to form a second polymer layer, and in some examples, to serve as an encapsulation layer, is polyimide. In another non-limiting example, the second polymer layer can be formed from polyethylene naphthalate, polybenzobisoxazole, benzocyclobutene, siloxane, or a liquid crystal polymer


The Young's modulus of the substrate can be greater than that of the first layer (e.g., PMMA with a Young's modulus of 1800-3100 MPa) and the second polymer layer (e.g., polyimide with a Young's modulus of 2.5 GPa).


The PMMA can be selectively etched in acetone without affecting the polyimide. In a non-limiting example, the vias 6 (shown in FIG. 3) may be etched into the first layer of the PMMA by using an oxygen plasma etch through a stencil hardmask or a photolithographically patterned mask. Other applicable techniques in the art can be used to pattern the PMMA to form the vias 6. For example, direct exposure with a 220-250 nm wavelength laser light source through a mask followed by development (e.g., in a solvent). The vias 6 provide a path for the second polymer layer 4 material, e.g., the encapsulation layer material (including a polyimide) to come in contact with the support substrate 1, creating the anchors 6. The anchors 6 provide the anchoring force to retain the electronic structure substantially in contact with the substrate during the release step. In an example, the second polymer material (the encapsulation material) is spun-on. In another example, the second polymer material (the encapsulation material) may be deposited by spray coating or vapor deposition.


The vias or anchors may be in any two-dimensional geometry. As a non-limiting example, they can be formed as a circular cross-section, which may be easier to fabricate. Any other cross-sectional geometry of the vias or anchors is within the scope of this disclosure, such as but not limited to a hexagonal, oval or rectangular cross-section, or any polygonal or non-polygonal shape. In an example, the diameter of this circular cross-section can be between about 10 μm and about 50 μm. In an example, the width of the vias (or anchors) is selected such that the anchors provide sufficient adhesive force with the substrate to not separate during the etching of the first layer. In an example, the width of the vias (or anchors) also can be selected such that the anchors do not generate an adhesive force that prevents the array of electronics structure from being separated from the substrate, such as but not limited to in a transfer printing step, after the sacrificial release layer is removed. Although the range of the width of the vias or anchors can be between about 10 μm and about 50 μm, smaller diameters and larger diameters can be used. For example, the width of the vias or anchors can be selected based on the adhesive strength between the material of the anchor (such as but not limited to polyimide) and the substrate (such as but not limited to silicon). In an example, the width of the vias or anchors can range from about 0.1 μm to about 1000 μm.


The spacing of the vias or anchors also can be selected based on the intended adhesive strength between the anchors and the substrate. In an example, the number and spacing of vias or anchors can be determined based on the adhesive force to maintain the geometry of the array of electronic structures, and to substantially prevent distorting during the etching to remove the first layer (e.g., a sacrificial release layer). In an example, the number and spacing of vias or anchors is determined such that the total adhesive force of the anchors does not prevent separation of the array of electronic structures from the substrate, e.g., in a later transfer printing after the sacrificial etch. The exact pattern and placement of the vias or anchors can depend on the geometry of the array of electronic structures (including on the geometry of the array of electronic device layer 5). As a non-limiting example, the vias or anchors may be placed along the pattern of interconnected device islands. In an example, the vias or anchors can have a pitch between about 50 μm and about 1000 μm, i.e., they vias or anchors can be spaced apart by an average distance of between about 50 μm and about 1000 μm. In another example, the vias or anchors can be spaced apart by an average distance (a pitch) of between about 0.2 μm and about 10000 μm.


In a non-limiting example, the vias or anchors are cylindrical in shape, have a diameter of about 50 μm, and are spaced apart with spacing (a pitch) ranging from about 200 μm to about 800 μm. These anchors may be positioned along the pattern of interconnected device islands.


When a second polymer layer material is deposited onto the first layer, it can conform to the dimensions of the vias and contact the support substrate to form the anchor 3 (see, for example, FIG. 4). Any number of metal, semiconductor, dielectric, and device layers can be disposed above the second polymer layer of the second polymer layer using any applicable technique in the art. A third polymer layer 8 may be disposed above the electronic device layer 5. For example, the third polymer layer 8 may be an encapsulation layer that protects the electronic device layer 5 during a later etching process or other processing. In an example, the at least one electronic device layer 5 is formed a multiple electronic device layers. Each of the multiple electronic device layers can include electronic devices and electronic device components. One or more of the electronic device layers 5 can be encapsulated in a polymer material. In an example, conduits 7 may be formed, e.g., by etching, and used to create contact pads to the functional portions of at least one of the electronic device layers.


In an example, a mask may be deposited onto the topmost layer of the electronic structure before further processing. In an example, the mask is created using a photolithographic patterning and etching process. In an example, the mask is an oxide layer. The mask can be used to control the further processing. For example, the mask can be used to prevent over-etching of an encapsulant polymer region that is being used to protecting the electronic devices and interconnects of the at least one electronic device layer 5.


In an example, an adhesion-promoting layer can be included between the first layer and the substrate (e.g., when it is used as a sacrificial layer). For example, where the first layer is PMMA, adhesion-promoting layer can be included between the PMMA and the substrate to ensure adequate bonding of the PMMA to the substrate. In an example, the substrate is a Si support substrate. In the absence of an adhesion-promoting layer, the vias patterned into the PMMA may distort. For example, the width of the vias in the PMMA may expand by a factor of about 5 to about 10 when the second polymer layer material is subjected to further processing. The coefficient of thermal expansion of PMMA is higher than polyimide or silicon; therefore it may undergo greater dimensions or volume changes than the polyimide or the silicon with temperature. As a result, portions of the structure may delaminate from the silicon substrate. In a non-limiting example, where the second polymer layer is a polyimide encapsulation layer, and the vias are formed in PMMA, curing the polyimide (e.g., at greater than 140° C., and more typically about 200-250° C.) can cause the change in dimension of the resulting anchors as compared to the original width of the vias. As a result, the anchors may not be formed with the intended dimensions. In a non-limiting example, the adhesion-promoting layer can be formed from hexamethyldisilazane (HMDS).


In an example where the second layer is cured at a higher temperature than the first layer, precautions can be taken to avoid out gassing, which can induce roughness in the encapsulating layer. For example, polyimide, which can be used to form the second polymer layer, cures at 250° C., whereas PMMA (which can be used to form the first layer) may be cured at a lower temperature, e.g., at 180° C. To avoid out-gassing of the first layer if a curing is performed on the second polymer layer, the first layer first may be cured at the cure temperature of the second polymer layer to evolve the more volatile components that may evaporate at the higher temperature. As a result, little or no out-gassing can occur from the first layer. There is less disturbance of the second polymer layer, creating an advantageously smoother surface for the deposition and patterning of electronic materials in the at least one electronic device layer 5.


In another example, a slow ramped baking (e.g., about 100° C. per hour) from room temperature to the cure temperature of the second polymer layer (e.g., 250° C. for polyimide) also can improve the uniformity of the second polymer layer.


After any encapsulation, patterning, and isolation steps are complete in the fabrication, the first layer can then be removed using a selective etchant. The selective etchant is selected such that the other polymer materials in the structure are more resistant to the selective etchant than the first layer. As non-limiting examples, the selective etchant can be a solvent, a mixture of solvents, a plasma technique, or any other applicable technique in the art that can be used to selectively remove the first layer. For example, where the first layer is formed from PMMA, hot acetone may be used as the selective etchant to effectively separate the electronic structure from the substrate. In an example where the first layer is a silicon dioxide, the selective etchant can include hydroflouric acid. In an example where the first layer is a chromium, the selective etchant can include cerric ammonium nitrate. In an example where the first layer is a titanium, the selective etchant can include hydroflouric acid or hydrochloric acid. During the process for removing the first layer, the anchors are configured to remain substantially undisturbed and effectively hold the array of electronic structures in place relative to one another and to the substrate.


In an example, the structures can be subjected to a longer process for removing the first layer. For example, the structures may be left in a release bath for a long time the array of electronic structures being separated from the substrate or losing registration with the substrate. This process of preparing flexible electronics structures, which in an example includes stretchable electronics structures, is suited for subsequent transfer printing using any applicable technique in the art.



FIGS. 12A-12L show another non-limiting example process for fabricating an array of electronic structures on a substrate. In FIG. 12A, a first layer 101 is applied to a substrate 100. An example of the first layer can be a PMMA sacrificial layer. The first layer 101 can be patterned using any number of techniques in the art and depending on the type of material in the first layer. The patterning facilitates the selective removal of portions of the first layer to form the vias 201 (shown in FIG. 12 B). For an example where the first layer is formed from PMMA, the vias 201 may be formed in the PMMA using an oxygen plasma etch through a stencil hardmask or a photolithographically patterned mask. Other techniques in the art for selectively removing portions of the PMMA, including direct exposure to laser light of wavelength between 220-250 nm through a mask followed by development. In addition, other larger regions of the first layer may be selectively removed, such as feature 202 of FIG. 12B. According to an example, feature 202 is created to allow for test structures, manufacturing structures, piezoelectric structures, and/or lithography alignment marks to be created on the substrate. These features may not be transferred when performing the selective removal of the first layer. The vias 201 can extend substantially from a surface of the first layer to the substrate 100. The second polymer layer can be applied such that it substantially fills a number of the vias 201 and make contact with the substrate 100. As described above, the size (i.e., cross-sectional width) and density (based on the average spacing) of the vias can be varied to derive the desired degree of adhesion of formed anchors to the substrate. As also described above, the degree of adhesion can be selected such that the array of electronic structures maintain contact with the surface during removal of the first layer.


A second polymer layer (e.g., of an encapsulating polymer 300) can be applied to the structure. In an example, the second polymer material is applied to fill a number of the vias 201 and create anchors 302 (shown in FIG. 12C). In an example, the second polymer layer is applied through spin coating. However, other techniques, including, e.g., spray coating, lamination, casting, or vapor deposition may be used to apply the second polymer layer. The second polymer layer can be applied such that it conforms to a dimension of the vias, including filling the width and/or depth of the vias, to forming anchors 302 in contact with the substrate. At least one electronic device layer, including any number of metal, semiconductor, dielectric, and device layers, can be disposed on top of the second polymer layer. The topmost electronic device layer may be protected by a third polymer layer.


The vias 201 or anchors 302 may be in any two-dimensional geometry. For example, as shown in FIG. 12B, the vias 201 may be formed in a two-dimensional grid pattern. Other patterns of arrangement of the vias are applicable. The vias 201 or anchors 302 may be formed with a circular cross-section for easier fabrication, but any other cross-sectional geometry is within the scope of this disclosure. In an example, the diameter of the vias 201 or anchors 302 can be between about 10 μm and about 50 μm. In an example, the width of the vias 201 (or anchors 302) is selected such that the anchors 302 provide sufficient adhesive force with the substrate 100 to not separate during the etching of the first layer. In an example, the width of the vias 201 (or anchors 302) also can be selected such that the anchors 302 do not generate an adhesive force that prevents the array of electronics structures from being separated from the substrate after the sacrificial release layer is removed. The further processing can be, but not limited to, transfer printing step. In an example, the width of the vias 201 (or anchors 302) can be selected based on the adhesive strength between the material of the anchor 302 and the material of the substrate 100. In an example, the width of the vias 201 (or anchors 302) can range from about 0.1 μm to about 1000 μm.


The spacing of the vias 201 (or anchors 302) also can be selected based on the intended adhesive strength between the anchors 302 and the substrate 100. For example, the number and spacing of vias 201 (or anchors 302) can be selected to provide sufficient adhesive force to maintain the geometry of the array of electronic structures, and to substantially prevent distortion during removal of the first layer 101. In another example, the number and spacing of vias 201 (or anchors 302) is determined such that the total adhesive force of the anchors 302 does not impede separation of the array of electronic structures from the substrate 100. The pattern and placement of the vias 201 (or anchors 302) can depend on the geometry of the array of electronic structures. As a non-limiting example, the vias 201 (or anchors 302) may be placed along the pattern of interconnected device islands. In an example, the vias 201 (or anchors 302) may be spaced apart (i.e., have a pitch) by an average distance of between about 50 μm and about 1000 μm. In another example, the vias 201 (or anchors 302) may be spaced apart by an average distance of between about 0.2 μm and about 10000 μm.


In a non-limiting example, the vias 201 (or anchors 302) are cylindrical in shape, have a diameter of about 50 μm, and are spaced apart with spacing ranging from about 200 μm to about 800 μm.


As described above, an adhesion-promoting layer may be applied to ensure adequate bonding of the first layer 101 to the substrate 100. In an example where the first layer 101 is PMMA, the adhesion-promoting layer can be formed from a polymeric material. As a non-limiting example, the adhesion-promoting layer can be formed from hexamethyldisilazane (HMDS).


As described above, where the second polymer layer material 300 has a higher cure temperature than the first layer material 101, the first layer can be cured at the cure temperature of the second polymer layer material prior to application of the second polymer layer.


In an example, as shown in FIG. 12D, an adhesive layer 400 can be applied to prior to disposing the electronic device layer above the first layer and the second polymer layer. The adhesive layer may be formed from a dilute polyimide or a similar polymeric material. The adhesive layer 400 may be applied by a spin-coating or spray coating. Adhesive layer 400 assists in securing components of the at least one electronic device layer. For example, adhesive layer 400 assists in securing components 500. Once components 500 have been positioned on the adhesive layer 400, the structure may be cured to set the placement of the components 500.


In a non-limiting example, the at least one electronic device layer can include a metal, a semiconductor, a dielectric, a micro electro mechanical system (MEMS) component, and any other device component. FIGS. 12E to 12J show cross-sectional views of the structure as different electronic device layers are disposed on the structure. The electronic device layers include device islands 500 (with electronic component 501), interconnects 701, and contacts 900. As illustrated in FIGS. 12F and 12H, layers 600 and 800 of an encapsulant material, e.g., a polymer layer or an oxide layer, may be applied in regions of the electronic device layer prior to disposing another component of the layer. Layers 600 and 800 also may be used to planarize portions of the electronic device layer prior to addition of other components of the electronic device layer.


An oxide or polymer layer, such as layer 600 or layer 800, can be deposited prior to photolithographic patterning and etching, or other processing. The oxide or polymer layer helps to control the etch process and prevents over etching of the encapsulating regions of the electronic device layer, thus protecting the electronic devices and interconnects that are part of the electronic device layer.


As illustrated in FIGS. 12F and 12H, specific portions of the polymer can be removed to allow for fabrication of device interconnects. For example, using an etching technique, such as oxygen plasma etching, electrical vias 700 can be created in polymer layer 800. These electrical vias 700 can be used to expose a bare conductive pad 501 of a component. Once the conductive pads 501 are exposed, the interconnects 701 can be deposited using any applicable technique in the art, including physical vapor deposition, lithography, etching, plating, and direct platting. FIGS. 12H to 12I show the multilevel interconnects that can be created in an electronic device layer by applying additional layers of polymer 800, creating electrical vias 700, and then depositing electrical interconnects 701. The process of applying additional layers of electrical interconnects may be repeated as many times as needed to fully interconnect the components of the at least one electronic device layers.


As shown in FIG. 12 J, an additional layer, polymer layer 1000, may be applied. In this example, polymer layer 1000 can be the third polymer layer. Polymer layer 1000 can serve to encapsulate the at least one electronic device layers.


As shown in FIG. 12 K, trenches 1101 can be created in polymer layer 1000 to provide access to the contact pads and facilitate segmentation. For example, trenches 1101 may be created by lithography and etching, using laser ablation, by mechanical cutting or using pure photopatterning. In another example, trenches 1101 could be created by photodefining one or more layers as the system is additively manufactured. The segmentation process, creating trenches 1101, allows for direct access of the selective etchant to the first layer 101. The etching time to remove the first layer may be greatly reduced by creating multiple access holes (including other trenches) throughout the device.


Once chemical access to the first layer is created, the selective etchant can act to remove remaining portions of the first layer. This results in cavities 1200 being formed beneath the electronic structure and exposing the anchors 302 (see FIG. 12L). The selective etchant removes much of the remaining portions of the first layer without harming the materials exposed in the electronic structure. In an example where the first layer is formed from PMMA, hot acetone can be used as the selective etchant to effectively separate the electronic structure (i.e., the encapsulated devices) from the substrate. During this process, the anchors 302 remain substantially undisturbed and effectively maintain the encapsulated electronic devices in substantially the same position relative to each other and to the substrate.


Transfer printing may be performed using any applicable technique in the art to separate the electronic structure described herein from the substrate after removal of the remaining portions of the first layer. In an example, the transfer printing can be performed using a removable medium, including an elastomeric stamp or cylinder, a selectively adhesive tape, or a tape that can be removed, after transfer, with an oxygen plasma etch, UV light, application of heat, or dissolving in a solvent or mixture of solvents (including water). In an example, regions of the electronic structure where large bulk areas of the polymer layer are in contact with the substrate may not be removed during a transfer process.


In an example, the transfer printing can be performed to transfer the arrays of the electronic structures from one substrate to another, e.g, from a carrier substrate to a final device substrate. For example, the arrays of the electronic structures may be fabricated on a rigid substrate and then transferred using transfer printing to a soft, flexible, and or stretchable substrate (including polydimethylsiloxane (PDMS,), ECOFLEX® (BASF Chemical Company, Florham Park, N.J.), or any other elastomer, rubber, plastic, fabric or polymer material). The transfer process may introduce additional defects (including breakage and incomplete transfer), resulting in low yield. The operation can be sensitive to differences in the adhesive forces between the array-to-stamp interface and the anchor-to-substrate interface. They may be difficult to accurately and consistently control. In addition, transferring the array from the stamp to the second (stretchable) substrate may require that the adhesive forces for the array-to-second substrate contact are greater than the forces at the array-to-stamp contact. The stamp-to-second substrate adhesive forces can be small enough to remove the stamp without damaging the second substrate. Covalent bonding forces may be used between a silicon dioxide layer on the array and an oxygen-terminated surface of the second (stretchable) substrate to obtain a strong bond for device mechanical durability. This process can result in the stamp becoming too strongly bonded to the second (stretchable) substrate, and as a result, removing the stamp can damage the array.


A removable medium can be used to separate the array of electronic structure from the support substrate. The removable medium can present a large adhesion force. For example, the removable medium to array adhesive forces can be greater than the pattern to substrate forces. Therefore, the removable medium can be used to separate the array from the substrate. In addition, where the removable medium is a water-dissolvable medium, it can be dissolved in water. Therefore, the second transfer process (i.e., from removable medium to ECOFLEX® substrate may not depend on any difference in forces whatsoever. In addition, if a strong bond (i.e., oxygen bonding as described above) is used for the second transfer process, the removable medium is removed easily and substantially without residue, using only water regardless of the strength of the removable medium to second substrate bond strength.


In a non-limiting example, the arrays of the electronic structures may be removed from the substrate using a removable medium. In an example, the removable medium may be a selectively adhesive tape, a tape that can be removed by exposure to UV light, with application of heat, using an oxygen plasma etch, or by dissolving in a solvent or mixture of solvents (including water). In an example, the removable medium may be an elastomeric stamp or cylinder. In an example, the removable medium is a water-dissolvable tape.


In an example, the electronic structures are separated from the substrate by applying a removable medium on a portion of the top layer of the electronic structure, and applying a force to the removable medium to separate the anchors of the electronic structure from the substrate. The removable medium can be selected such that its adhesion strength to the top layer of the electronic structure is greater than the adhesion strength of the anchors to the substrate.



FIGS. 13-20 show non-limiting examples of the use of a removable medium. FIG. 13 shows an array of electronic structures 1303 that are formed according to a principle herein. Anchors 1304 of an array of the electronic structures 1303 maintains contact with a substrate 1200. The array of the electronic structures 1303 can include electronic device layers 1302 encapsulated in a polymer 1301. In this example, a removable medium 1400 with an adhesive layer 1401 is applied to the arrays of the electronic structures (as shown in FIG. 14). After securing the removable medium 1400 to the array of electronic structures 1400, force is applied to the removable medium to detach the array of electronic structures from the substrate (as shown in FIG. 15).


A removable medium 1400 can be selected based on its adhesion characteristics for a specific layer material. For example, removable medium 1400 can be selected based on its adhesion characteristics such that the removable medium to electronic structure adhesion force is greater than the anchors to substrate force. The arrays of electronic structures 1303 may be removed from the substrate, and remain contacted with the removable medium 1400, without causing defects in the electronic devices of the electronic structure or causing breakage.


As shown in FIG. 16, the removable medium 1400 and the electronic structures 1303 can be exposed to an oxygen plasma to remove the portions of the adhesive layer 1401 from the areas not covered by the arrays of the electronic structures 1303. In an example, the oxygen plasma can be applied at a 40-sccm oxygen flow rate, with 100-W rf power, and a 30-sec treatment. As shown in the cross-sectional view of FIG. 16, the oxygen plasma removes the portions of the adhesive layer 1401 that are not contacting the electronic structure 1303.


As shown in FIG. 17, a metal layer and/or an oxide layer may be deposited on the electronic structure. In an example, the metal layer is a 3-nm Titanium layer, and the oxide layer is a 30-nm SiO2 layer. The metal layer and/or oxide layer can be evaporated onto the surface of the arrays of the electronic structures 1303 that is away from the removable medium 1400. In an example, a shadow mask 1601 is used to confine the evaporation to solely the arrays of the electronic structures.


In FIG. 18, the removable medium 1400, arrays of the electronic structures 1303, and a second substrate 1700 are exposed to an oxygen plasma to create highly oxygen-terminated surfaces. In an example, the oxygen plasma is applied at a 40-sccm oxygen flow rate, and using 100-W rf power, for a 30-sec treatment. In some examples, the second substrate 1700 may be a flexible material or a stretchable material. For example, the second substrate 1700 can be a polymer, including but not limited to ECOFLEX®.


In FIG. 19, the highly oxygen-terminated surface of the second surface is contacted with the highly oxygen-terminated surface of the electronic structure, to provide a component 1800. In an example, a pressure is applied to ensure contact between second substrate 1700 and the electronic structures 1303.



FIG. 20 shows an example of the removal of the removable medium 1400. In an example, the removable medium 1400 is a water-dissolvable tape. The arrays of the electronic structures 1303, the removable medium 1400, and the second substrate are placed in a containment vessel 901 with 100° C. water 900 for 30 minutes. In this embodiment, exposure of the removable medium to water dissolves the removable medium and removes any residue left on the arrays of the electronic structures.


EXAMPLE IMPLEMENTATION

A non-limiting example of a process for fabricating an electronic structure that is contacted to a substrate using anchors is as follows:

  • 1 RCA clean silicon wafer
  • 2 Spin coat PMMA sacrificial layer coating (˜100 nm)
  • 3 Cure PMMA at 250° C.
  • 4 Pattern PMMA
  • 5 Spin coat PI to create posts in PMMA vias (˜10 μm)
  • 6 Cure PI at 250° C.
  • 7 Deposit Cr/Au (˜100 Å/5000 Å)
  • 8 Spin coat photoresist (PR)
  • 9 Soft bake PR
  • 10 Expose PR using patterned mask of metal design
  • 11 Develop PR
  • 12 Rinse wafers
  • 13 Etch gold in potassium iodide
  • 14 Etch chromium in cerric ammonium nitrate
  • 15 Rinse wafers in De-ionised Water (DIW)
  • 16 Strip PR
  • 17 Spin coat PI to encapsulate gold pattern (˜10 μm)
  • 18 Cure PI at 250° C.
  • 19 Deposit SiO2 hard mask layer (50-100 nm)
  • 20 Spin PR
  • 21 Softbake PR
  • 22 Expose PR using patterned mask of PI encapsulation design
  • 23 Develop PR
  • 24 Rinse wafers in DIW
  • 25 Etch SiO2 layer/PI exposed by PR pattern in CF4/O2 Reactive Ion Etch (RIE) respectively
  • 26 Etch PMMA layer using hot acetone bath
  • 27 Remove encapsulated metal from Si support by suitable transfer printing methods (e.g., Soft Lithography or tape)


Another non-limiting example of a process fabricate an electronic structure that is contacted to a substrate using anchors is as follows:

  • 1 Clean rigid carrier substrate
  • 2 Apply sacrificial layer material
  • 3 Anneal sacrificial layer @T1 (where T1 is a cure temperature for a material in the electronic structure)
  • 4 Pattern sacrificial layer to create vias to the substrate
  • 5 Apply base layer polymer to create posts in sacrificial layer vias
  • 6 Cure polymer layer @T1 or lower
  • 7 Electronic processing (varying levels of complexity)
    • Embedding active devices
    • Multiple layers of interconnects
  • 8 Apply top layer polymer to encapsulate electronics
  • 9 Cure polymer layer @T1 or lower
  • 10 Deposit masking material
  • 11 Pattern masking material
  • 12 Etch trenches to define device geometry and access sacrificial layer
  • 13 Etch sacrificial layer using selective etchant that won't attack any of the device elements
  • 14 Remove encapsulated electronic system from carrier substrate support by suitable transfer printing methods (e.g., soft Lithography or tape)


Any other applicable technique may be employed to fabricate a device according to the principles described herein.


While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


The above-described embodiments of the invention can be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers.


In this respect, various aspects of the invention may be embodied at least in part as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy disks, compact disks, optical disks, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other tangible computer storage medium or non-transitory medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various embodiments of the technology described above. The computer readable medium or media can be transportable, such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various aspects of the present technology as described above.


The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present technology as described above. Additionally, it should be appreciated that according to one aspect of this embodiment, one or more computer programs that when executed perform methods of the present technology need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present technology.


Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.


Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. A flexible electronic structure, comprising: a base polymer layer having a first surface and a second surface, wherein the first surface comprises a plurality of electrically non-conductive anchors;at least one electronic device layer disposed above a portion of the second surface of the base polymer, the electronic device layer comprising: two or more device islands; andat least one stretchable interconnect electrically coupling the two or more device islands; anda second polymer layer disposed above a portion of the at least one electronic device layer;wherein at least one anchor of the plurality of electrically non-conductive anchors is disposed beneath at least one of the two or more device islands; andwherein the flexible electronic structure is configured such that a strain-sensitive layer of the electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 2. The flexible electronic structure of claim 1, wherein an average width of the plurality of electrically non-conductive anchors is in a range from about 10 μm to about 50 μm.
  • 3. The flexible electronic structure of claim 1, wherein an average width of the plurality of electrically non-conductive anchors is in a range from about 0.1 μm to about 1000 μm.
  • 4. The flexible electronic structure of claim 1, wherein at least some of the plurality of electrically non-conductive anchors have a substantially circular cross-section, a substantially hexagonal cross-section, a substantially oval cross-section, a substantially rectangular cross-section, a polygonal cross-section, or a non-polygonal cross-section.
  • 5. The flexible electronic structure of claim 1, wherein the plurality of electrically non-conductive anchors are formed in a two-dimensional array.
  • 6. The flexible electronic structure of claim 1, wherein an average width of the plurality of vias is in a range from about 10 μm to about 50 μm.
  • 7. The flexible electronic structure of claim 1, wherein an average width of the plurality of vias is in a range from about 0.1 μm to about 1000 μm.
  • 8. The flexible electronic structure of claim 1, wherein the plurality of vias have a pitch with an average separation ranging from about 50 μm to about 1,000 μm.
  • 9. The flexible electronic structure of claim 1, wherein the plurality of vias have a pitch with an average separation ranging from about 0.2 to about 10,000 μm.
  • 10. The flexible electronic structure of claim 1, wherein the plurality of vias have a pitch with an average separation ranging from about 200 to about 800 μm.
  • 11. The flexible electronic structure of claim 1, wherein the second polymer layer comprises polyimide, polyethylene naphthalate, polybenzobisoxazole, benzocyclobutene, siloxane, or a liquid crystal polymer.
  • 12. The flexible electronic structure of claim 1, wherein the at least one electronic device layer comprises a transistor, a light emitting diode, a transducer, a sensor, a battery, an integrated circuit, a semiconductor, a diode, arrays of electronic components, an optical system, a temperature sensors, a pressure sensor, an electrical-conductivity sensor, a chemical sensor, a resistor, a capacitor, a passive device, a photodiode, a photodetector, an emitter, a receiver, or a transceiver.
  • 13. A flexible electronic structure, comprising: a base polymer layer having a first surface and a second surface, wherein the first surface comprises a plurality of electrically non-conductive anchors;at least one electronic device layer disposed above a portion of the second surface of the base polymer, the electronic device layer comprising: two or more device islands; andat least one stretchable interconnect electrically coupling the two or more device islands; anda top polymer layer that is disposed above at least a portion of the at least one electronic device layer,wherein at least one anchor of the plurality of electrically non-conductive anchors is disposed beneath at least one of the two or more device islands; andwherein a thickness of the top polymer layer or a thickness of the base layer is configured such that a strain-sensitive layer of the electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 14. The flexible electronic structure of claim 13, wherein the thickness of the top polymer layer is configured such that the strain-sensitive layer of the at least one electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 15. A flexible electronic structure, comprising: a base polymer layer having a first surface and a second surface, wherein the first surface comprises a plurality of electrically non-conductive anchors, and wherein at least one of the plurality of electrically non-conductive anchors contacts a substrate;at least one electronic device layer disposed above a portion of the second surface of the base polymer, the electronic device layer comprising: two or more device islands; andat least one stretchable interconnect electrically coupling the two or more device islands; anda second polymer layer disposed above a portion of the at least one electronic device layer;wherein at least one anchor of the plurality of electrically non-conductive anchors is disposed beneath at least one of the two or more device islands; andwherein the flexible electronic structure is configured such that a strain-sensitive layer of the electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 16. The flexible electronic structure of claim 15, wherein an average width of each anchor of the plurality of electrically non-conductive anchors is in a range from about 10 μm to about 50 μm.
  • 17. The flexible electronic structure of claim 15, wherein an average width of each anchor of the plurality of electrically non-conductive anchors is in a range from about 0.1 μm to about 1000 μm.
  • 18. The flexible electronic structure of claim 15, wherein at least some of the plurality of electrically non-conductive anchors have a substantially circular cross-section, a substantially hexagonal cross-section, a substantially oval cross-section, a substantially rectangular cross-section, a polygonal cross-section, or a non-polygonal cross-section.
  • 19. The flexible electronic structure of claim 15, wherein the plurality of electrically non-conductive anchors are formed in a two-dimensional array.
  • 20. The flexible electronic structure of claim 15, wherein an average width of each of the plurality of vias is in a range from about 10 μm to about 50 μm.
  • 21. The flexible electronic structure of claim 15, wherein an average width of each of the plurality of vias is in a range from about 0.1 μm to about 1000 μm.
  • 22. The flexible electronic structure of claim 15, wherein the plurality of vias have a pitch with an average separation ranging from about 50 μm to about 1,000 μm.
  • 23. The flexible electronic structure of claim 15, wherein the plurality of vias have a pitch with an average separation ranging from about 0.2 to about 10,000 μm.
  • 24. The flexible electronic structure of claim 15, wherein the plurality of vias have a pitch with an average separation ranging from about 200 to about 800 μm.
  • 25. The flexible electronic structure of claim 15, wherein the second polymer layer comprises polyimide, polyethylene naphthalate, polybenzobisoxazole, benzocyclobutene, siloxane, or a liquid crystal polymer.
  • 26. The flexible electronic structure of claim 25, wherein the at least one electronic device layer comprises a transistor, a LED, a transducer, a sensor, a battery, an integrated circuit, a semiconductor, a diode, arrays of electronic components, an optical system, a temperature sensors, a pressure sensor, an electrical-conductivity sensor, a chemical sensor, a resistor, a capacitor, a passive device, a photodiode, a photodetector, an emitter, a receiver, or a transceiver.
  • 27. A flexible electronic structure, comprising: a base polymer layer having a first surface and a second surface, wherein the first surface comprises a plurality of electrically non-conductive anchors, and wherein at least one of the plurality of electrically non-conductive anchors contacts a substrate;at least one electronic device layer disposed above a portion of the second surface of the base polymer, the electronic device layer comprising: two or more device islands; andat least one stretchable interconnect electrically coupling the two or more device islands; anda top polymer layer that is disposed above at least a portion of the at least one electronic device layerwherein at least one anchor of the plurality of electrically non-conductive anchors is disposed beneath at least one of the two or more device islands; andwherein a thickness of the top polymer layer or a thickness of the base layer is configured such that a strain-sensitive layer of the electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 28. The flexible electronic structure of claim 27, wherein the thickness of the top polymer layer is configured such that the strain-sensitive layer of the at least one electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
  • 29. A flexible electronic structure, comprising: a base polymer layer having a first surface and a second surface, wherein: the first surface comprises a plurality of electrically non-conductive anchors;the plurality of electrically non-conductive anchors have a diameter of about 50 μm and have a pitch ranging from about 200 μm to about 800 μm; andat least one electronic device layer disposed above the second surface of the base polymer layer, the electronic device layer comprising: two or more device islands; andat least one stretchable interconnect electrically coupling the two or more device islands; anda second polymer layer disposed above a portion of the at least one electronic device layer;wherein at least one anchor of the plurality of electrically non-conductive anchors is disposed beneath at least one of the two or more device islands; andwherein the flexible electronic structure is configured such that a strain-sensitive layer of the electronic device layer is at a neutral mechanical plane of the flexible electronic structure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and benefit of U.S. Provisional Application No. 61/490,826, filed on May 27, 2011, entitled “METHODS FOR FABRICATING ELECTRONIC, OPTICAL AND/OR MECHANICAL APPARATUS AND SYSTEMS,” which provisional application is incorporated herein by reference in its entirety, including drawings.

US Referenced Citations (578)
Number Name Date Kind
3716861 Root Feb 1973 A
3805427 Epstein Apr 1974 A
3949410 Bassous Apr 1976 A
4058418 Lindmayer Nov 1977 A
4392451 Mickelsen et al. Jul 1983 A
4416288 Freeman Nov 1983 A
4471003 Cann Sep 1984 A
4487162 Cann Dec 1984 A
4658153 Brosh et al. Apr 1987 A
4663828 Hanak May 1987 A
4761335 Aurichio et al. Aug 1988 A
4763275 Carlin Aug 1988 A
4766670 Gazdik et al. Aug 1988 A
4784720 Douglas Nov 1988 A
4855017 Douglas Aug 1989 A
4900878 Ichkhan Feb 1990 A
5041973 Lebron et al. Aug 1991 A
5086785 Gentile et al. Feb 1992 A
5108819 Heller et al. Apr 1992 A
5118400 Wollam Jun 1992 A
5147519 Legge Sep 1992 A
5178957 Kolpe et al. Jan 1993 A
5204144 Cann et al. Apr 1993 A
5250903 Limuti Oct 1993 A
5306917 Black et al. Apr 1994 A
5313094 Beyer et al. May 1994 A
5331966 Bennett et al. Jul 1994 A
5360987 Shibib Nov 1994 A
5403700 Heller et al. Apr 1995 A
5427096 Bogusiewicz et al. Jun 1995 A
5434751 Cole, Jr. et al. Jul 1995 A
5439575 Thornton et al. Aug 1995 A
5455178 Fattinger Oct 1995 A
5455430 Noguchi et al. Oct 1995 A
5469845 Delonzor et al. Nov 1995 A
5477088 Rockett et al. Dec 1995 A
5501893 Laermer et al. Mar 1996 A
5525815 Einset Jun 1996 A
5539935 Rush, III Jul 1996 A
5545291 Smith et al. Aug 1996 A
5549108 Edwards et al. Aug 1996 A
5560974 Langley Oct 1996 A
5567975 Walsh et al. Oct 1996 A
5625471 Smith Apr 1997 A
5648148 Simpson Jul 1997 A
5687737 Branham et al. Nov 1997 A
5691245 Bakhit et al. Nov 1997 A
5746207 McLaughlin May 1998 A
5753529 Chang et al. May 1998 A
5757081 Chang et al. May 1998 A
5767578 Chang et al. Jun 1998 A
5772905 Chou Jun 1998 A
5783856 Smith et al. Jul 1998 A
5790151 Mills Aug 1998 A
5811790 Endo et al. Sep 1998 A
5817242 Biebuyck et al. Oct 1998 A
5824186 Smith et al. Oct 1998 A
5837546 Allen Nov 1998 A
5860974 Abele Jan 1999 A
5871443 Edwards et al. Feb 1999 A
5904545 Smith et al. May 1999 A
5907189 Mertol May 1999 A
5907477 Tuttle et al. May 1999 A
5915180 Hara et al. Jun 1999 A
5917534 Rajeswaran Jun 1999 A
5919155 Lattin Jul 1999 A
5928001 Gillette et al. Jul 1999 A
5955781 Joshi et al. Sep 1999 A
5968839 Blatt Oct 1999 A
5976683 Liehrr et al. Nov 1999 A
5978972 Stewart et al. Nov 1999 A
5998291 Bakhit et al. Dec 1999 A
6009632 Douglas Jan 2000 A
6024702 Iversen Feb 2000 A
6057212 Chan et al. May 2000 A
6063046 Allum May 2000 A
6080608 Nowak Jun 2000 A
6097984 Douglas Aug 2000 A
6121110 Hong Sep 2000 A
6148127 Adams et al. Nov 2000 A
6150602 Campbell Nov 2000 A
6165391 Vedamuttu Dec 2000 A
6165885 Gaynes et al. Dec 2000 A
6171730 Kuroda et al. Jan 2001 B1
6181551 Herman Jan 2001 B1
6225149 Gan et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6265326 Ueno Jul 2001 B1
6274508 Jacobsen et al. Aug 2001 B1
6276775 Schulte Aug 2001 B1
6277712 Kang et al. Aug 2001 B1
6281038 Jacobsen et al. Aug 2001 B1
6282960 Samuels et al. Sep 2001 B1
6284418 Trantolo Sep 2001 B1
6287517 Ackley et al. Sep 2001 B1
6291896 Smith Sep 2001 B1
6301500 Van Herk Oct 2001 B1
6309351 Kurnik Oct 2001 B1
6316278 Jacobsen et al. Nov 2001 B1
6316283 Saurer Nov 2001 B1
6317175 Salerno et al. Nov 2001 B1
6322895 Canham Nov 2001 B1
6322963 Bauer Nov 2001 B1
6334960 Willson et al. Jan 2002 B1
6344616 Yokokawa Feb 2002 B1
6360615 Smela Mar 2002 B1
6380729 Smith Apr 2002 B1
6403397 Katz Jun 2002 B1
6403944 MacKenzie Jun 2002 B1
6413790 Duthaler et al. Jul 2002 B1
6414783 Zavracky et al. Jul 2002 B2
6417025 Gengel Jul 2002 B1
6420266 Smith et al. Jul 2002 B1
6433401 Clark et al. Aug 2002 B1
6451191 Bentsen et al. Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6468638 Jacobsen et al. Oct 2002 B2
6479395 Smith et al. Nov 2002 B1
6504105 Acocella et al. Jan 2003 B1
6517995 Jacobson et al. Feb 2003 B1
6518168 Clem et al. Feb 2003 B1
6527964 Smith et al. Mar 2003 B1
6555408 Jacobsen et al. Apr 2003 B1
6566744 Gengel May 2003 B2
6567158 Falciai et al. May 2003 B1
6580151 Vandeputte et al. Jun 2003 B2
6586338 Smith et al. Jul 2003 B2
6590346 Hadley et al. Jul 2003 B1
6606079 Smith Aug 2003 B1
6606247 Credelle et al. Aug 2003 B2
6608370 Chen et al. Aug 2003 B1
6613979 Miller et al. Sep 2003 B1
6623579 Smith et al. Sep 2003 B1
6639578 Comiskey et al. Oct 2003 B1
6655286 Rogers Dec 2003 B2
6657289 Craig et al. Dec 2003 B1
6661037 Pan et al. Dec 2003 B2
6665044 Jacobsen et al. Dec 2003 B1
6666821 Keimel Dec 2003 B2
6667548 O'Connor et al. Dec 2003 B2
6683663 Hadley et al. Jan 2004 B1
6693384 Vicentini et al. Feb 2004 B1
6706402 Rueckes et al. Mar 2004 B2
6720469 Curtis et al. Apr 2004 B1
6723576 Nozawa et al. Apr 2004 B2
6730990 Kondo et al. May 2004 B2
6731353 Credelle et al. May 2004 B1
6743982 Biegelsen et al. Jun 2004 B2
6762510 Fock et al. Jul 2004 B2
6780696 Schatz Aug 2004 B1
6784450 Pan et al. Aug 2004 B2
6784844 Boakes et al. Aug 2004 B1
6787052 Vaganov Sep 2004 B1
6805809 Nuzzo et al. Oct 2004 B2
6814898 Deeman et al. Nov 2004 B1
6816380 Credelle et al. Nov 2004 B2
6826509 Crisco, III et al. Nov 2004 B2
6836744 Asphahani et al. Dec 2004 B1
6844673 Bernkopf Jan 2005 B1
6848162 Arneson et al. Feb 2005 B2
6850312 Jacobsen et al. Feb 2005 B2
6856830 He Feb 2005 B2
6863219 Jacobsen et al. Mar 2005 B1
6864435 Hermanns et al. Mar 2005 B2
6864570 Smith Mar 2005 B2
6872645 Duan et al. Mar 2005 B2
6878871 Scher et al. Apr 2005 B2
6881979 Starikov et al. Apr 2005 B2
6885030 Onozuka et al. Apr 2005 B2
6887450 Chen et al. May 2005 B2
6900094 Hammond et al. May 2005 B2
6917061 Pan et al. Jul 2005 B2
6936181 Bulthaup et al. Aug 2005 B2
6949199 Gauzner et al. Sep 2005 B1
6949206 Whiteford et al. Sep 2005 B2
6950220 Abramson et al. Sep 2005 B2
6967362 Nam et al. Nov 2005 B2
6984934 Moller et al. Jan 2006 B2
6989285 Ball Jan 2006 B2
7029951 Chen et al. Apr 2006 B2
7033961 Smart et al. Apr 2006 B1
7054784 Flentov et al. May 2006 B2
7067903 Tachibana et al. Jun 2006 B2
7081642 Onozuka et al. Jul 2006 B2
7116318 Amundson et al. Oct 2006 B2
7132313 O'Connor et al. Nov 2006 B2
7148512 Leu et al. Dec 2006 B2
7158277 Berggren et al. Jan 2007 B2
7169546 Suzuki et al. Jan 2007 B2
7169669 Blakers et al. Jan 2007 B2
7170164 Chen et al. Jan 2007 B2
7186624 Welser et al. Mar 2007 B2
7190051 Mech et al. Mar 2007 B2
7195733 Rogers et al. Mar 2007 B2
7223609 Anvar et al. May 2007 B2
7223632 Onozuka et al. May 2007 B2
7252664 Nasab et al. Aug 2007 B2
7253442 Huang et al. Aug 2007 B2
7255919 Sakata et al. Aug 2007 B2
7265298 Maghribi Sep 2007 B2
7291146 Steinke et al. Nov 2007 B2
7291540 Mech et al. Nov 2007 B2
7293353 Matsuda Nov 2007 B2
7302751 Hamburgen Dec 2007 B2
7337012 Maghribi Feb 2008 B2
7374968 Kornilovich et al. May 2008 B2
7425523 Ikemizu et al. Sep 2008 B2
7487587 Vanfleteren Feb 2009 B2
7491892 Wagner Feb 2009 B2
7509835 Beck Mar 2009 B2
7521292 Rogers Apr 2009 B2
7525304 Feng et al. Apr 2009 B1
7526389 Greenwald et al. Apr 2009 B2
7552031 Vock et al. Jun 2009 B2
7557367 Rodgers Jul 2009 B2
7593086 Jeong et al. Sep 2009 B2
7618260 Daniel et al. Nov 2009 B2
7622367 Nuzzo Nov 2009 B1
7629691 Roush et al. Dec 2009 B2
7633761 Kim Dec 2009 B2
7635755 Kaplan et al. Dec 2009 B2
7674882 Kaplan et al. Mar 2010 B2
7700402 Wild et al. Apr 2010 B2
7704684 Rogers et al. Apr 2010 B2
7705280 Nuzzo et al. Apr 2010 B2
7709961 Greenberg et al. May 2010 B2
7727199 Fernandes et al. Jun 2010 B2
7727575 Kaplan et al. Jun 2010 B2
7732012 Hongu et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7759167 Vanfleteren Jul 2010 B2
7769472 Gerber Aug 2010 B2
7799699 Nuzzo et al. Sep 2010 B2
7838964 Carobolante et al. Nov 2010 B2
7842780 Kaplan et al. Nov 2010 B2
7857781 Noda et al. Dec 2010 B2
7871661 Maghribi et al. Jan 2011 B2
7884540 Sung et al. Feb 2011 B2
7909971 Nuzzo et al. Mar 2011 B2
7932123 Rogers et al. Apr 2011 B2
7935056 Zdeblick May 2011 B2
7943491 Nuzzo et al. May 2011 B2
7960246 Flamand Jun 2011 B2
7972875 Rogers et al. Jul 2011 B2
7982296 Nuzzo Jul 2011 B2
8008575 De Ceuster et al. Aug 2011 B2
8039847 Nuzzo et al. Oct 2011 B2
8097926 De Graff Jan 2012 B2
8107248 Shin et al. Jan 2012 B2
8198621 Rogers Jun 2012 B2
8207473 Axisa Jun 2012 B2
8217381 Rodgers Jul 2012 B2
8252191 Heejoon et al. Aug 2012 B2
8367035 Rogers et al. Feb 2013 B2
8372726 De Graff Feb 2013 B2
8389862 Arora Mar 2013 B2
8394706 Nuzzo et al. Mar 2013 B2
8431828 Vanfleteren Apr 2013 B2
8440546 Nuzzo May 2013 B2
8536667 De Graff Sep 2013 B2
8552299 Rodgers Oct 2013 B2
8664699 Nuzzo Mar 2014 B2
8679888 Rodgers Mar 2014 B2
8729524 Rodgers May 2014 B2
8754396 Rogers Jun 2014 B2
8865489 Rodgers Oct 2014 B2
8886334 Ghaffari Nov 2014 B2
8905772 Rodgers Dec 2014 B2
9012784 Arora et al. Apr 2015 B2
20010003043 Metspalu et al. Jun 2001 A1
20010012918 Swanson Aug 2001 A1
20010021867 Kordis Sep 2001 A1
20020021445 Bozhevolnyi et al. Feb 2002 A1
20020026127 Balbierz et al. Feb 2002 A1
20020082515 Campbell et al. Jun 2002 A1
20020094701 Biegelsen et al. Jul 2002 A1
20020095087 Mourad et al. Jul 2002 A1
20020110766 Tsai et al. Aug 2002 A1
20020113739 Howard Aug 2002 A1
20020128700 Cross, Jr. Sep 2002 A1
20020151934 Levine Oct 2002 A1
20030006527 Rabolt et al. Jan 2003 A1
20030017848 Engstrom et al. Jan 2003 A1
20030032892 Erlach et al. Feb 2003 A1
20030082889 Maruyama et al. May 2003 A1
20030087476 Oohata et al. May 2003 A1
20030097165 Krulevitch et al. May 2003 A1
20030120271 Burnside et al. Jun 2003 A1
20030138704 Mei et al. Jul 2003 A1
20030149456 Rottenberg et al. Aug 2003 A1
20030171691 Casscells et al. Sep 2003 A1
20030178316 Jacobs et al. Sep 2003 A1
20030214408 Grajales Nov 2003 A1
20030222282 Fjelstad et al. Dec 2003 A1
20030227116 Halik et al. Dec 2003 A1
20040005723 Empedocles et al. Jan 2004 A1
20040006264 Mojarradi et al. Jan 2004 A1
20040026684 Empedocles et al. Feb 2004 A1
20040061543 Nam et al. Apr 2004 A1
20040079464 Kumakura Apr 2004 A1
20040081384 Datesman et al. Apr 2004 A1
20040085469 Johnson May 2004 A1
20040092806 Sagon May 2004 A1
20040095658 Buretea et al. May 2004 A1
20040106334 Suzuki et al. Jun 2004 A1
20040112964 Empedocles et al. Jun 2004 A1
20040135094 Niigaki et al. Jul 2004 A1
20040136866 Pontis et al. Jul 2004 A1
20040138558 Dunki-Jacobs et al. Jul 2004 A1
20040146560 Whiteford et al. Jul 2004 A1
20040149921 Smyk Aug 2004 A1
20040155290 Mech et al. Aug 2004 A1
20040171969 Socci Sep 2004 A1
20040178390 Whiteford Sep 2004 A1
20040178466 Merrill et al. Sep 2004 A1
20040192062 Mikelson Sep 2004 A1
20040192082 Wagner et al. Sep 2004 A1
20040200734 Co Oct 2004 A1
20040206448 Dubrow Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040211459 Suenaga et al. Oct 2004 A1
20040229830 Tachibana et al. Nov 2004 A1
20040239650 Mackey Dec 2004 A1
20040243204 Maghribi Dec 2004 A1
20040250950 Dubrow Dec 2004 A1
20040252559 Gupta Dec 2004 A1
20050020094 Forbes et al. Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050037511 Sharrock Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050054939 Ben-Ari et al. Mar 2005 A1
20050082526 Bedell et al. Apr 2005 A1
20050107716 Eaton et al. May 2005 A1
20050113744 Donoghue May 2005 A1
20050115308 Koram et al. Jun 2005 A1
20050124712 Anderson et al. Jun 2005 A1
20050133954 Homola Jun 2005 A1
20050136501 Kuriger Jun 2005 A1
20050171524 Stern et al. Aug 2005 A1
20050177335 Crisco Aug 2005 A1
20050203366 Donoghue et al. Sep 2005 A1
20050214962 Daniels et al. Sep 2005 A1
20050227389 Bhattacharya et al. Oct 2005 A1
20050233546 Oohata et al. Oct 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050255686 Yamano et al. Nov 2005 A1
20050260706 Kaplan et al. Nov 2005 A1
20050261561 Jones et al. Nov 2005 A1
20060038182 Rodgers Feb 2006 A1
20060049485 Pan et al. Mar 2006 A1
20060056161 Shin et al. Mar 2006 A1
20060068576 Burdick, Jr. et al. Mar 2006 A1
20060076561 Hioki et al. Apr 2006 A1
20060084012 Nuzzo et al. Apr 2006 A1
20060084394 Engstrom et al. Apr 2006 A1
20060085976 Eldridge et al. Apr 2006 A1
20060102525 Volkel et al. May 2006 A1
20060106321 Lewinsky et al. May 2006 A1
20060119853 Baumberg et al. Jun 2006 A1
20060127817 Ramanujan et al. Jun 2006 A1
20060129056 Leuthardt et al. Jun 2006 A1
20060134893 Savage et al. Jun 2006 A1
20060154398 Qing et al. Jul 2006 A1
20060159837 Kaplan et al. Jul 2006 A1
20060169989 Bhattacharya et al. Aug 2006 A1
20060173364 Clancy et al. Aug 2006 A1
20060177479 Giachelli et al. Aug 2006 A1
20060178655 Santini et al. Aug 2006 A1
20060244105 Forbes et al. Nov 2006 A1
20060255341 Pinnington et al. Nov 2006 A1
20060273279 Kaplan et al. Dec 2006 A1
20060279191 Geohegan et al. Dec 2006 A1
20060286488 Rogers et al. Dec 2006 A1
20060286785 Rogers Dec 2006 A1
20070009968 Cunningham et al. Jan 2007 A1
20070027514 Gerber Feb 2007 A1
20070031607 Dubson et al. Feb 2007 A1
20070032089 Nuzzo et al. Feb 2007 A1
20070043416 Callas et al. Feb 2007 A1
20070058254 Kim Mar 2007 A1
20070073130 Finch et al. Mar 2007 A1
20070104944 Laude et al. May 2007 A1
20070108389 Makela et al. May 2007 A1
20070122819 Wu May 2007 A1
20070187862 Kaplan et al. Aug 2007 A1
20070212730 Vepari et al. Sep 2007 A1
20070213616 Anderson et al. Sep 2007 A1
20070227586 Zapalac Oct 2007 A1
20070233208 Kurtz et al. Oct 2007 A1
20070254468 Burdick, Jr. et al. Nov 2007 A1
20080000871 Suh et al. Jan 2008 A1
20080008626 Lin et al. Jan 2008 A1
20080038236 Gimble et al. Feb 2008 A1
20080041617 Chen et al. Feb 2008 A1
20080046080 Vanden Bulcke Feb 2008 A1
20080054875 Saito Mar 2008 A1
20080055581 Rogers et al. Mar 2008 A1
20080077225 Carlin et al. Mar 2008 A1
20080085272 Kaplan et al. Apr 2008 A1
20080090322 Mech et al. Apr 2008 A1
20080102096 Molin et al. May 2008 A1
20080108171 Rogers et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080140152 Imran Jun 2008 A1
20080152281 Lundquist et al. Jun 2008 A1
20080157234 Hong Jul 2008 A1
20080157235 Rodgers Jul 2008 A1
20080183076 Witte et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080193749 Thompson et al. Aug 2008 A1
20080203268 Hobbs et al. Aug 2008 A1
20080203431 Garcia et al. Aug 2008 A1
20080204021 Leussler et al. Aug 2008 A1
20080208268 Bartic Aug 2008 A1
20080212102 Nuzzo et al. Sep 2008 A1
20080239755 Parker et al. Oct 2008 A1
20080257586 Chen et al. Oct 2008 A1
20080259576 Johnson et al. Oct 2008 A1
20080280360 Kaplan et al. Nov 2008 A1
20080287167 Caine Nov 2008 A1
20080288037 Neysmith et al. Nov 2008 A1
20080293919 Kaplan et al. Nov 2008 A1
20080313552 Buehler et al. Dec 2008 A1
20090000377 Shipps et al. Jan 2009 A1
20090001550 Li et al. Jan 2009 A1
20090004737 Borenstein et al. Jan 2009 A1
20090015560 Robinson et al. Jan 2009 A1
20090028910 Desimone et al. Jan 2009 A1
20090054742 Kaminska et al. Feb 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090105605 Abreu Apr 2009 A1
20090107704 Vanfleteren Apr 2009 A1
20090149930 Schenck Jun 2009 A1
20090183986 Johnson et al. Jul 2009 A1
20090184254 Miura Jul 2009 A1
20090198293 Cauller et al. Aug 2009 A1
20090199960 Nuzzo et al. Aug 2009 A1
20090202614 Kaplan et al. Aug 2009 A1
20090204168 Kallmyer et al. Aug 2009 A1
20090208555 Kuttler et al. Aug 2009 A1
20090215385 Waters et al. Aug 2009 A1
20090221896 Rickert et al. Sep 2009 A1
20090232963 Kaplan et al. Sep 2009 A1
20090234026 Kaplan et al. Sep 2009 A1
20090247909 Mukumoto Oct 2009 A1
20090261828 Nordmeyer-Massner Oct 2009 A1
20090264972 Zhou et al. Oct 2009 A1
20090273909 Shin et al. Nov 2009 A1
20090289246 Schneider et al. Nov 2009 A1
20090294803 Nuzzo Dec 2009 A1
20090308455 Kirscht et al. Dec 2009 A1
20090317639 Axisa et al. Dec 2009 A1
20090322480 Benedict et al. Dec 2009 A1
20100002402 Rodgers Jan 2010 A1
20100028451 Kaplan et al. Feb 2010 A1
20100046902 Kaplan et al. Feb 2010 A1
20100052112 Rogers et al. Mar 2010 A1
20100055438 Kaplan et al. Mar 2010 A1
20100059863 Rogers Mar 2010 A1
20100063404 Kaplan et al. Mar 2010 A1
20100065784 Kaplan et al. Mar 2010 A1
20100068740 Kaplan et al. Mar 2010 A1
20100070068 Kaplan et al. Mar 2010 A1
20100072577 Nuzzo Mar 2010 A1
20100073669 Colvin, Jr. et al. Mar 2010 A1
20100087782 Ghaffari Apr 2010 A1
20100090824 Rowell et al. Apr 2010 A1
20100096763 Kaplan et al. Apr 2010 A1
20100116526 Arora May 2010 A1
20100117660 Douglas et al. May 2010 A1
20100120116 Kaplan et al. May 2010 A1
20100121420 Fiset et al. May 2010 A1
20100152619 Kalpaxis et al. Jun 2010 A1
20100176705 Van Herpen et al. Jul 2010 A1
20100178304 Wang et al. Jul 2010 A1
20100178722 De Graff Jul 2010 A1
20100188799 Galvagni et al. Jul 2010 A1
20100191328 Kaplan et al. Jul 2010 A1
20100196447 Kaplan et al. Aug 2010 A1
20100200752 Lee et al. Aug 2010 A1
20100203226 Kaplan et al. Aug 2010 A1
20100245011 Chatzopoulos et al. Sep 2010 A1
20100252840 Ibbetson et al. Oct 2010 A1
20100271191 De Graff Oct 2010 A1
20100279112 Kaplan et al. Nov 2010 A1
20100283069 Rogers et al. Nov 2010 A1
20100289124 Nuzzo et al. Nov 2010 A1
20100298895 Ghaffari Nov 2010 A1
20100317132 Rodgers Dec 2010 A1
20100321161 Isabell Dec 2010 A1
20100327387 Kasai et al. Dec 2010 A1
20110011179 Gustafsson et al. Jan 2011 A1
20110018838 Lee et al. Jan 2011 A1
20110034912 De Graff Feb 2011 A1
20110054583 Litt Mar 2011 A1
20110068672 Hasnain Mar 2011 A1
20110081587 Choi et al. Apr 2011 A1
20110114894 Choi et al. May 2011 A1
20110121822 Parsche May 2011 A1
20110140897 Purks et al. Jun 2011 A1
20110147715 Rogers et al. Jun 2011 A1
20110170225 Rogers et al. Jul 2011 A1
20110171813 Rogers et al. Jul 2011 A1
20110177332 Park et al. Jul 2011 A1
20110184320 Shipps Jul 2011 A1
20110187798 Rogers et al. Aug 2011 A1
20110215931 Callsen Sep 2011 A1
20110218756 Callsen Sep 2011 A1
20110218757 Callsen Sep 2011 A1
20110220890 Nuzzo Sep 2011 A1
20110230747 Rogers et al. Sep 2011 A1
20110266561 Rogers et al. Nov 2011 A1
20110272181 Koo et al. Nov 2011 A1
20110277813 Rodgers Nov 2011 A1
20110316120 Rogers et al. Dec 2011 A1
20120016258 Webster et al. Jan 2012 A1
20120051005 Vanfleteren Mar 2012 A1
20120052268 Axisa Mar 2012 A1
20120065937 De Graff Mar 2012 A1
20120083099 Nuzzo et al. Apr 2012 A1
20120087216 Keung et al. Apr 2012 A1
20120092178 Callsen Apr 2012 A1
20120092222 Kato et al. Apr 2012 A1
20120105528 Alleyne May 2012 A1
20120157804 Rodgers Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120165759 Rogers et al. Jun 2012 A1
20120172697 Urman Jul 2012 A1
20120226130 De Graff Sep 2012 A1
20120244848 Ghaffari Sep 2012 A1
20120251824 Hur et al. Oct 2012 A1
20120256308 Helin Oct 2012 A1
20120279762 Hur et al. Nov 2012 A1
20120316455 Rahman et al. Dec 2012 A1
20120320581 Rogers et al. Dec 2012 A1
20120327608 Rodgers Dec 2012 A1
20130036928 Rogers et al. Feb 2013 A1
20130041235 Rodgers Feb 2013 A1
20130099358 Elolampi Apr 2013 A1
20130100618 Rogers Apr 2013 A1
20130118255 Callsen May 2013 A1
20130150693 D'Angelo Jun 2013 A1
20130185003 Carbeck Jul 2013 A1
20130192356 De Graff Aug 2013 A1
20130200268 Rafferty Aug 2013 A1
20130225965 Ghaffari Aug 2013 A1
20130245388 Rafferty Sep 2013 A1
20130274562 Ghaffari Oct 2013 A1
20130313713 Arora Nov 2013 A1
20130316487 De Graff Nov 2013 A1
20130320503 Nuzzo Dec 2013 A1
20140001058 Ghaffari Jan 2014 A1
20140012160 Ghaffari Jan 2014 A1
20140012242 Lee Jan 2014 A1
20140022746 Hsu Jan 2014 A1
20140039290 De Graff Feb 2014 A1
20140097944 Fastert Apr 2014 A1
20140110859 Rafferty Apr 2014 A1
20140140020 Rodgers May 2014 A1
20140188426 Fastert Jul 2014 A1
20140191236 Nuzzo Jul 2014 A1
20140216524 Rodgers Aug 2014 A1
20140240932 Hsu Aug 2014 A1
20140249520 Ghaffari Sep 2014 A1
20140303452 Ghaffari Oct 2014 A1
20140340857 Hsu Nov 2014 A1
20140374872 Rodgers Dec 2014 A1
20140375465 Fenuccio Dec 2014 A1
20150001462 Rogers Jan 2015 A1
20150019135 Kacyvenski Jan 2015 A1
20150035680 Li Feb 2015 A1
20150069617 Arora et al. Mar 2015 A1
20150099976 Ghaffari et al. Apr 2015 A1
20150100135 Ives Apr 2015 A1
Foreign Referenced Citations (226)
Number Date Country
1222758 Jul 1999 CN
1454045 Nov 2003 CN
1864095 Nov 2006 CN
101772348 Jul 2010 CN
4241045 May 1994 DE
19748173 May 1999 DE
0929097 Jul 1999 EP
1357773 Oct 2003 EP
1 467 224 Oct 2004 EP
1 477 230 Nov 2004 EP
1 498 456 Jan 2005 EP
1 511 096 Mar 2005 EP
1 558 444 Aug 2005 EP
1 613 796 Jan 2006 EP
1746869 Jan 2007 EP
1 773 240 Apr 2007 EP
1 915 436 Apr 2008 EP
1 726 329 Aug 2009 EP
2 086 749 Aug 2009 EP
2 101 975 Sep 2009 EP
2 107 964 Oct 2009 EP
2 109 634 Oct 2009 EP
2 129 772 Dec 2009 EP
2 206 017 Jul 2010 EP
2 211 876 Aug 2010 EP
2 249 886 Nov 2010 EP
01-223064 Sep 1989 JP
2005126595 May 1993 JP
2006118441 Apr 1994 JP
2006-163365 Jun 1994 JP
2011-026344 Jan 1999 JP
2001332383 Nov 2001 JP
2001523631 Nov 2001 JP
2002092984 Mar 2002 JP
2003182475 Jul 2003 JP
2003289136 Oct 2003 JP
2003297974 Oct 2003 JP
2004506254 Feb 2004 JP
2005059800 Mar 2005 JP
2006-504450 Feb 2006 JP
2006044383 Feb 2006 JP
2006-186294 Jul 2006 JP
2007-515391 Jun 2007 JP
2008-502739 Jan 2008 JP
2008-531137 Aug 2008 JP
2010-508852 Mar 2010 JP
2010-509593 Mar 2010 JP
2010-509644 Mar 2010 JP
2010-509645 Mar 2010 JP
2010-522583 Jul 2010 JP
2010-529230 Aug 2010 JP
10-2007-0100617 Oct 2007 KR
10-2008-0069553 Jul 2008 KR
367570 Aug 1999 TW
494257 Jul 2002 TW
200836353 Sep 2008 TW
WO 9621245 Jul 1996 WO
WO 9849936 Nov 1998 WO
WO 9945860 Sep 1999 WO
WO 0046854 Aug 2000 WO
WO 0049421 Aug 2000 WO
WO 0049658 Aug 2000 WO
WO 0055915 Sep 2000 WO
WO 0055916 Sep 2000 WO
WO 0131082 May 2001 WO
WO 0133621 May 2001 WO
WO 0166833 Sep 2001 WO
WO 0198838 Dec 2001 WO
WO 0227701 Apr 2002 WO
WO 0243032 May 2002 WO
WO 0245143 Jun 2002 WO
WO 0245156 Jun 2002 WO
WO 02071137 Sep 2002 WO
WO 02073699 Sep 2002 WO
WO 02092778 Nov 2002 WO
WO 02097708 Dec 2002 WO
WO 02097724 Dec 2002 WO
WO 03021679 Mar 2003 WO
WO 03030194 Apr 2003 WO
WO 03032240 Apr 2003 WO
WO 03049201 Jun 2003 WO
WO 03063211 Jul 2003 WO
WO 03085700 Oct 2003 WO
WO 03085701 Oct 2003 WO
WO 03092073 Nov 2003 WO
WO 2004000915 Dec 2003 WO
WO 2004001103 Dec 2003 WO
WO 2004003535 Jan 2004 WO
WO 2004016485 Feb 2004 WO
WO 2004022637 Mar 2004 WO
WO 2004022714 Mar 2004 WO
WO 2004023527 Mar 2004 WO
WO 2004024407 Mar 2004 WO
WO 2004027822 Apr 2004 WO
WO 2004032190 Apr 2004 WO
WO 2004032191 Apr 2004 WO
WO 2004032193 Apr 2004 WO
WO 2004034025 Apr 2004 WO
WO 2004062697 Jul 2004 WO
WO 2004086289 Oct 2004 WO
WO 2004094303 Nov 2004 WO
WO 2004095536 Nov 2004 WO
WO 2004099068 Nov 2004 WO
WO 2004100252 Nov 2004 WO
WO 2004105456 Dec 2004 WO
WO 2004107973 Dec 2004 WO
WO 2005000483 Jan 2005 WO
WO 2005005679 Jan 2005 WO
WO 2005012606 Feb 2005 WO
WO 2005015480 Feb 2005 WO
WO 2005017962 Feb 2005 WO
WO 2005022120 Mar 2005 WO
WO 2005029578 Mar 2005 WO
WO 2005033786 Apr 2005 WO
WO 2005033787 Apr 2005 WO
WO 2005033789 Apr 2005 WO
WO 2005054119 Jun 2005 WO
WO 2005099310 Oct 2005 WO
WO 2005104756 Nov 2005 WO
WO 2005106934 Nov 2005 WO
WO 2005122285 Dec 2005 WO
WO 2005122285 Dec 2005 WO
WO 2005123114 Dec 2005 WO
WO 2006028996 Mar 2006 WO
WO 2006042287 Apr 2006 WO
WO 2006069323 Jun 2006 WO
WO 2006076711 Jul 2006 WO
WO 2006104069 Oct 2006 WO
WO 2006130558 Dec 2006 WO
WO 2006130721 Dec 2006 WO
WO 2007000037 Jan 2007 WO
WO 2007016524 Feb 2007 WO
WO 2007028003 Mar 2007 WO
WO 2007056183 May 2007 WO
WO 2007126412 Nov 2007 WO
WO 2008030666 Mar 2008 WO
WO 2008030960 Mar 2008 WO
WO 2008030960 Mar 2008 WO
WO 2008036837 Mar 2008 WO
WO 2008055054 May 2008 WO
WO 2008085904 Jul 2008 WO
WO 2008103464 Aug 2008 WO
WO 2008106485 Sep 2008 WO
WO 2008108838 Sep 2008 WO
WO 2008118133 Oct 2008 WO
WO 2008118211 Oct 2008 WO
WO 2008127401 Oct 2008 WO
WO 2008127402 Oct 2008 WO
WO 2008127403 Oct 2008 WO
WO 2008127404 Oct 2008 WO
WO 2008127405 Oct 2008 WO
WO 2008140562 Nov 2008 WO
WO 2008143635 Nov 2008 WO
WO 2008150861 Dec 2008 WO
WO 2009011709 Jan 2009 WO
WO 2009023615 Feb 2009 WO
WO 2009061823 May 2009 WO
WO 2009075625 Jun 2009 WO
WO 2009076088 Jun 2009 WO
WO 2009090398 Jul 2009 WO
WO 2009100280 Aug 2009 WO
WO 2009111641 Sep 2009 WO
WO 2009111641 Sep 2009 WO
WO 2009114115 Sep 2009 WO
WO 2009114689 Sep 2009 WO
WO 2009114689 Sep 2009 WO
WO 2009118678 Oct 2009 WO
WO 2009126689 Oct 2009 WO
WO 2010005707 Jan 2010 WO
WO 2010036807 Apr 2010 WO
WO 2010036807 Apr 2010 WO
WO 2010036992 Apr 2010 WO
WO 2010040528 Apr 2010 WO
WO 2010042653 Apr 2010 WO
WO 2010042798 Apr 2010 WO
WO 2010042957 Apr 2010 WO
WO 2010049881 May 2010 WO
WO 2010056857 May 2010 WO
WO 2010057142 May 2010 WO
WO 2010065957 Jun 2010 WO
WO 2010081137 Jul 2010 WO
WO 2010082993 Jul 2010 WO
WO 2010102310 Sep 2010 WO
WO 2010126640 Nov 2010 WO
WO 2010132552 Nov 2010 WO
WO 2010132552 Nov 2010 WO
WO 2010141133 Dec 2010 WO
WO 2011002931 Jan 2011 WO
WO 2011003181 Jan 2011 WO
WO 2011005381 Jan 2011 WO
WO 2011006133 Jan 2011 WO
WO 2011008842 Jan 2011 WO
WO 2011011347 Jan 2011 WO
WO 2011026101 Mar 2011 WO
WO 2011038401 Mar 2011 WO
WO 2011041395 Apr 2011 WO
WO 2011041727 Apr 2011 WO
WO 2011046652 Apr 2011 WO
WO 2011084450 Jul 2011 WO
WO 2011084450 Jul 2011 WO
WO 2011084709 Jul 2011 WO
WO 2011112931 Sep 2011 WO
WO 2011115643 Sep 2011 WO
WO 2011127331 Oct 2011 WO
WO 2012097163 Jul 2012 WO
WO 2012125494 Sep 2012 WO
WO 2012158709 Nov 2012 WO
WO 2012166686 Dec 2012 WO
WO 2012167096 Dec 2012 WO
WO 2013010113 Jan 2013 WO
WO 2013010171 Jan 2013 WO
WO 2013022853 Feb 2013 WO
WO 2013033724 Mar 2013 WO
WO 2013049716 Apr 2013 WO
WO 2013052919 Apr 2013 WO
WO 2014007871 Jan 2014 WO
WO 2014058473 Apr 2014 WO
WO 2014059032 Apr 2014 WO
WO 2014106041 Jul 2014 WO
WO 2014110176 Jul 2014 WO
WO 2014130928 Aug 2014 WO
WO 2014130931 Aug 2014 WO
WO 2014186467 Nov 2014 WO
WO 2014197443 Dec 2014 WO
WO 2014205434 Dec 2014 WO
WO 2015021039 Feb 2015 WO
Non-Patent Literature Citations (884)
Entry
Ahn, H. et al., “Additive Soft Lithographic Patterning of Submicron and Nanometer-Scale Large Area Resists on Electronic Materials,” Nano Letters, 5, 2533-2537 (2005).
Baca, A.J. et al., “Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs,” Energy Environ. Sci., 2010, 3, 208-211.
Baca, A.J. et al., “Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers,” Adv. Func. Mater. 17, 3051-3062 (2007).
Bagnall, D.M. et al. “Photovoltaic Technologies,” Energy Policy, 2008, 36, 4390.
Bergmann, R.B. “Crystalline Si thin-film solar cells: a review,” Appl. Phys. A 69, 187-194 (1999).
Biancardo, M. et al., “Characterization of microspherical semi-transparent solar cells and modules,” Sol. Energy 81, 711-716 (2007).
Bossert, R.H. et al., “Thin Film Solar Cells: Technology Evaluation and Perspectives,” ECN, May 2000.
Brendel, R. “Review of layer transfer processes for crystalline thin-film silicon solar cells,” Jpn. J. Appl. Phys. 40, 4431-4439 (2001).
Brendel, R. et al., “Ultrathin crystalline silicon solar cells on glass substrates,” Appl. Phys. Lett. 70, 390-392 (1997).
Burgelman, M. et al. “Modeling Thin-Film PV Devices,” Progress in Photovoltaics 12, 143-153 (2004).
Cahill, D.G. et al., “Thermal conductivity of epitaxial layers of dilute SiGe alloys,” Phys. Rev. B, 71:23, 235202-1-4 (2005).
Campbell, P. et al., “Light Trapping Properties of Pyramidally Textured Surfaces,” J. Appl. Phys. 62, 243-249 (1987).
Clugston, D.A. et al., “Modelling Free-Carrier Absorption in Solar Cells, ” Progress in Phoovoltaics 5, 229-236 (1997).
Clugston, D.A. et al., “PC1D version 5: 32-bit solar cell modeling on personal computers,” Photovoltaic Specialist Conference, 1997, Conference Record of the Twenty-Sixth IEEE, 207-210.
Ebong, A. et al., “Rapid Thermal Processing of High Efficiency N-Type Silicon Solar Cells With Al back Junction,” 14th World Conference on Photovoltaic Energy Conversion, Hawaii, USA; May 7-12, 2006.
Feng, N.-N. et al., “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silocon Solar Cells,” IEEE Trans. Elect. Dev. 54, 1926-1933 (2007).
First Office Action dated Mar. 5, 2013 from Chinese Patent Application No. 200980116128.1-includes English translation.
Green, M.A. “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74, 181-192 (2003).
Heine, C. et al., “Submicrometer Gratings for Solar-Energy Applications,” Appl. Opt. 34, 2476-2482 (1995).
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US12/59131, mailed Apr. 8, 2013.
J. Wang et al., “Binding and Diffusion of a Si Adatom Around the Type-A Step on Si(01) c4x2,” Appl. Phys. Lett., 66:15, 1954 (1995).
J. Yoon et al., “Arrays of Monocrystalline Silicon Solar Micro-cells for Modules with Ultra-thin, Mechanically Flexible, Semi-transparent and Micro-optic Concentrator Designs,” Materials Research Society (MRS) Symposium P: Photovoltaic Materials and Manufacturing Issues, Fall Meeting, Dec. 3, 2008—Abstract provided.
J. Yoon et al., “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nat. Mater., 2008, 7, 907.
Jeon, S. et al., “Fabricating three dimensional nanostructures using two photon lithography in a single exposure step,” Optics Express, 14:6, 2300-23208 (2006).
Jeon, S. et al., “Optically fabricated three dimensional nanofluidic mixers for microfluidic systems,” Nano Letters, 5:7, 1351-1356 (2005).
K. J. Weber et al., “A Novel Silicon Texturization Method Based on Etching Through a Silicon Nitride Mask,” Progress in Photovoltaics: Research and Applications 13, 691-695 (2005).
Kazmerski, L.L. et al., “Solar photovoltaics R&D at the tipping point: A 2005 technology overview.” J. Elect. Spec. Rel. Phenom. 150, 105-135 (2006).
Kerschaver, E. V. et al., “Back-contact Solar Cells: A Review,” Prog. Photovolt. 14, 107-123 (2006).
Kunnavakkam, M.V. et al., “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82, 1152-1154 (2003).
Lee, H.H. et al., “Fabrication of Large Area Stamps, Moulds, and Conformable Photomasks for Soft Lithography,” Journal of Nanoengineering and Nanosystems 218, 105 (2005).
Lee, K.J. et al., “Bendable GaN High Electron Mobility Transistors on Plastic Substrates,” Journal of Applied Physics 100, 124507 (2006).
Lei, C. et al., “Grain Boundary Compositions in Cu(InGa)Se2,” J. Appl. Phys., 101:2, 24909-1-7 (2007).
Lei, C. et al., “Void formation and surface energies in Cu(InGa)Se2,” J. Appl. Phys. 100:7, 073518 (2006).
Liao, D. et al., “Cu depletion at the CuInSe2 Surface,” Appl. Phys. Lett., 82:17, 2829-2831 (2003).
Liu, Z.X. et al., “A concentrator module of spherical Si solar cell,” Sol. Energy Mater. Sol. Cells 91, 1805-1810 (2007).
Love, J.C. et al., “Self-Assembled Monolayers of Thiolates on metals as a Form of Nanotechnology,” Chem. Rev., 105, 1103-1169 (2005).
M.E. Stewart et al., “Quantitative Multispectral Miosensing and 1-D Imaging Using Quasi-3D Plasmonic Crystals,” Proc. Nat. Acad. Sci., 103, 17143-17148 (2006).
Mack, S. et al., “Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers,” Appl. Phys. Lett., 88, 213101 (2006).
Malyarchuk, V. et al., “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Optics Express, 13:15, 5669-5675 (2005).
Mercaldo, L.V. et al., Thin film silicon photovoltaics: Architectural perspectives and technological issues, App. Energy, 2009, 86, 1836.
Minemoto, T. et al., “Fabrication of spherical silicon crystals by dropping method and their application to solar cells,” Jpn. J. Appl. Phys. 46, 4016-4020 (2007).
Nelson, B. et al., “Amorphous and Thin-Film Silicon,” NCPV and Solar Program Review, NREL/CD-520-33586, 583-585, 2003.
Nelson, B. et al., “Project Summary of the NREL Amorphous Silicon Team,” NCPV and Solar Program Review, NREL/CD-520-33586, 825-828, 2003.
Niggemann, M. et al., Realization of Ultrahigh Photovoltaics with Organic Photovoltaic Nanomodules, Adv. Mater. 2008, 20, 4055.
Notice of Allowance, U.S. Appl. No. 12/398,811 mailed May 24, 2013.
Notice of Final Rejection for Japanese Patent Application No. 2006-16159, dated Apr. 16, 2013.
Office Action, Corresponding to Chinese Patent Application No. 2009801161280.1, mailed Mar. 5, 2013.
Office Action, Corresponding to U.S. Appl. No. 13/441,618, mailed May 23, 2013.
Office Action, Corresponding to U.S. Appl. No. 13/120,486, mailed Apr. 12, 2013.
Orega, P. et al., “High Voltage Photovoltaic Mini-modules,” Progr. Photovolt.: Res. Appl., 2008, 16, 369.
Pizzini, S., “Bulk solar grade silicon: how chemistry and physics play to get a benevolent microstructured material,” Appl. Phys. A: Mater. Sci. Process., 2009, 96, 171.
R. Rockett et al., “Prediction of dopant ionization energies in silicon: The importance of strain,” Physical Review B, 6823:23, 3208 (2003).
Rockett, A. “The effect of Na in polycrystalline and single crystal CuIn1-xGaxSe2,” Thin Solid Films, 480-1, 2-7 (2005).
Rockett, A. et al., “A Monte Carlo simulation of the growth of si(001)2×1: adatom/SA step interactions and growth mechanisms,” Surf. Sci., 312, 201 (1994).
Rockett, A. et al., “Near-surface Defect Distributions in Cu(In,Ga)Se2” Thin Solid Films, 431-2, 301-306 (2003).
Roedern, B. “Status of Amorphous and Crystalline Thin-Film Silicon Solar Cell Activities,” NCPV and Solar Program Review, NREL/CD-520-33586, 552-555, 2003.
Ruby, D.S. et al., “Rie-texturing of multicrystalline silicon solar cells,” Solar Energy Materials & Solar Cells 74, 133-137 (2002).
Sha, A. et al., “Recent progress on microcrystalline solar cells.,” Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE, 569-574 1997).
Sinton, R.A. et al., “27.5-Percent Silicon Concentrator Solar-Cells,” IEEE Elect. Dev. Lett. 7, 567-569 (1986).
Sobajima et al., “Microstructures of high-growth-rate (up to 8.3 nm/s) microcrystalline silicon photovoltaic layers and their influence on the photovoltaic performance of thin-film solar cells,” J. Non-Cryst. Solids, 2008, 354, 2407.
Sun, Y. et al., “Gigahertz Operation in Mechanically Flexible Transistors on Plastic Substrates,” Applied Physics Letters 88, 183509 (2006).
Sun, Y. et al., “Printed Arrays of Aligned GaAs Wires for Flexible Transistors, Diodes and Circuits on Plastic Substrates,” Small 2(11), 1330-1334 (2006).
Sun, Y. et al., “Top Down Fabrication of Semiconductor Nanowires With Alternating Structures Along Their Transverse and Longitudinal Axes,” Small 1(11), 1052-1057 (2005).
Taguchi, M. et al., “HIT™ cells—High efficiency crystalline Si cells with novel structure,” Prog. Photovolt. 8, 503-513 (2000).
Verlinden, P.J. et al., “Silver (R) solar cells: A new thin-crystalline silicon photovoltaic technology,” Sol. Energy Mater. Sol. Cells 90, 3422-3430 (2006).
Weber, K.J. et al., “A Novel-Low Cost, High Efficiency Micromachined Silicon Solar Cell,” IEEE Electron Device Letters, vol. 25, No. 1, 37-39 (2004).
Wenham, S.R. et al., “Buried contact silicon solar cells,” Solar Energy Materials and Solar Cells, 34, 101-110 (1994).
Yamamoto, K. et al., “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Applied Physics A: Materials Science & Processing 69, 179-185 (1999).
Zhao et al., “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. 7, 471-474 (1999).
Abbaschian et al. (Dec. 2005) “High Pressure-High Temperature Growth of Diamond Crystals Using Split Sphere Apparatus,” Diamond Relat. Mater. 14(11-12):1916-1919.
Adachi et al (1982) “Chemical Etching of InGaAsP/inP DH Wafer,” J. Electrochem. Soc. 129:1053-1062.
Adachi et al. (1983) “Chemical Etching Characteristics of (001) GaAs,” J. Electrochem. Soc. 130:2427-2435.
Adrega et al. (2010) “Stretchable Gold Conductors Embedded in PDMS and Patterned by Photolithography: Fabrication and Electromechanical Characterization,” J. Micromech. Microeng. 20:055025.
Ago et al. (2005) “Aligned Growth of Isolated Single-Walled Carbon Nanotubes Programmed vby Atomic Arrangement of Substrate Surface,” Chem. Phys. Lett. 408:433-438.
Ago et al. (2006) “Synthesis of Horizontally-Aligned Single-Walled Carbon Nanotubes with Controllable Density on Sapphire Surface and Polarized Raman Spectroscopy,” Chem. Phys. Lett. 421:399-403.
Ahmed et al. (Web Release Oct. 11, 2005) “Extending the 3w-Method to the MHz Range for Thermal Conductivity Measurements of Diamond Thin Films,” Diamond Relat. Mater. 15(2-3):389-393.
Ahn et al. (2007) “Bendable Integrated Circuits on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” Appl. Phys. Lett. 90:213501.
Ahn et al. (Dec. 15, 2006) “Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials,” Science 314:1754-1757.
Ahn et al. (Jun. 2006) “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Dev. Lett. 27(6):460-462.
Al-Sarawi et al. (Feb. 1998) “A Review of 3-D Packaging Technology,” IEEE Trans. Compo Packag. Manufac. Technol. B 21(1):2-14.
Al-Halhouli et al. (2008) “Nanoindentation Testing of SU-8 Photoresist Mechanical Properties,” Microelectronic Eng. 85:942-944.
Aliot, E. M. et al. (2009) “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” Europace 11:771-817.
Alivisatos et al. (1996) “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271 :933-937.
Alivisatos et al. (1998) “From Molecules to Materials: Current Trends and Future Directions,” Adv. Mater. 10:1297-1336.
Allen et al. (Feb. 20, 2006) “Nanomaterial Transfer Using Hot Embossing for Flexible Electronic Devices,” Appl Phys. Lett. 88:083112.
Altman et al., “Silk-Based Biomaterials,” Biomaterials 2003; 24 (3): 24:401-416.
Amano et al. (Feb. 3, 1986) “Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer,” Appl. Phys. Lett. 48(5):353-355.
Ambrosy et al. (1996) “Silicon Motherboards for Multichannel Optical Modules,” IEEE Trans. Compon. Pack. A 19:34-40.
Amir et al. (2000) “The Influence of Helium-Neon Irradiation on the Viability of Skin Flaps in the Rat,” Br. J. Plast. Surg. 53:58-62.
Amsden et al. (Nov. 9, 2009) “Spectral Analysis of Induced Color Change on Periodically Nanopatterned Silk Films,” Opt. Express 17(23):21271-21279.
Andersen et al. (2004) “Selecting the Signals for a Brain—Machine Interface,” Curr. Opin. Neurobiol. 14:720-726.
Andersson et al. (Oct. 16, 2002) “Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper,” Adv. Mater. 14:1460-1464.
Ando et al. (2004) “Self-Aligned Self-Assembly Process for Fabricating Organic Thin-Film Transistors,” Appl. Phys. Lett. 85:1849-1851.
Aoki et al. (2003) “Microassembly of Semiconductor Three Dimensional Photonic Crystals,” Nat. Mater. 2:117-121.
Arnold et al. (Web Release Dec. 28, 2002) “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107(3):659-663.
Ayon et al. (Jan. 1999) “Characterization of a Time Multiplexed Inductively Coupled Plasma Etcher,” J. Electrochem. Soc. 146(1):339-349.
Baca et al. (2008) “Semiconductor Wires and Ribbons for High-Performance Flexible Electronics,” Angew. Chem. Int. Ed. 47:5524-5542.
Bachtold et al. (Nov. 9, 2001) “Logic Circuits with Carbon Nanotube Transistors,” Science 294:1317-1320.
Bae et al. (Jul. 1, 2002) “Single-Crystalline Gallium Nitride Nanobelts,” Appl. Phys. Lett. 81: 126-128.
Ball et al. (2004) “Towards an Implantable Brain-Machine Interface Based on Epicortical Field Potentials,” Biomed. Tech. 49:756-759.
Balmer et al. (2005) “Diffusion of Alkanethiols in PDMS and Its Implications on Microcontact Printing (IJCP),” Lanqmuir 21 (2):622-632.
Banerjee et al. (May 2001) “3-D ICs: A Novel Chip Design for Improving Deep-Submicrometerinterconnect Performance and Systems-on-Chip Integration,” Proc. IEEE 89(5):602-633.
Bao et al. (1997) “High-Performance Plastic Transistors Fabricated by Printing Techniques,” Chem. Mater. 9:1299-1301.
Bao et al. (1999) “Printable Organic and Polymeric Semiconducting Materials and Devices,” J. Mater. Chem. 9:1895-1904.
Barquins, M. (1992) “Adherence, Friction and Wear of Rubber-Like Materials,” Wear 158:87-117.
Bates, F.S. 1991 “Polymer-Polymer Phase Behavior,” Science 251 :898-905.
Battaglia et al. (2003) “Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells,” Angew. Chem. Int. Ed. 442:5035-5039.
Bauer et al. (2004) “Biological Applications of High Aspect Ratio Nanoparticles,” J. Mater. Chem. 14:517-526.
Berg et al. (2003) “Tailored Micropatterns Through Weak Polyelectrolyte Stamping,” Langmuir 19:2231-2237.
Bernard et al. (1998) “Printing Patterns of Proteins,” Langmuir 14(9):2225-2229.
Bett et al. (Aug. 1999) “III-V Compounds for Solar Cell Applications,” Appl. Phys. A. Mater. Sci. 69(2):119-129.
Bhunia et al. (2004) “Free-Standing and Vertically Aligned InP Nanowires Grown by Metalorganic Vapor Phase Epitaxy,” Physica E 21 :583-587.
Bhushan et al. (2004) “Multiwalled Carbon Nanotube AFM Probes for Surface Characterization of Micro/Nanostructures,” Microsyst. Technol. 10:633-639.
Bishay et al. (2000) “Temperature Coefficient of the Surface Resistivity of Two-Dimensional Island Gold Films,” J. Phys. D. Appl. Phys. 33(18):2218-2222.
Blanchet et al. (2003) “Large Area, High Resolution, Dry Printing of Conducting Polymers for Organic Electronics,” Appl. Phys. Lett. 82:463-465.
Blanchet et al. (2003) “Printing Techniques for Plastic Electronics,” J. Imag. Sci. Tech. 47(4):296-303.
Blazdell et al. (Nov. 1999) “Preparation of Ceramic Inks for Solid Freeforming Using a Continuous Jet Printer,” J. Mat. Syn. Process. 7(6):349-356.
Boltau et al. (1998) “Surface-Induced Structure Formation of Polymer Blends on Patterned Substrates,” Nature 391:877-879.
Boncheva et al. (Mar. 15, 2005) “Magnetic Self-Assembly of Three-Dimensional Surfaces from Planar Sheets,” Proc. Natl. Acad. Sci. USA 102(11):3924-3929.
Boncheva et al. (Mar. 18, 2005) “Templated Self-Assembly: Formation of Folded Structures by Relaxation of Pre-Stressed, Planar Tapes. The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic,” Ad. Mater. 17(5): 553-557.
Bowden et al. (1997) “Self Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays,” Science 276:233-235.
Bowden et al. (1998) “Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer,” Nature 393:146-149.
Bowden et al. (2001) “Molecule-Mimetic Chemistry and Mesoscale Self-Assembly,” Ace. Chem. Res. 34:231-238.
Bracher et al. (2009) “Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterns Paper,” Adv. Mater. 21 :445-450.
Bradley et al. (2003) “Flexible Nanotube Electronics,” Nano Lett., vol. 3, No. 10, pp. 1353-1355.
Braun et al. (1999) “Electrochemically Grown Photonic Crystals,” Nature 402:603-604.
Britton et al. (Web Release Oct. 25, 2005) “Microstructural Defect Characterization of a Si:H Deposited by Low Temperature HW-CVD on Paper Substrates,” Thin Solid Films 501(1-2):79-83.
Brown et al. (2005) “Evaluation of Polydimethylsiloxane Scaffolds with Physiologically-Relevant Elastic Moduli: Interplay of Substrate Mechanics and Surface Chemistry Effects on Vascular Smooth Muscle Cell Response,” Biomaterials 26:3123-3129.
Brown et al. (Dec. 19, 2001) “Heterogeneous Materials Integration: Compliant Substrates to Active Device and Materials Packaging,” Mater. Sci. Eng. B 87(3):317-322.
Brown, H.R. (1991) “The Adhesion Between Polymers,” Ann. Rev. Mater. Sci. 21:463-489.
Bruschi et al. (2001) “Micromachined Silicon Suspended Wires With Submicrometric Dimensions,” Microelectron. Eng. 57-58:959-965.
Buma et al. (2001) “High-Frequency Ultrasound Array Element Using Thermoelastic Expansion in an Elastomeric Film,” Appl. Phvs. Lett. 79:548-550.
Burdinski et al. (2005) “Single Etch Patterning of Stacked Silver and Molybdenum Alloy Layers on Glass Using Microcontat Wave Printing,” J. Am. Chem. Soc. 127(31):10786-1 0787.
Burge et al. (Jun. 25, 1997) “X-Ray Holography for VLSI Using Synthetic Bilevel Holograms,” Proc. Int. Soc. Opt. Eng. 3183:2-13.
Burgin et al. (2000) “Large Area Submicrometer Contact Printing Using a Contact Aligner,” Langmuir 16:5371-5375.
Burns et al. (2003) “Printing of Polymer Thin-Film Transistors for Active-Matrix-Display Applications,” J. Soc. Int. Display 11 :599-604.
Campbell et al. (2000) “Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography,” Nature 404:53-56.
Cao et al. (2006) “Highly Bendable,Transparent Thin-Film Transistors That Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Delectrics,” Adv. Mater. 18(3):304-309.
Cao et al. (2006) “Bilayer Organic-Inorganic Gate Dielectrics for High-Performance, Low-Voltage, Single-Walled Carbon Nanotube Thin-Film Transistors, Complementary Logic Gates, and p-n Diodes on Plastic Substrates,” Adv. Funct. Mater. 16:2355-2362.
Cao et al. (Jan. 5, 2009) “Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects,” Adv. Mater. 21(1):29-53.
Cao et al. (Jul. 24, 2008) “Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates,” Nature 454:495-500.
Carr et al. (1998) “Measurement of Nanomechanical Resonant Structures in Single-Crystal Silicon,” J. Vac. Sci. Technol. B 16:3821-3824.
Chang et al. (1994) “Process Techniques, Lithography and Device-Related Physics and Principles,” In; GaAs High-Speed Devices: Physics, Technology and Circuit Application, John Wiley and Sons, New York, pp. 115-278.
Chen et al. (2003) “Characterization of Pd-GaAs Schottly Diodes Prepared by the Electrodes Plating Technique,” Semiconductor. Sci. Technol. 18:620-626.
Chen et al. (2003) “Electronic Paper: Flexible Active-Matrix Electronics Ink Display,” Nature 423: 136.
Chen et al. (2004) “Herringbone Buckling Patterns of Compresses Thin Films on Comlliant Substrates,” J. Appl. Mech. 71 :597.
Chen et al. (2005) “InGaN Nanorings and Nanodots by Selective Area Epitaxy,” Appl. Phys. Lett. 87:143111.
Chen et al. (2005) “The Role of Metal-Nanotube Caontact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Lett. 5(7)1497-1502.
Chen et al. (Feb. 27, 2006) “Complementary Carbon Nanotube-Gated Carbon Nanotube Thin-Fim Transistor,” Appl. Phys. Lett. 88:093502.
Chen et al. (Jun. 2002) Effect of Process Parameters on the Surface Morphology and Mechanical Performance of Silicon Structures After Deep Reactive Ion Etching (DRIE) J. Microelectromech. Syst. 11 (3):264-2775.
Chen et al. (Mar. 2004) “A Family of Herringbone Patterns in Thin Films,” Scr. Mater. 50(6):797-801.
Chen et al. (Mar. 24, 2006) “An Integrated Logic Circuit Assembled on a Single Carbon Nanotube,” Science 311:1735.
Chen et al. (Sep. 2004) “Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates,” J. Appl. Mech. 71:597-603.
Cheng et al. (2005) “Ink-Jet Printing, Self-Assembled Polyelectrolytes, and Electroless Plating: Low Cost Fabrication of Circuits on a Flexible Substrate at Room Temperature,” Macromol. Rapid Commun. 26:247-264.
Childs et al. (2002) “Decal Transfer Microlithography: A New Soft-Lithographic Patterning Method,” J. Am. Chern. Soc. 124:13583-13596.
Childs et al. (2005) “Masterless Soft-Lithography: Patterning UV/Ozone-Induced Adhesion on Poly(dimethylsiloxane) Surfaces,” Langmuir 21:10096-10105.
Childs et al. (Aug. 14, 2004) “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer lithography,” Adv. Mater. 16(15):1323-1327.
Choi et al. (2007) “Biaxially Stretchable ‘Wavy’ Silicon Nanomembranes,” Nano Lett. 7(6): 1655-1663.
Choi et al. (Web Release Jan. 25, 2005) “Simple Detachment Patterning of Organic Layers and Its Applications to Organic light-Emitting Diodes,” Adv. Mater. 17(2):166-171.
Chou et al. (2004) “An Orientation-Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin-Film Transistor Applications,” Adv. Func. Mater. 14:811-815.
Chou et al. (Jun. 8, 1999) “Micromachining on (111 )-Oriented Silicon,” Sens. Actuators A 75(3):271-277.
Chu et al. (2005) “High-Performance Organic Thin-Film Transistors with Metal Oxide/Metal Bilayer Electrode,” Appl. Phys. Lett. 87: 193508.
Chung et al. (Jul. 1, 2003) “A study on Formation of Al and Al2O3 on the Porous Paper by DC Magnetron Sputtering,” Surf. Coat. Technol. 171(1-3):65-70.
Clerc, L. (1976) “Directional Differences of Impulse Spread in Trabecular Muscle from Mammalian Heart,” J. Physiol. 255:335-346.
Cohen-Karni et al. (2009) “Flexible Electrical Recording from Cells Using Nanowire Transistor Arrays,” Proc. Natl. Acad. Sci. USA 106:7309-7313.
Cole et al. (2008) “Patterned Growth and Transfer of ZnO Micro- and Nanocrystals with Size and Location Control,” Adv. Mater. 20:1474-1478.
Collins et al. (Apr. 27, 2001) “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science 292:706-709.
Corazza et al. (2007) “Photobiomodulation on the Angiogenesis of Skin Wounds in Rats Using Different Light Sources,” Photomedicine Laser Surg. 25:102-106.
Cox, H. L. (1952) “The Elasticity and Strength of Paper and Other Fibrous Materials,” Br. J. Appl. Phys. 3:72-79.
Creagh et al. (2003) “Design and Performance of Inkjet Print Heads for Non-Graphic-Arts Applications,” MRS Bull. 28:807-811.
Crone et al. (Feb. 3, 2000) “Large-Scale Complementary Integrated Circuits Based on Organic Transistors,” Nature 403:521-523.
Crowder et al. (1998) “Low-Temperature Single-Crystal Si TFTs Fabricated on Si Films Processed via Sequential Lateral Solidification,” IEEE Electron. Dev. Lett. 19:306-308.
Cui et al. (2001) “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 293:1289-1292.
Dai et al. (2002) “Gallium Oxide Nanoribbons and Nanosheets,” J. Phys. Chem. B 106(5):902-904.
Dai et al. (2003) “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. 13:9-24.
Dai et al. (Web Release Jan. 15, 2002) “Gallium Oxide Nanoribbons and Nanosheets,” J. Phys. Chem. B 106(5):902-904.
Davidson et al. (2004) “Supercritical Fluid-liquid-Solid Synthesis of Gallium Arsenide Nanowires Seeded by Alkanethiol-Stabilized Gold Nanocrystals,” Adv. Mater. 16:646-649.
de Gans (2004) “Inkjet Printing of Polymers: State of the Art and Future Developments,” Adv. Mater. 16(3):203-213.
De Sio et al. (Web Release May 18, 2005) “Electro-Optical Response of a Single-Crystal Diamond Ultraviolet Photoconductor in Transverse Configuration,” Appl. Phys. Lett. 86:213504.
DeBoer et al. (2004) “Organic Single-Crystal Field-Effect Transistors,” Phys. Stat. Sol. 201 :1302-1331.
Decision of Refusal corresponding to Japanese Patent Application No. P2007-515549, Issued Sep. 4, 2012.
Decision of Rejection corresponding to Korean Patent Application No. 10-2007-7000216, Issued Sep. 19, 2012—includes English translation.
Deen et al. (2004) “Electrical Characterization of Polymer-Based FETs Fabricated by Spin-Coating Poly(3-alkylthiophene)s,” IEEE Trans. Electron Devices 51: 1892-1901.
Deruelle et al. (1995) “Adhesion at the Solid-Elastomer Interface: Influence of Interfacial Chains,” Macromol. 28:7419-7428.
Derycke et al. (Sep. 2001) “Carbon Nanotube Inter- and Intramolecular Logic Gates,” Nano Lett. 1(9):453-456.
Desai et al. (Feb. 1999) “Nanopore Technology for Biomedical Applications,” Biomed. Microdevices 2(1):11-40.
Dick et al. (2004) “Synthesis of Branched ‘Nanotrees’ by Controlled Seeding of Multiples Branching Events,” Nat. Mater. 3:380-38.
Dimroth et al. (Mar. 2007) “High-Efficiency Multijunction Solar Cells,” MRS Bull. 32:230-235.
Ding et al. (Oct. 4, 2004) “Self Catalysis and Phase Transformation in the Formation of CdSe Nanosaws,” Adv. Mater. 16(19):1740-1743.
Dinsmore et al. (2002) “Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles,” Science 298:1006-1009.
Dinyari et al., (2008) “Curving Monolithic Silicon for Nonplanar Focal Plane Aarray Applications,” Appl Phys Lett, 92:091114.
Divliansky et al. (2003) “Fabrication of Three-Dimensional Polymer Photonic Crystal Structures Using Single Diffraction Element Interference Lithography,” Appl. Phys. Lett. 82(11):1667-1669.
Dodabalapur A. (Apr. 2006) “Organic and Polymer Transistors for Electronics,” Mater Today 9(4):24-30.
Dodabalapur et al. (1995) “Organic Transistors: Two-Dimensional Transport and mproved Electrical Characteristics,” Science 268:270-27.
Duan et al. (2000) “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12:298-302.
Duan et al. (2003) “High-performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons,” Nature 425:274-278.
Duan X, (2003) “Semiconductor Nanowires: From Nanoelectronics to Macroelectronics,” Abstract from a presentation given at the 11th Foresight Conference on Molecular Nanotechnology, Oct. 10-20, Burlingame, CA.
Duboz et al. (1998) “Transistors and Detectors Based on GaN-Related Materials,” In; Group III Nitride Semiconductor Compounds, Gill, B. ed., Clarendon, Oxford, pp. 343-387.
Duesberg et al. (2000) “Polarized Raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes,” Phys. Rev. Lett., vol. 85, No. 25, pp. 5436-5439.
Duffy et al. (1998) “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chern. 70(23):4974-4984.
Dupuis et al. (2008) “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes,” IEEE J. Lightwave Tech. 26:1154-1171.
Durkop et al. (2004) “Extraordinary Mobility in Semiconducting Carbon Nanotube,” Nano Lett. 4(1 ):35-39.
Eder et al. (Apr. 5, 2004) “Organic Electronics on Paper,” Appl. Phys. Lett. 84(14):2673-2675.
Edrington et al. (2001)“Polymer-Based Photonic Crystals,” Adv. Mater. 13:421-425.
Efimenko et al. (Oct. 15, 2002) “Surface Modification of Sylgard-184 Poly(dimethyl Siloxane) Networks by Ultravioloet and UltravioleUOzone Treatment,” J. Colloid Interface Sci. 254(2):306-315.
Eftekhari, G. (1993) “Variation in the Effective Richardson Constant of Metal—GaAs and Metal—InP Contacta Due to the Effect of Processing Parameters,” Phys. Status Solid A-Appl. Res. 140:189-194.
Ensell, G. (1995) “Free Standing Single-Crystal Silicon Microstructures,” J.Micromech. Microeng. 5: 1-4.
European Extended Search Report dated Feb. 9, 2012 in Application No. 09826745.3.
Examination and Search Report, Corresponding to Malaysian Patent Application No. PI 20090622, Mailed Sep. 28, 2012.
Examination Report, Corressonding to European Application No. 07 841 968.6.
Examination Report, Corresponding to European Application No. EP 05 756 327.2, Dated Jan. 20, 2010.
Examination Report, Corresponding to Malaysian Patent Application No. PI 20062672, Mailed Aug. 28, 2009.
Examination Report, Corresponding to Malaysian Patent Application No. PI20092343, Mailed Jun. 15, 2010.
Examination Report, Corresponding to Malaysian Patent Publication No. PI20052553, Mailed Mar. 13, 2009.
Examination Report, Corresponding to Singapore Patent Application No. 200608359-6, Completed on Aug. 27, 2008.
Faez et al. (1999) “An Elastomeric Conductor Based on Polyaniline Prepared by Mechanical Mixing,” Polymer 40:5497-5503.
Felgner et al. (1996) “Flexural Rigidity of Microtubules Measured with the Use of Optical Tweezers,” J. Cell Sci. 109:509-516.
Final Office Action mailed Nov. 21, 2012 corresponding to U.S. Appl. No. 12/921,808.
Final Office Action, Corresponding to U.S. Appl. No. 12/575,008, mailed Oct. 17, 2011.
Final Office Action, Corresponding to U.S. Appl. No. 11/851,182, Mailed Oct. 29, 2010.
Fink et al. (1999) “Block Copolymers as Photonic Bandgap Materials,” J. Lightwave Tech. 17:1963-1969.
Flewitt et al. (2005) “Low-Temperature Deposition of Hydrogenated Amorphous Silicon in an Electron Cyclotron Resonance Reactor for Flexible Displays,” Proc. IEEE 93: 1364-1373.
Folch et al. (1999) “Wafer-Level In-Registry Microstamping,” J. Microelectromech. Syst. 8:85-89.
Forment et al. (2004) “Influence of Hydrogen Treatment and Annealing Processes Upon the Schottky Barrier Height of Au/n-GaAs and Ti/n-GaAs Diodes,” Semicond. Sci. Technol. 19:1391-1396.
Forrest et al. (2004) “The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic,” Nature 428:911-918.
Fortunato et al. (2005) “Flexible a-Si: H Position-Sensitive Detectors,” Proc. IEEE 93:1281-1286.
Fortunato et al. (Sep. 2008) “High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper,” IEEE Electron. Dev. Lett. 29(9):988-990.
Freeman et al. (2000) “Spatial Spectral Analysis of Human Electrocardiograms Including the Alpha and Gamma Bands,” J. Neurosci. Methods 95:111-121.
Freire et al. (1999) “Thermal Stability of Polyethylene Terephthalate (PET): Oligomer Distribution and Formation of Volatiles,” Packag. Technol. Sci. 12:29-36.
Freund, L.B. (2000) “The Mechanics of Electronic Materials,” Int. J. Solids Struct. 37:185-196.
Fu et al. (Jan. 10, 2003) “Patterning of Diamond Microstructures on Si Substrate by Bulk and Surface Micromachining,” J. Mater. Process. Technol. 132(1-3):73-81.
Furneaux et al. (1989) “The Formation of Controlled-Porosity Membranes from Anodically Oxidized Aluminum,” Nature 337:147-149.
Gan et al. (2002) “Preparation of Thin-Film Transistors with Chemical Bath Deposited CdSe and CdS Thin Films,” IEEE Trans. Electron. Dev. 49:15-18.
Gao et al. (Sep. 9, 2005) “Conversion of Zinc Oxide Nanobelts into Superlattice-Structures Nanohelices,” Science 309: 1700-1704.
Garcia et al. (Oct. 2004) “Etchant Anisotropy Controls the Step Bunching Instability in KOH Etching of Silicon,” Phys. Rev. Lett. 93(16):166102.
Gardner et al. (1965) “Physical Aspects of the Internal Water Relations of Plant Leaves,” Plant Physiol. 40:705-710.
Garnier et al. (1994) “All-Polymer Field-Effect Transistor Realized by Printing Techniques,” Science 265:1684-1686.
Geim et al. (Mar. 2007) “The Rise of Graphene,” Nature Mater. 6:183-191.
Geissler et al. (2003) “Fabrication of Metal Nanowires Using Microcontact Printing,” Langmuir 19(15):6301-6311.
Geissler et al. (Jun. 2003) “Selective Wet-Etching of Microcontact-Printed Cu Substrates with Control Over the Etch Profile,” Microelec. Eng. 67-68:326-332.
Gelinck et al. (2000) “High-Performance All-Polymer Integrated Circuits,” Appl. Phys. Lett. 77:1487-1489.
Gelinck et al. (2004) “Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors,” Nat. Mater. 3: 106-110.
Georgakilas et al. (2002) “Wafer-Scale Integration of GaAs Optoelectronic Devices with Standard Si Integrated Circuits Using a Low-Temperature Bonding Procedure,” Appl. Phys. Lett. 81:5099-5101.
Givargizov, E.I. (1991) “Applications,” In; Oriented Crystallization on Amorphous Substrates, Plenum Press, New York, pp. 341-363.
Goetting et al. (1999) “Microcontact Printing of Alkanephosphonic Acids on Aluminum: Pattern Transfer by Wet Chemical Etching, ” Langmuir 15:1182-1191.
Goldman et al. (1996) “Correlation of Buffer Strain Relaxation Modes with Transport Properties of Two-Dimensional Electron Gases,” J. Apple. Phys. 80:6849-6854.
Goldmann et al. (2004) “Hole Mobility in Organic Single Crystals Measured by a “Flip Crystal” Field-Effect Technique,” J. Appl. Phys. 96:2080-2086.
Goldsmith, T.H. (Sep. 1990) “Optimization, Constraint, and History in the Evolution of Eyes,” Quart. Rev. Biol. 65(3):281-322.
Gratz et al: (1991) “Atomic Force Microscopy of Atomic-Scale Ledges and Etch Pits Formed During Dissolution of Quartz,” Science 251:1343-1346.
Gray et al. (2004) “High-Conductivity Elastomeric Electronics,” Adv. Mater. 16:393 397.
Gray et al. (Dec. 2001) “Screen Printed Organic Thin Film Transistors (OTFTs) on a Flexible Substrate,” Proc. SPIE 4466:89-94.
Grayson, T. (2002) “Curved Focal Plane Wide Field of View Telescope Design,” Proc. SPIE 4849:269-274.
Gruen et al. (Mar. 21, 1994) “Fullerenes as Precursors for Diamond Film Growth Without Hydrogen or Oxygen Additions,” Appl. Phys. Lett. 65(12):1502-1504.
Gudiksen et al. (Web Release Apr. 18, 2001) “Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires,” J. Phys. Chem. B 105:4062-4064.
Guo et al. (Aug. 19, 2002) “Metal-Insulator-Semiconductor Electrostatics of Carbon Nanotubes,” Appl. Phys. Lett. 81(8):1486-1488.
Gur et al. (2005) “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution,” Science 310:462-465.
Gurbuz et al. (Jul. 2005) “Diamond Semiconductor Technology for RF Device Applications.” Solid State Electron. 49(7): 1055-1070.
Haisma et al. (2002) “Contact Bonding, Including Direct-Binding in a Historical and Recent Context of Materials Science and Technology, Physics and Chemistry—Historical Review in a Broader Scope and Comparative Outlook,” Mater. Sci. Eng. R 37:1-60.
Halik et al. (2004) “Low-Voltage Organic Transistors with an Amorphous Molecular Gate Dielectric,” Nature 431 :963-966.
Hamedi et al. (May 2007) “Towards Woven Logic from Organic Electronic Fibres,” Nat. Mater. 6:357-362.
Hamilton et al. (2004) “Field-Effect Mobility of Organic Polymer Thin-Film Transistors,” Chem. Mater. 16:4699-4704.
Han et al. (2005) “Template-Free Directional Growth of Single-Walled Carbon Nanotues on a- and r-Plane Sapphire,” J. Am. Chem. Soc. 127:5294-5295.
Harada et al. (2001) “Catalytic Amplification of the Soft Lithographic Patterning of Si. Nonelectrochemical Orthogonal Fabrication of Photoluminescent Porous Si Pixel Arrays,” J. Am. Chem. Soc. 123:8709-8717.
Harkonen et al. (Jun. 8, 2006) “4 W Single-Transverse Mode VECSEL Utilizing Intra-Cavity Diamond Heat Spreader,” Electron Lett. 42(12):693-694.
Hayase et al. (2001) “Photoangioplasty with Local Motexafin Lutetium Delivery Reduces Macrophages in a Rabbit Post-Balloon Injury Model,” Cardiovascular Res. 49:449-455.
He et al. (2005) “Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication,” Adv. Mater. 17:2098-2102.
Heffelfinger et al. (1997) “Steps and the structure of the (0001) α-alumina surface,” Surf. Sci., 370:L168-L172.
Hillbrog et al. (Web Release Dec. 30, 2003) “Nanoscale Hydrophobic Recovery: Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linker Poly(dimethylsiloxane),” Langmuir 20(3):785-794.
Hines et al. (2005) “Nanotransfer Printing of Organic and Carbon Nanotube Thin-Film Transistors on Plastic Substrates,” Appl. Phys. Lett. 86:163101.
Hollenberg et al. (2006) “A MEMS Fabricated Flexible Electrode Array for Recording Surface Field Potentials,” J. Neurosci. Methods 153:147-153.
Holmes et al. (Feb. 25, 2000) “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287:1471-1473.
Horan et al. (Jun. 2005) “In Vitro Degradation of Silk Fibroin,” Biomaterials 26(17):3385-3393.
Horn et al. (1992) “Contact Electrification and Adhesion Between Dissimilar Materials,” Science 256:362-364.
Hoyer, P. (1996) “Semiconductor Nanotube Formation by a Two-Step Template Process,” Adv. Mater. 8:857-859.
Hsia et al. (2005) “Collapse of Stamps for Soft Lithography Due to Interfacial Adhesion,” Appl. Phys. Lett. 86:154106.
Hsu et al. (2002) “Amorphous Si TFTs on Plastically Deformed Spherical Domes,” J. Non-Crystalline Solids 299-302: 1355-1359.
Hsu et al. (2003) “Nature of Electrical Contacts in a Metal-Molecule-Semiconductor System,” J. Vac. Sci. Technol. B 21(4):1928-1935.
Hsu et al. (2004) “Effects of Mechanical Strain on TFTs on Spherical Domes,” IEEE Trans. Electron. Dev. 51 :371-377.
Hsu et al. (Jan. 15, 2004) “Spherical Deformation of Compliant Substrates with Semiconductor Device Islands,” J. Appl. Phys. 95(2):705-712.
Hu et al. (1997) “Using Soft Lithography to Fabricate GaAs/AlGaAs Heterostructure Field Effect Transistors,” Appl. Phys. Lett. 71 :2020-2022.
Hu et al. (1999) Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Ace. Chem. Res. 32:435-445.
Hu et al. (2004) “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett., vol. 4, No. 12, pp. 2513-2517.
Hu et al. (2009) “Highly Conductive Paper for Energy-Storage Devices,” Proc. Natl. Acad. Sci. USA 106:21490-21494.
Hu et al. (2010) “Stretchable, Porous, and Conductive Energy Textiles,” Nano Lett. 10:708-714.
Huang et al. (2001) “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science 291 :630-633.
Huang et al. (2001) “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292:1897-1899.
Huang et al. (2003) “Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates,” J. Am. Chem. Soc., 125:5636-5637.
Huang et al. (2004) “Long and Oriented Single-Walled Carbon Nanotubes Grown by Ethanol Chemical Vapor Deposition,” J. Phys. Chem. B. 108:16451-16456.
Huang et al. (2004) “Self-Organizing High-Density Single-Walled Carbon Nanotube Arrays from Surfactant Suspensions,” Nanotechnol. 15:1450-1454.
Huang et al. (2005) “Nanomechanical Architecture of Strained Bilayer Thin Films: From Design Principles to Experimental Fabrication,” Adv. Mater. 17(23):2860-2864.
Huang et al. (2005) “Nanowires for Integrated Multicolor Nanophotonics,” Small 1(1):142-147.
Huang et al. (2005) “Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate,” J. Mech. Phys. Solids 53:2101-2118.
Huang et al. (2005) “Stamp Collapse in Soft Lithography,” Langmuir 21 :8058-8068.
Huang et al. (Jan. 16, 2001) “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13(2):113-116.
Huck et al. (2000) “Ordering of Spontaneously Formed Buckles on Planar Surfaces,” Langmuir 16:3497-3501.
Huie, J.C. (2003) “Guided Molecular Self-Assembly: A Review of Recent Efforts,” Smart Mater. Struct. 12:264-271.
Huitema et al. (2001) “Plastic Transistors in Active-Matrix Displays,” Nature 414:599.
Hur et al. (2005) “Organic Nanodelectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logc Gates,” J. Am. Chem. Soc. 127:13808-13809.
Hur et al. (2005) “Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks ” J. Appl. Phys., 98, 114302.
Hur et al. (Dec. 2004) “Nanotransfer Printing by Use of Noncovalent Surface Forces: Applications to Thin-Film Transistors that Use Single-Walled Carbon Nanotube Networks and Semiconducting Polymers,” Appl. Phys. Lett. 85(23):5730-5732.
Hur et al. (Jun. 13, 2005) “Extreme Bendability of Single Walled Carbon Nanotube Networks Transferred From High-Temperature Growth Substrates to Plastic and Their Use in Thin-Film Transistors,” Appl. Phys. Lett. 243502.
Hutchinson et al. (1992) “Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech. 29:63-191.
Imparato et al. (2005) “Excimer Laser Induced Crystallization of Amorphous Silicon on Flexible Polymer Substrates,” Thin Solid Films 487:58-62.
International Preliminary Report on Patentability for PCT Application No. PCT/US2010/060425, mailed May 25, 2011.
International Preliminary Report on Patentability for PCT Application PCT/US2009/067670, mailed Jun. 14, 2011.
International Search Report and Written Opinion Corresponding to International Application No. PCT/US2012/053701 mailed Jan. 15, 2013.
International Search Report and Written Opinion corresponding to International Application No. PCT/US2012/058114 mailed Feb. 1, 2013.
International Search Report and Written Opinion dated Aug. 14, 2012, corresponding to International Patent Application No. PCT/US12/37973.
International Search Report and Written Opinion, Corresponding to Inernational Application No. PCT/US12/46930 mailed Dec. 10, 2012.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US10/50468, Mailed Jan. 6, 2011.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US10/60425, Mailed May 25, 2011.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/2005/014449, Mailed Jul. 3, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US07/77759, Mailed Apr. 11, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US07/74293, Mailed Jul. 24, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US07/77217, Mailed Jun. 3, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US07/82633, Mailed May 16, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US09/47442, Mailed Sep. 21, 2009.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2006/032125, Mailed Mar. 21, 2008.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2009/036192, Mailed Jul. 6, 2009.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2009/058231, Mailed Nov. 17, 2009.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2010/027209, Mailed Nov. 11, 2010.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2010/034520, Mailed Sep. 24, 2010.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2010/042585, Mailed May 25, 2011.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2011/028094, Mailed Jul. 14, 2011.
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2012/039779, mailed Feb. 1, 2013.
International Search Report and Written Opinion, Corresponding to International PCT Application No. PCT/US05/19354 Mailed Apr. 18, 2007.
International Search Report and Written Opinion, Corresponding to International PCT Application No. PCT/US2006/021161, Mailed Feb. 28, 2008.
International Search Report and Written Opinion, Corresponding to International PCT Application No. PCT/US2007/077759, Mailed Apr. 11, 2008.
International Search Report and Written Opinion, Corresponding to International PCT Application No. PCT/US2007/079070, Mailed Apr. 23, 2008.
International Search Report and Written Opinion, Corresponding to International PCT US2010/061151.
International Search Report Corresponding to International Application No. PCT/US2009/036956, mailed Jun. 29, 2009.
International Search Report Corresponding to International Application No. PCT/US2011/031648, mailed Dec. 15, 2011.
International Search Report Corresponding to International Application No. PCT/US2012/028590, mailed Jun. 13, 2012.
International Search Report, Corresponding to International Application No. PCT/US2009/059892, mailed Jan. 7, 2010.
International Search Report, Corresponding to International Application No. PCT/US2009/064199, mailed May 20, 2011.
International Search Report, Corresponding to International Application No. PCT/US2009/065806, mailed Jun. 1, 2010.
International Search Report, Corresponding to International Application No. PCT/US2009/067670, mailed Aug. 4, 2010.
International Search Report, Corresponding to International Application No. PCT/US2010/020742, mailed Sep. 14, 2010.
International Search Report, Corresponding to International Application No. PCT/US2010/051196, mailed Dec. 1, 2010.
Isberg et al. (Sep. 6, 2002) “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297:1670-1672.
Islam et al. (Jan. 16, 2003) “High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water,” Nano Lett. 3(2):269-273.
Ismach et al. (2004) “Atomic-Step-Templated Formation or a Single Wall Carbon Nanotube Patterns,” Angew. Chem. Int. Ed. 43:6140-6143.
Itoh et al. (1991) “Cathodoluminescence Properties of Undoped and Zn-Doped AlxGa1-xN Grown by Metaloganic Vapor Phase Epitaxy,” Jap. J. Appl. Phys. 30: 1604-1608.
Jabbour et al. (2001) “Screen Printing for the Fabrication of Organic Light-Emitting Devices,” IEEE J. Select. Top. Quantum. Electron. 7(5):769-773.
Jackman et al. (Aug. 4, 1995) “Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing,” Science 269:664-666.
Jacobs et al. (2001) “Submicrometer Patterning of Charge in Thin-Film Electrets,” Science 291:1763-1766.
Jacobs et al. (2002) “Fabrication of a Cylindrical Display by Patterned Assembly,” Science 296:323-325.
Jain et al. (2000) “III-Nitrides: Growth, Characterization, and Properties,” J. Appl. Phys.87:965-1006.
Jain et al. (2005) “Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoblation processing Technologies for Hiogh-Throughput Production,” Proc. IEEE 93:1500-1510.
James et al. (1998) “Patterned Protein Layers on Solid Substrates by This Stamp Microcontact Printing,” Langmuir 14:742-744.
Jang et al. (2006) “Low-Voltage and High-Field-Effect Mobility Organic Transistors with a Polymer Insulator,” Appl. Phys. Lett. 88:072101.
Javey et al. (2002) “High-K Dielectrics for Advanced Carbon-Nanotube Transistors and Logic Gates,” Nature Mater. 1:241-246.
Javey et al. (2005) “High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts,” Nano Lett., vol. 5, No. 2, pp. 345-348.
Javey et al. (Aug. 7, 2003) “Ballistic Carbon Nanotube Field-Effect Transistors,” Nature 424:654-657.
Jenkins et al. (1994) “Gallium Arsenide Transistors: Realization Through a Molecularly Designed Insulator,” Science 263:1751-1753.
Jeon et al. (1995) “Patterning of Dielectric Oxide Thin Layers by Microcontact Printing of Self-Assembled Monolayers,” J. Mater. Res. 10:2996-2999.
Jeon et al. (2003) “Structural and Mechanical Properties of Woven Fabrics Employing Peirce's Model,” Textile Res. J. 73:929-933.
Jeon et al. (2004) “Three Dimensional Nanofabrication with a rubber sub-wavelength optical element,” Nanotechnology E-Bulletin, 2 pp.
Jeon et al. (Aug. 4, 2004) “Three Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks,” Adv. Mater. 16(15):1369-1373.
Jiang et a. (Oct. 2, 2007) “Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports,” Proc. Natl. Acad. Sci. USA 104(40):15607-15612.
Jiang et al. (1999) “Preparation of Macroporous Metal Films from Colloidal Crystals,” J. Am. Chem. Soc. 121 :7957-7958.
Jiang et al. (2002) “Polymer-on-Polymer Stamping: Universal Approaches to Chemically Patterned Surfaces,” Langmuir 18:2607-2615.
Jiang et al. (2007) “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17:2229-2237.
Jin et al. (2004) “Scalable Interconnection and Integration of Nanowire Devices Without Registration,” Nano Lett. 4:915-919.
Jin et al. (2004) “Soft Lithographic Fabrication of an Image Senbsor Array on a Curved Substrate,” J. Vac. Sci. Technol. B 22:2548-2551.
Jin et al. (Aug. 2005) “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8):1241-1247.
Jin et al. (Web Release Jan. 23, 2004) “Biomaterial Films of Bombyx mori Silk Fibroin with Poly(ethylene oxide),” Biomacromolecules 5(3):711-717.
Joachim et al. (Nov. 30, 2000) “Electronics Using Hybrid-Molecular and Mono-Molecular Devices,” Nature 408:541-548.
Johnson et al. (1999) “Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates,” Science 283:963-965.
Jones et al. (Jul./Aug. 2004) “Stretchable Wavy Metal Interconnects,” J. Vac. Sci. Technol. A 22(4):1723-1725.
Joo et al. (2006) “Low-Temperature Solution-Phase Synthesis of Quantum Well Structures CdSe Nanoribbons,” J. Am. Chem. Soc. 128(17):5632-5633.
Jortner et al. (2002) “Nanostructured Advanced Materials Perspectives and Directions,” Pure Appl. Chem. 74(9):1491-1506.
Joselevich (2002) “Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes,” Nano Lett. vol. 2, No. 10, pp. 1137-1141.
Kadish et al. (1988) “Interaction of Fiber Orientation and Direction of Impulse Propagation with Anatomic Barriers in Anisotropic Canine Myocardium,” Circulation. 78:1478-1494.
Kagan (1999) “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286:945-947.
Kagan et al. (2001) “Patterning Organic-Inorganic Thin-Film Transistors Using Microcontact Printed Templates,” Appl. Phvs. Lett. 79(21):3536-3538.
Kagan et al. (2003) “Thin Film Transistors—A Historical Perspective,” In; Thin Film Transistors, Dekker, New York, pp. 1-34.
Kane et al. (2000) “Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates,” IEEE Electron. Dev. Lett. 21 :534-536.
Kang et al. (2007) “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes,” Nat. Nanotechnol. 2:230-236.
Kang et al. (2007) “Printed Multilayer Superstructures of Aligned Single-Walled Carbon Nanotubes for Electronic Applications,” Nano Lett. 7(11):3343-3348.
Kar et al. (Web Release Feb. 18, 2006) “Shape Selective Growth of CdS One-Dimensional Nanostructures by a Thermal Evaporation Process,” J. Phys. Chem. B. 110(10):4542-4547.
Kar et al. (Web Release Feb. 8, 2005) “Controlled Synthesis and Photoluminescence Properties of ZnS Nanowires and Nanoribbons,” J. Phys. Chem. B 109(8):3298-3302.
Kar et al. (Web Release Sep. 28, 2005) “Synthesis and Optical Properties ofCdS Nanoribbons,” J. Phys. Chem B. 109(41):19134-19138.
Karnik et al. (2003) “Lateral Polysilicon p+-p-n+and p+-n-n+Diodes,” Solid-State Electronics 47:653-659.
Karnik et al. (2003) “Multiple Lateral Polysilicon Diodes as Temperature Sensors for Chemical Microreaction Systems,” Jpn. J. Appl. Phys. 42:1200-1205.
Kato et al. (2004) The Characteristic Improvement of Si(111) Metal-Oxide-Semiconductor Field-Effect Transistor by Long-Time Hydrogen Annealing, Jpn. J. Appl. Phys. 43(10):6848-6853.
Katz et al. (2001) “Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors,” Ace. Chem. Res. 34:359-369.
Katz, H.E. (2004) “Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics,” Chem. Mater. 16:4748-4756.
Kawata et al. (2001) “Finer Features for Functional Microdevices,” Nature 412:697-698.
Kellis et al. (2009) “Human Neocortical Electrical Activity Recorded on Nonpenetrating Microwire Arrays: Applicability for Neuroprostheses,” Neurosurg. Focus 27(1):E9.
Kendall, D.L. (1979) “Vertical Etching of Silicon at Very High Apect Ratios,” Ann. Rev. Mater. Sci. 9:373-403.
Khakani et al. (2006) “Lateral Growth of Single Wall Carbon Nanotubes on Various Substrates by Means of an ‘All-Laser’ Synthesis Approach,” Diamond Relat. Mater. 15:1064-1069.
Khan et al. (1993) “High Electron Mobility Transistor Based on a GaN-AlxGa1-xN Heterojunction,” Appl. Phys. Lett. 63:1214-1215.
Khang et al. (2006) “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substraights,” Science 311:208-212.
Kilby, J.S. (1976) “Invention of the Integrated Circuit,” IEEE Trans. Electron. Dev 23:648-654.
Kim et al. (2000) “Field Emission from Carbon Nanotubes for Displays,” Diamond and Related Mater. 9(3-6): 1184-1189.
Kim et al. (2002) “Nanolithography Based on Patterned Metal Transfer and its Application to Organic Electronic Devices,” Appl. Phys. Lett. 80:4051-4053.
Kim et al. (2003) “Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates,” Nature 424:411-414.
Kim et al. (2008) “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci. USA 105(48):18675-18680.
Kim et al. (2008) “Stretchable and Foldable Silicon Integrated Circuits,” Science 320:507-511.
Kim et al. (2008) “Stretchable Electronics: Materials Strategies and Devices,” Adv. Mater. 20:4887-4892.
Kim et al. (2009) “Integrated Wireless Neural Interface Based on the Utah Electrode array,” Biomed. Microdevices 11:453-466.
Kim et al. (2009) “Optimized Structural Designs for Stretchable Silicon Integrated Circuits,” Small 5(24):2841-2847.
Kim et al. (Dec. 2, 2008) “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci. USA 105(48)18675-18680.
Kim et al. (Jan. 2008) “Complementary Logic Gates and Ring Oscillators Plastic Substrates by Use of Printed Ribbons Single-Crystalline Silicon,” IEEE Electron. Dev. Lett. 29(1):73-76.
Kim et al. (Nov. 15, 1999) “Direct Observation of Electron Emission Site on Boron-Doped Polycrystalline Diamond Thin Films Using an Ultra-High-Vacuum Scanning Tunneling Microscope,” Appl. Phys. Lett. 75(20):3219-3221.
Kim et al. (Oct. 17, 2010) “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nature Materials 9:929-937.
Kim et al. (Oct. 2004) “Organic TFT Array on a Paper Substrate,” IEEE Electron. Dev.Lett. 25(10):702-704.
Kim et al. (Web Release Apr. 18, 2010) “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nature Materials 9:511-517.
Kim et al. (Web Release Feb. 29, 2008) “Highly Emissive Self-Assembled Organic Nanoparticles Having Dual Color Capacity for Targeted Immunofluorescence Labeling,” Adv. Mater. 20(6):1117-1121.
Kim et al. (Web Release Jul. 31, 2008) “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically lntegrated Stretchable Wavy Interconnects,” Appl. Phys. Lett. 93(4):044102.
Kim et al. (Web Release Jul. 6, 2009) “Ultrathin Silicon Circuits with Strain-lsolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather and Paper,” Adv. Mater. 21 (36):3703-3707.
Kim et al. (Web Release Sep. 29, 2009) “Silicon Electronics on Silk as a Path to Bioresorbable, Implantable Devices,” Appl. Phys. Lett. 95:133701-133703.
Kim et al., (2008) “Complimentary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Appl Phys Lett, 93:044102.
Kim, Y.S. (Web Release Aug. 9, 2005) “Microheater-Integrated Single Gas Sensor Array Chip Fabricated on Flexible Polyimide Substrate,” Sens. Actuators B 114(1):410-417.
Klauk et al. (2002) “High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors,” J. Appl. Phys. 92:5259-5263.
Klein-Wiele et al. (2003) “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83(23):4707-4709.
Knipp et al. (2003) “Pentacine Thin Film Transistors on Inorganic Dielectrics: Morphology, Structural Properties, and Electronic Transport,” J Appl. Phys. 93:347-355.
Ko et al. (2006) “Bulk Quantities of Single-Crystal Silicon Micro-/Nanoribbons Generated from Bulk Wafers,” Nano Lett. 6(10):2318-2324.
Ko et al. (2008) “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature 454:748-753.
Ko et al. (2010) “Flexible Carbon Nanofiber Connectors with Anisotropic Adhesion Properties,” Small 6:22-26.
Ko et al. (Web Release Oct. 28, 2009) “Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements,” Small 5(23):2703-2709.
Kocabas et al. (2004) “Aligned Arrays of Single-Walled Carbon Nanotubes Generated from Random Networks by Orientationally Selective Laser Ablation,” Nano Lett., vol. 4, No. 12, pp. 2421-2426.
Kocabas et al. (2005) “Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transstors,” Small 1(11): 111 0-1116.
Kocabas et al. (2006) “Spatially Selective Guided Growth of High-Coverage Arrays and Random Networks of Single-Walled Carbon Nanotbes and Thir Integration into Electronic Devices,” J. Am. Chem. Soc. 128:4540-4541.
Kocabas et al. (2006) “Large Area Aligned Arrays of SWNTs for High Performance Thin Film Transistors,” American Physical Society, APS March Meeting, Mar. 13-17, Abstract #W31.004.
Kocabas et al. (2007) “Experimental and Theoretical Studies of Transport Through Large Scale, Partially Aligned Arrays of Single-Walled Carbon Nanotubes ni Thin Film Type Transistors,” Nano Lett. 7(5):1195-1202.
Kocabas et al. (Feb. 5, 2008) “Radio Frequency Analog Electronics Based on Carbon Nanotube Transistors,” Proc. Natl. Acad. Sci. USA 105(5):1405-1409.
Kodambaka et al. (2006) “Control of Si Nanowire Growth by Oxygen,” Nano Lett. 6(6):1292-1296.
Koide et al. (2000) “Patterned Luminescence of Organic Light-Emitting Diodes by Hot Microcontact Printing (H1JCP) of Self-Assembled Monolayers,” J. Am. Chem. Soc. 122:11266-11267.
Konagai et al. (1978) “High Efficiency GaAs Thin Film Solar Cells by Peeled Film Technology,” J. Cryst. Growth 45:277-280.
Kong et al. (2004) “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,” Science 303: 1348-1351.
Kong et al. (Jan. 28, 2000) “Nanotube Molecular Wires as Chemical Sensors,” Science 287:622-625.
Kong et al. (Oct. 2003) “Structure of Indium Oxide Nanobelts,” Solid State Commun. 128(1): 1-4.
Kong et al. (Oct. 29, 1998) “Synthesis of Individual Single-Walled Carbon Nanotubes on Patterned Silicon Wafers,” Nature 395:878-881.
Kudo et al. (Web Release Jun. 13, 2006) “A Flexible and Wearable Glucose Sensor Based on Functional Polymers with Soft-MEMS Techniques,” Biosens. Bioelectron. 22:558-562.
Kulkarni et al. (2002) “Mesoscale Organization of Metal Nanocrystals,” Pure Appl. Chem 74(9):1581-1591.
Kumar et al. (1993) “Features of Gold Having Micrometer to Centimeter Dimensions can be Formed Through a Combination of Stamping with an Elastomeric Stamp and an Alkanethiol “Ink” Followed by Chemical Etching,” Appl. Phys. Lett. 63(14):2002-2004.
Kumar et.al. (1994) “Patterning Self-Assembled Monolavers: Applications in Material Science,” Langmuir 10:1498-1511.
Kumar et al. (2002) “Thermally-Stable Low-Resistance Ti/Al/Mo/Au Multilayer Ohmic Contacts on n-GaN,” J. Appl. Phys. 92:1712-1714.
Kumar et al. (2005) “Percolating in Finite Nanotube Networks,” Phys. Rev. Lett., 95, 066802.
Kuo et al. (1985) “Effect of Mismatch Strain on Band Gap in III-V Semiconductors,” J. Appl. Phys. 57:5428-5432.
Kuykendall et al. (Aug. 2004) “Crystallographic Alignment of High Density Gallium Nitride Nanowire Arrays,” Nat. Mater. 3:524-528.
Lacour et al. (2003) “Stretchable Gold Conductors on Elastomeric Substrates,” Appl. Phys. Lett. 82(15):2404-2406.
Lacour et al. (2005) “Stretchable Interconnects for Elastic Electronic Surfaces,” Proc.IEEE 93(8):1459-1467.
Lacour et al. (2010) “Flexible and Stretchable Micro-Electrodes for in Vitro and n Vivo Neural Interfaces,” Med. Biol. Eng. Comput.48:945-954.
Lacour et al. (Apr. 2004) “Design and Performance of Thin Metal Film Interconnects for Skin-Like Electonic Circuits,” IEEE Electron. Dev. Lett. 25(4):179-181.
Lacour et al. (Dec. 2004) “An Elastically Stretchable TFT Circuit,” IEEE Electron Dev. Lett. 25(12):792-794.
Lacour et al. (Web Release Jul. 14, 2006) “Stiff Subcircuit Islands of Diamondlike Carbon for Stretchable Electronics,” J. Appl. Phys. 100:014913.
Lacour et al. (Web Release May 16, 2006) “Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates,” Appl. Phys. Lett. 88:204103.
Laimer et al. (Mar. 1997) “Diamond Growth in a Direct-Current Low-Pressure Supersonic Plasmajet,” Diamond Relat. Mater. 6:406-410.
Lambacher et al. (2004) “Electrical Imaging of Neuronal Activity by Multi-Transistor-Array (MTA) Recording at 7.8 μm Resolution,” Appl. Phys. A 79:1607-1611.
Landes et al. (2002) “Some Properties of Spherical and Rod-Shaped Semiconductorand Metal Nanocrystals,” Pure Appl. Chem. 74(9):1675-1692.
Law et al. (2004) “Semiconductor Nanowires and Nanotubes,” Ann. Rev. Mater. Res.34:83-122.
Law et al. (Aug. 27, 2004) “Nanoribbon Waveguides for Subwavelength PhotonicsIntegration,” Science 305:1269-1273.
Lawrence et al. (2008) “Bioactive Silk Protein Biomaterial Systems for Optical Devices,” Biomacromolecules 9:1214-1220.
Lay et al. (2004) “Simple Route to Large-Scale Ordered Arrays of Liquid-Deposited Carbon Nanotubes,” Nano Lett. vol. 4, No. 4 pp. 603-606.
Leclercq et al. (1998) “II I-V Micromachined Devices for Microsystems,”Microelectronics J. 29:613-619.
Lecomte et al. (Apr. 2006) “Degradation Mechanism of Diethylene Glycol Units in aTerephthalate Polymer,” Polym. Degrade. Stab. 91(4):681-689.
Lee et al. (2000) “Thin Film Transistors for Displays on Plastic Substrates,” Solid State Electron. 44:1431-1434.
Lee et al. (2003) “High-Performance Poly-Si TFTs on Plastic Substrates Using a Nano-Structured Separation Layer Approach,” IEEE Elec. Dev. Lett. 24: 19-21.
Lee et al. (2004)“Organic Light-Emitting Diodes Formed by Soft Contact Lamination,” Proc. Natl. Acad. Sci. USA 101(2):429-433.
Lee et al. (2005) “A Printable Form of Single-Crystalline Gallium Nitride for Flexable Optoelectronic Systems,” Small 1:1164-1168.
Lee et al. (2005) “Large-Area, Selective Transfer of Microstructured Silicon (μs-Si): A Printing-Based Approach to High-Performance Thin-Film Transistors Supported on Flexible Substraights,” Adv. Mater. 17:2332-2336.
Lee et al. (Apr. 2005) “Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on a-Chip Device Patterning,” Adv. Funct. Mater. 15(4):557-566.
Lee et al. (Dec. 1999) “The Surface/Bulk Micromachining (SBM) Process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. Microelectromech. Syst. 8(4):409-416.
Lee et al. (Feb. 2001) “Application of Carbon Nanotubes to Field Emission Displays,” Diamond and Related Mater. 10(2):265-270.
Lee et al. (Feb. 2005) “Weave Patterned Organic Transistors on Fiber for E-Textiles,” IEEE Trans. Electron. Dev. 52(2):269-275.
Leong et al. (2009) “Tetherless Thermobiochemicall Actuated Microgrippers,” Proc. Natl. Acad. Sci. USA 106:703-709.
Létant et al. (Jun. 2003) “Functionalized Silicon Membranes for Selective Bio-Organisms Capture,” Nat. Mater. 2:391-395.
Li et al. (2002) “High-Resolution Contact Printing with Dendrimers,” Nano Lett. 2(4):347-349.
Li et al. (2003) “Ultrathin Single-Crystalline-Silicon Cantilever Resonators: Fabrication Technology and Significant Specimen Size Effect on Young's Modulus,” Appl. Phys. Lett. 83:3081-3083.
Li et al. (2004) “Electrospinning of Nanofibers: Reinventing the Wheel,” Adv. Mater.16(14):1151-1170.
Li et al. (2006) “Catalyst-Assisted Formation of Nanocantilever Arrays on ZnS Nanoribbons by Post-Annealing Treatment,” J. Phys. Chem. B 110(13):6759-6762.
Li et al. (Dec. 2005) “Compliant Thin Film Patterns of Stiff Materials as Platforms for Stretchable Electronics,” J. Mater. Res. 20(12):3274-3277.
Li et al. (Jul. 1, 2002) “ZnO Nanobelts Grown on Si Substrate,” Appl. Phys. Lett. 81 (1): 144-146.
Lieber, C. (2001) “The Incredible Shrinking Circuit,” Sci. Am. 285(3):58-64.
Lieber, C.M. (2003) “Nanoscale Science and Technology: Building a Bog Future from Small Things,” MRS. Bull. 28:486-491.
Lim et al. (2005) “Flexible Membrance Pressure Sensor,” Sens. Act. A 119:332-335.
Lima et al. (2007) “Creating Micro- and Nanostructures on Tubular and Spherical Surfaces,”J. Vac. Sci. Technol. 825(6):2412-2418.
Lin et al. (2005) “High-Performance Carbon Nanotube Field-Effect Transistor with Tunable Polarities,” IEEE Trans. Nano 4(5):481-489.
Linder et al. (1994) “Fabrication Technology for Wafer Through-Hole Interconnections and Three-Dimensional Stacks of Chips and Wafers,” Proc. IEEE Micro. Electro Mech. Syst. 349-354.
Ling et al. (2004) “Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors,” Chem. Mater. 16:4824-4840.
Liu et al. (1999) “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates,” Chem. Phys. Lett., 303:125-129.
Long et al. (1990) “Heterostructure FETs and Bipolar Transistors,” in; Gallium Arsenide Digital Integrated Circuit Design, McGraw-Hill, New York, pp. 58-69.
Loo et al. (2002) “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in Plastic Electronics,” Appl. Physics Lett. 81 :562-564.
Loo et al. (2002) “High-Resolution Transfer Printing on GaAs Surfaces Using Alkane Dithiol Monolavers,” J. Vac. Sci. Technol. B 20(6):2853-2856.
Loo et al. (2002) “Interfacial Chemistries for Nanoscale Transfer Printing,” J. Am. Chem. Soc. 124:7654-7655.
Loo et al. (2002) “Soft, Conformable Electrical Contacts for Organic Semiconductors: High-Resolution Plastic Circuits by Lamination,” Proc. Natl. Acad. Sci. USA 99(16): 10252-1 0256.
Loo et al. (2003) “Electrical Contacts to Molecular Layers by Nanotransfer Printing,” Nano Lett. 3(7):913-917.
Lopes et al. (Sep. 2004) “Thermal Conductivity of PET/(LDPE/AI) Composites Determined by MDSC,” Polym. Test.23(6):637-643.
Lu et al. (Apr. 2010) “Water-Insoluble Silk Films with Silk I Structure ” Acta Biomater. 6(4):1380-1387.
Lu et al. (Dec. 2006) “Electronic Materials—Buckling Down for Flexible Electronics,” Nat. Nanotechnol. 1:163-164.
Lu et al. (Jul. 19, 2005) “One Dimensional Hole Gas in Germanium/Silicon Nanowire Heterostructures,” Proc. Nat. Acad. Sci. USA 102(29):10046-10051.
Lu et al. (Nov. 2008) “Nanowire Transistor Performance Limits and Applications,” IEEE Trans Electron Dev. 55(11 ):2859-2876.
Luan et al. (1992) “An Experimental Study of the Source/Drain Parasitic Resistance Effects in Amorphous Silicon Thin Film Transistors,” J. Appl. Phys. 72:766-772.
Ma et al. (2004) “Single-Crystal CdSe Nanosaws,” J. Am. Chem. Soc. 126(3):708-709.
Mack et al. (2006) “Mechanically Flexible Thin-Film Transistors that Use Ultrathin Ribbons of Silicon Derived from Bulk Wafers,” Appl. Phvs. Lett. 88:213101.
Madou, M. (1997) “Etch-Stop Techniques,” in; Fundamentals of Microfabrication, CRC Press, New York, pp. 193-199.
Maikap et al. (2004) “Mechanically Strained-Si NMOSFETs,” IEEE Electron. Dev. Lett. 25:40-42.
Maldovan et al. (2004) “Diamond-Structured Photonic Crystals,” Nature Materials 3:593-600.
Mandlik et al. (Aug. 2006) “Fully Elastic Interconnects on Nanopatterned Elastomeric Substrates,” IEEE Electron Dev. Lett. 27(8):650-652.
Manna et al. (Web Release May 25, 2003) “Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals,” Nat. Mater. 2:382-385.
Markovich et al. (1999) “Architectonic Quantum Dot Solids,” Ace. Chem. Res. 32:415-423.
Marquette et al. (2004) “Conducting Elastomer Surface Texturing: A Path to Electrode Spotting Application to the Biochip Production,” Biosens. Bioelectron. 20:197-203.
Martensson et al. (2004) “Nanowire Arrays Defined by Nanoimprint Lithography,” Nano Lett. 4:699-702.
Martin, C.R. (1995) “Template Synthesis of Electronically Conductive Polymer Nanostructures,” Ace. Chem. Res. 28:61-68.
Mas-Torrent et al. (2006) “Large Photoresponsivity in High-Mobility Single-Crystal Organic Field-Effect Phototransistors,” ChemPhysChem 7:86-88.
Masuda et al. (2000) “Fabrication of Ordered Diamonds/Metal Nanocomposite Structures,” Chem. Lett. 10:1112-1113.
Matsunaga et al, (2003) “An Improved GaAs Device Model for the Simulation of Analog Integrated Circuit,” IEEE Trans. Elect. Dev. 50:1194-1199.
McAlpine et al. (2003) “High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates,” Nano Lett. 3:1531-1535.
McAlpine et al. (2005) “High-Performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates,” Proc. IEEE 93:1357-1363.
McCaldin et al. (1971) “Diffusivity and Solubility of Si in the Al Metallization of Integrated Circuits,” Appl. Phys. Lett. 19:524-527.
Mehring C. et al. (2003) Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 6, 1253-1254.
Meisel et al. (2004) “Three-Dimensional Photonic Crystals by Holographic Lithography Using the Umbrella Configuration: Symmetries and Complete Photonic Band Gaps,” Phys. Rev. B. 70:165101:1-10.
Meitl et al. (2004) “Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films,” Nano Lett. 4(9):1643-1947.
Meitl et al. (2006) “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater. 5:33-38.
Meitl et al. (Web Release Feb. 22, 2007) “Stress Focusing for Controlled Fracture in Microelectromechanical Systems,” Appl. Phys. Lett. 90:083110.
Melosh et al. (2003) “Ultrahigh-Density Nanowire Lattices and Circuits,” Science 300:112-115.
Menard et al. (2004) “A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates,” Appl. Phys. Lett. 84:5398-5400.
Menard et al. (2004) “High-Performance n- and p-Type Single-Crystal Organic Transistors with Free-Space Gate Dielectrics,” Adv. Mat. 16:2097-2101.
Menard et al. (2004) “Improved Surface Chemistries, Thin Film Deposition Techniques, and Stamp Designs for Nanotransfer Printing,” Langmuir 20:6871-6878.
Menard et al. (2005) Bendable Single Crystal Silicon Thin Film Transistors Formed by Printing on Plastic Substrates Appl. Phys. Lett. 86:093507.
Menard et al. (2007) Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems, Chem. Rev. 107:1117-1160.
Miao et al. (2003) “Micromachining of Three-Dimensional GaAs Membrane Structures Using High-Energy Nitrogen Implantation,” J. Micromech. Microenq. 13:35-39.
Michalske et al. (1985) “Closure and Repropagation of Healed Cracks in Silicate Glass,” J. Am. Ceram. Soc. 68:586-590.
Michel et al. (2001) Printing Meets Lithography: Soft Approaches to High-Resolution Patterning, IBM J. Res. Dev. 45(5):697-719.
Miller et al. (2002) “Direct Printing of Polymer Microstructures on Flat and Spherical Surfaces Using a Letterpress Technique,” J. Vac. Sci. Technol. B 20(6):2320-2327.
Milliron et al. (2004) “Colloidal Nanocrystal Heterostructures with Linear and Branched Topoloqy,” Nature 430:190-195.
Min, G. (Apr. 4, 2003) “Plastic Electronics and Their Packaging Technologies,” Syn. Metals. 135:141-143.
Minev et al. (2010) “Impedance Spectroscopy on Stretchable Microelectrode Arrays,” Appl. Phys. Lett. 97:043707.
Mirkin et al. (Jul. 2001) “Emerging Methods for Micro- and Nanofabrication,” MRS Bull. 26(7):506-507.
Misewich et al. (May 2, 2003) “Electronically Induced Optical Emission from a Carbon Nanotube FET,” Science 300:783-786.
Mishra et al. (2002) “AlGaN/GaN HEMTs-an Overview of Device Operation and Applications,” Proc. IEEE 90:1022-1031.
Mitzi et al. (2004) “High-Mobility Ulltrathin Semiconducting Films Prepared by Spin Coating,” Nature 428:299-303.
Moon et al. (2002) “Ink-Jet Printing of Binders for Ceramic Compinents,” J. Am. Ceram. Soc. 85(4):755-762.
Moore et al. (Sep. 9, 2003) “Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,” Nano Lett. 3(10):1379-1382.
Morales et al. (Jan. 9, 1998) “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279:208-211.
Morent et al. (2007) “Adhesion Enhancement by a Dielectric Barrier Discharge of PDMS used for Flexible and Stretchable Electronics,” J. Phys. D. Appl. Phys. 40:7392-7401.
Mori et al. (1978) “A New Etching Solution System, H3P04-H202-H20, for GaAs and Its Kinetics,” J. Electrochem. Soc. 125:1510-1514.
Morkoc et al. (1995) “High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes,” Science 267:51-55.
Morkved et al. (1994) “Mesoscopic Self-Assembly of Gold Islands on Diblock-Copolymer Films,” Appl. Phys. Lett. 64:422-424.
Morra et al. (1990) “On the Aging of Oxygen Plasma-Treated Polydimethylsiloxane Surfaces,” J. Colloid Interface Sci. 137:11-24.
Murakami et al. (2005) “Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett., 94, 087402.
Murphy et al. (2008) “Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation,” Biomaterials 29:2829-2838.
Namazu et al. (2000) “Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM,” J. MEMS 9:450-459.
Nath et al. (2002) “Nanotubes of the Disulfides of Groups 4 and 5 Metals,” Pure Appl. Chem. 74(9):1545-1552.
Nathan et al. (2000) “Amorphous Silicon Detector and Thin Film Transistor Technology for Large-Area Imaging of X-Rays,.” Microelectron J. 31 :883-891.
Nathan et al. (2002) “Amorphous Silicon Technology for Large Area Digital X-Ray and Optical Imaging,” Microelectronics Reliability 42:735-746.
Newman et al. (2004) “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors,” Chem. Mater. 16:4436-4451.
Nirmal et al. (1999) “Luminescence Photophysics in Semiconductor Nanocrystals,” Ace. Chem. Res. 32:407-414.
Noda et al. (1996) “New Realization Method for Three-Dimensional Photonic Crystal in Optical Wavelength Region,” Jpn. J. Appl. Phys. 35:L909-L912.
Nomura et al. (2004) “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Oxide Semiconductors,” Nature 432:488-492.
Notice of Allowance corresponding to Korean Patent Application No. 10-20102-7010094, dated Feb. 25, 2013—includes English translation.
Notice of Allowance, Corresponding to U.S. Appl. No. 11/423,287, Mailed Jan. 12, 2009.
Notice of Allowance, Corresponding to U.S. Appl. No. 12/723,475, mailed on Oct. 14, 2011.
Notice of Allowance, U.S. Appl. No. 12/686,076, mailed Oct. 5, 2012.
Notice of Allowance, U.S. Appl. No. 11/851,182, mailed Februaty 16, 2012.
Notice of Allowance, U.S. Appl. No. 12/405,475, mailed Mar. 1, 2012.
Notice of Allowance, U.S. Appl. No. 12/616,922, mailed Oct. 19, 2012.
Notice of Final Rejection for Japanese Patent Application No. 2007-515549, dated Sep. 19, 2012.
Notice of Preliminary Rejection corresponding to Korean Patent Application No. 10-2007-7000216, dated Feb. 21, 2013—includes English translation.
Notice of Preliminary Rejection corresponding to Korean Patent Application No. 10-2012-7030789, dated Feb. 25, 2013—includes English translation.
Notice of Reasons for Rejection corresponding to Japanese Patent Application No. P2006-165159, Dispatched Apr. 24, 2012—includes English translation.
Notice of Reasons for Rejection corresponding to Japanese Patent Application No. P2008-514820, Dispatched May 8, 2012—includes Enslish translation.
Notice of Reasons for Rejection corresponding to Japanese Patent Application No. P2009-546361, Dispatched Jul. 3, 2012—includes English translation.
Notice of Reasons of Rejection corresponding to Japanese Patent Application No. 2009-527564, mailed Jan. 29, 2013.
Notification Concerning Transmittal of International Preliminary Report on Patentability, Corresponding to International Application No. PCT/US2009/059892, mailed Jan. 7, 2010.
Notification Concerning Transmittal of International Preliminary Report on Patentability, Corresponding to International Application No. PCT/US2009/064199, mailed May 17, 2011.
Notification of Grant of Patent Right and Notice of Registration corresponding to Chinese Patent App. No. 200780041127.6 issued Dec. 26, 2012.
Novoselov et al. (Oct. 22, 2004) “Electric Field Effect in Atomically Thin Carbon Films,” Science 306:666-669.
O'Riordan et al. (2004) “Field Configured Assembly: Programmed Manipulation and Self-Assembly at the Mesoscale,” Nano Lett. 4:761-765.
O'Connell et al. (Jul. 26, 2002) “Band Gap Fluorescence from Individual Single-Walled Caarbon Nanotubes,” Science 297:593-596.
Odom et al. (2002) “Improved Pattern Transfer in Soft Lithography Using Compasite Stamps,” Langmuir 18:5314-5320.
Office Action and Response, Corresponding to U.S. Appl. No. 11/423,287, Mailed Feb. 13, 2008.
Office Action and Response, Corresponding to U.S. Appl. No. 11/421,654, Mailed Sep. 29, 2009.
Office Action and Response, Corresponding to U.S. Appl. No. 11/858,788, Mailed Beginning Jan. 28, 2011.
Office Action Corresponding to Chinese Patent Application No. 200780041127.6, issued Apr. 8, 2011.
Office Action Corresponding to Chinese Patent Application No. 200780049982.1, Issued May 12, 2010.
Office Action Corresponding to European Patent Application No. 05755193.9, issued Jul. 7, 2011.
Office Action for U.S. Appl. No. 11/851,182 mailed Apr. 1, 2010.
Office Action for U.S. Appl. No. 12/405,475 mailed Jun. 8, 2011.
Office Action for U.S. Appl. No. 12/636,071 mailed Jan. 3, 2013.
Office Action for U.S. Appl. No. 13/441,598 mailed Jan. 14, 2013.
Office Action, Corresponding to Chinese Paten Application No. 200580013574.1, Issued May 11, 2010.
Office Action, Corresponding to Taiwan Patent Application No. 095121212, Issued May 7, 2010.
Office Action, Corresponding to U.S. Appl. No. 11/423,287, Mailed Feb. 13, 2008.
Office Action, Corresponding to U.S. Appl. No. 11/851,182, Mailed Apr. 1, 2010.
Office Action, Corresponding to U.S. Appl. No. 11/851,182, Mailed Jun. 7, 2011.
Office Action, Corresponding to U.S. Appl. No. 12/686,076.
Office Action, Corresponding to U.S. Appl. No. 11/421,654, Mailed Sep. 29, 2009.
Office Action, Corresponding to U.S. Appl. No. 11/981,380, Mailed Sep. 23, 2010.
Office Action, Corresponding to U.S. Appl. No. 12/398,811 mailed Nov. 26, 2012.
Office Action, Corresponding to U.S. Appl. No. 12/616,922, mailed Apr. 9, 2012.
Office Action, Corresponding to U.S. Appl. No. 12/636,071, mailed Jun. 6, 2012.
Office Action, Corresponding to U.S. Appl. No. 12/778,588 mailed Jan. 8, 2013.
Office Actions, Corresponding to Chinese Patent Application No. 200580018159.5, Issued Jan. 23, 2009 and Feb. 12, 2010.
Office Actions, Corresponding to U.S. Appl. No. 11/145,542, Mailed between Apr. 5, 2007 and Dec. 23, 2008.
Ohzono et al. (Web Release Jul. 7, 2005) “Geometry-Dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns,” Langmuir 21(16):7230-7237.
Omenetto et al. (2008) “A New Route for Silk,” Nature Photon. 2:641-643.
Ong et al. (2004) “High-Performance Semiconducting Poolythiophenes for Organic Thin-Film Transistors,” J. Am. Chem. Soc. 126:3378-3379.
Ong et al. (2005) “Design of High-Performance Regioreular Polythiophenes for Organic Thin-Film Transistors,” Proc. IEEE 93:1412-1419.
Origin Energy (May 2004) “Fact Sheet—Sliver Cells,” www.oriqinenergY.com.au/sliver Ouyang et al. (2002) “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mat, 14:915-918.
Ouyang et al. (2002) “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mat. 14:915-918.
Ouyang et al. (2008) “High Frequency Properties of Electro-Textiles for Wearable Antenna Applications,” IEEE Trans. Antennas Propaq. 56(2):381-389.
Ouyang et al. (Web Release Mar. 20, 2000) “Conversion of Some Siloxane Polymers to Silicon Oxide by UV/Ozone Photochemical Processes,” Chem. Mater. 12(6): 1591-1596.
Overholt et al. (2005) “Photodynamic Therapy for Esophageal Cancer using a 180° Windowed Esophageal Balloon,” Lasers in Surg. Med. 14:27-33.
Pan et al. (2001) “Nanobelts of Semiconducting Oxides,” Science 291: 1947-1949.
Panev et al. (2003) “Sharp Exciton Emission from Single InAs Quantum Dots in GaAs Nanowires,” Appl. Phys. Lett. 83:2238-2240.
Pardo et al. (2000) “Application of Screen Printing in the Fabrication of Organic Ligh-Emitting Devices,” Adv. Mater. 12(17):1249-1252.
Park et al. (1997) “Block Copolymer Lithography: Periodic Arrays of −10 Holes in 1 Square Centimeter,” Science 276:1401-1404.
Park et al. (1998) “Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates,” Chem. Mater. 10:1745-1747.
Park et al. (Aug. 2009) “Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays,” Science 325:977-981.
Park et al. (Web Release Feb. 22, 2009) “Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications,” Nature Mater. 8:331-336.
Parker et al. (2009) “Biocompatible Silk Printed 0ptical Waveguides,” Adv. Mater. 21:2411-2415.
Patolsky et al. (2006) “Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays,” Science 313:1100-1104.
Patton et al. (Mar. 1998) “Effect of Diamond like Carbon Coating and Surface Topography on the Performance of Metal Evaporated Magnetic Tapes,” IEEE Trans Magn. 34(2):575-587.
Paul et al. (Apr. 2003) “Patterning Spherical Surfaces at the Two Hundred Nanometer Scale Using Soft Lithography,” Adv. Func. Mater. 13(4):259-263.
Pearton et al. (1999) “GaN: Processing, Defects, and Devices,” J. Appl. Phys. 86:1-78.
Peng et al. (Mar. 2, 2000) “Shape Control of CdSe Nanocrystals,” Nature 404:59-61.
Perry et al. (2008) “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20:3070-3072.
Piazza et al. (2005) “Protective Diamond-Like Carbon Coatings for Future Optical Storage Disks,” Diamond Relat. Mater. 14:994-999.
Pimparkar et al. (Feb. 2007) “Current-Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A ‘Bottom-Up’ Perspective,” IEEE Electron Dev. Lett. 28(2):157-160.
Podzorov et al. (2005) “Hall Effect in the Accumulation Layers on the Surface of Orgaic Semiconductors,” Phys. Rev. lett. 95:226601.
Pushpa et al. (2002) “Stars and Stripes. Nanoscale Misfit Dislocation Patterns on Surfaces,” Pure Appl. Chem. 74(9):1663-1671.
Qian et al. (2006) “Scaling Effects of Wet Adhesion in Biological Attachment Systems,” Acta Biomaterialia 2:51-58.
Quake et al (2000) “From Micro- to Nanofabrication with Soft Materials,” Science 290: 1536-1540.
Radtke et al. (Feb. 5, 2007) “Laser-Lithography on Non-Planar Surfaces,” Opt. Exp. 15(3):1167-1174.
Randall et al. (2005) “Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices,” Proc. Nat. Acad. Sci. USA 102(31):10813-10818.
Rao et al. (2003) “Large-scale assembly of carbon nanotubes,” Nature, 425:36-37.
Razeghi et al. (1994) “High-Power Laser Diodes Based on InGaAsP Alloys,” Nature 369:631-633.
Razouk et al. (Sep. 1979) “Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables,” J. Electrochem. Soc. 126(9):1573-1581.
Reuss et al. (2005) “Macroelectronics: Perspectives on Technology and Applications,” Proc. IEEE 93:1239-1256.
Reuss et al. (Jun. 2006) “Macroelectronics,” MRS Bull. 31 :447-454.
Ribas et al. (1998) “Bulk Micromachining Characterization of 0.2 μm HEMT MMIC Technology for GaAs MEMS Design,” Mater. Sci. Eng. B 51 :267-273.
Ridley et al. (1999) “All-Inorganic Field Effect Transistors Fabricated by Printing,” Science 286:746-749.
Roberts et al. (1979) “Looking at Rubber Adhesion,” Rubber Chem. Technol. 52:23-42.
Roberts et al. (May 2006) “Elastically Relaxed Free-Standing Strained-Silicon Nanomembranes,” Nat. Mater. 5:388-393.
Robinson et al. (1983) “GaAs Readied for High-Speed Microcircuits,” Science 219:275-277.
Roelkens et al. (Dec. 2005) “Integration of InP/InGaAsP Photodetectors onto Siliconon-Insulator Waveguide Circuits,” Optics Express 13(25):10102-10108.
Rogers et al. (1997) “Using an Elastomeric Phase Mask for Sub-100 nm Photolithography in the Optical Near Field,” Appl. Phys. Lett. 70:2658-2660.
Rogers et al. (1998) “Generating ˜90 Nanometer Features Using Near Field Contact Mode Photolithography with an Elastomeric Phase Mask,” J. Vac. Sci. Technol. 16(1 ):59-68.
Rogers et al. (1998) “Quantifying Distortions in Soft Lithography,” J. Vac. Sci. Technol. 16:88-97.
Rogers et al. (1998) “Using Printing and Molding Techniques to Produce Distributed Feedback and Bragg Reflector Resonators for Plastic Lasers,” Appl. Phys. Lett. 73: 1766-1768.
Rogers et al. (1999) Printing Process Suitable for Reel-to-Reel Production of High-Performance Organic Transistors and Circuits, Adv. Mater. 11 (9):741-745.
Rogers et al. (2000) “Organic Smart Pixels and Complementart Inverter Circuits Formed on Plastic Substrates by Casting and Rubber Stamping,” IEEE Electron Dev. Lett. 21 (3): 100-103.
Rogers et al. (2001) “Paper-Like Electronic Displays: Large-Area Rubber-Stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks,” Proc. Nat/Acad. Sci. USA 98:4835-4840.
Rogers et al. (2002) “Printed Plastic Electronics and Paperlike Displays,” J. Polym. Sci. Part A. Polym. Chem. 40:3327-3334.
Rogers, J. (Jul. 9, 2010) “Farewell to Flatland,” Science 329:138139.
Rogers, JA (2001) “Rubber Stamping for Plastic Electronics and Fiber Optics,” MRS Bulletin 26(7):530-534.
Rogers, JA (2001) “Toward Paperlike Displays,” Science 291: 1502-1503.
Rosenblatt et al. (2002) “High Performance Electrolyte Gated Carbon Nanotube Transistors,” Nano Lett. 2(8):869-872.
Rotkin et al. (2003) “Universal Description of Channel Conductivity for Nanotube and Nanowire Transistors,” Appl. Phys. Lett. 83:1623-1625.
Roundy et al. (2003) “Photonic Crystal Structure with Square Symetry within EachLayer and a Three-Dimensional Band Gap,” Appl. Phys Lett. 82:3835-3837.
Rubehn et al. (2009) “A MEMS based Flexible Multichannel ECoG-Electrode Array,” J. Neural Eng. 6:036003.
Ruchehoeft et al. (2000) “Optimal Strategy for Controlling Linewidth on Spherical Focal Surface Arrays,” J. Vac. Sci. Technol. B 18(6):3185-3189.
Ryu et al. (2009) “Human Cortical Prostheses: Lost in Translation?” Neurosurg Focus 27(1):E5.
Samuelson et al. (2004) “Semiconductor Nanowires for Novel One-Dimensional Devices,” Physica E 21:560-567.
Sangwal et al. (1997) “Nature of multilayer steps on the {100} cleavage planes of MgO single crystals,” Surf. Sci., 383:78-87.
Santin et al. (1999) “In vitro Evaluation of the Inflammatory Potential of the Silk Fibroin,” J. Biomed. Mater. Res. 46:382-389.
Sanyal et al. (2002) “Morphology of Nanostructures Materials,” Pure Appl. Chem. 74(9): 1553-1570.
Sazonov et al. (2005) “Low-Temperature Materials and Thin-Film Transistors for Flexible Electronics,” Proc. IEEE 93:1420-1428.
Scherlag et al. (1969) “Catheter Technique for Recording His Bundle Activity in Man,” Circulation 39:13-18.
Schermer et al. (2005) “Thin-Film GaAs Epitaxial Lift-Off Solar Cells for Space Applications,” Prog. Photovolt. Res. Appl. 13:587-596.
Schermer et al. (2006) “Photon Confinement in High-Efficiency, Thin Film II I-V Solar Cells Obtained by Epitaxial Lift-Off,” Thin Solid Films 211-512:645-653.
Schindl et al. (2003) “Direct Stimulatory Effect of Low-Intensity 670-nm Laser Irradiation on Human Endothelial Cell Proliferation,” Br. J. Dermatol. 148:334-336.
Schlegel et al. (2002) “Structures of quartz (1010)- and (1011)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces,” Geochim. Cosmochim. Acta, vol. 66, No. 17, pp. 3037-3054.
Schmid et al. (2003) “Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing,” Adv. Funct. Mater. 13:145-153.
Schmid et al. (Mar. 25, 2000) “Siloxene Polymers for High-Resolution, High-Accuracy Soft Lithography,” Macromolecules 33(8):3042-3049.
Schmid et al. (May 11, 1998) “Light-Coupling Masks for Lensless, Sub-wavelength Optical Lithography,” Appl. Phys. Lett. 72(19):2379-2381.
Schmidt et al. (Mar. 8, 2001) “Thin Solid Films Roll up into Nanotubes,” Nature 410:168.
Schnable et al. (1969) “Aluminum Metallization; Advantages and Limitations for Integrated Circuit Applications,” IEEE 57: 1570-1580.
Schneider et al. (2008) “Mechanical Properties of Silicones for MEMS,” J. Micromech. Microeng. 18:065008.
Schon et al. (1995) “Ambipolar Pentacene Field-Effect Transistors and Inverters,”Science 287: 1022-1 023.
Scorzoni et al. (Oct. 4, 2004) “On the Relationship Between the Temperature coefficient of Resistance and the Thermal Conductance of Integrated Metal Resistors,” Sens Actuators A 116( 1): 137-144.
Search and Examination Report, Corresponding to Singapore Patent Application No. 200607372-0, Mailed Oct. 17, 2007.
Shi et al. (2001) “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123(44):11095-11096.
Shi et al. (Sep. 2000) “Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires,” Adv. Mater. 12(18):1343-1345.
Shi et al. (Web Release Oct. 11, 2001) “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123(44):11095-11096.
Shin et al. (2003) “PDMS-Based Micro PCR Chip with Parylene Coating,” J. Micromech. Microeng. 13:768-774.
Shtein et al. (Oct. 15, 2004) “Direct Mask-Free Patterning of Molecular Organic Semiconductors Using Organic Vapor Jet Printing,” J. Appl. Phys. 96(8):4500-4507.
Shull et al. (1998) “Axisymmetric Adhesion Tests of Soft Materials,” Macramol. Chem. Phys.199:489-511.
Siegel et al. (2009) “Thin, lightweight, Foldable Thermochromic Displays on Paper,” Lab Chip 9:2775-2781.
Siegel et al. (2010) “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater. 20:28-35.
Siegel et al. (Web Release Feb. 7, 2007) “Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane),” Adv. Mater. 19(5):727-733.
Sim et al. (1993) “An Analytical Back-Gate Bias Effect Model for Ultrathin SOI CMOS Devices,” IEEE Trans. Elec. Dev. 40:755-765.
Sirringhaus et al. (2003) “Inkjet Printing of Functional Materials,” MRS Bull. 28:802-806.
Sirringhaus et al. (Dec. 15, 2000) “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290:2123-2126.
Sirringhaus, H. (2005) “Device Physics of Solution-Processed Organic Field-Effect Transistors,” Adv. Mater. 17:2411-2425.
Smay et al. (2002) “Colloidal Inks for Directed Assembly of 3-D Periodic Structures,” Langmuir 18:5429-5437.
Smith et al. (2000) “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9):1399-1401.
Snow et al. (2003) “Random networks of carbon nanotubes as an electronic material,” Appl. Phys. Lett., vol. 82, No. 13, pp. 2145-2147.
Snow et al. (2005) “High-mobility carbon-nanotube transistors on a polymeric substrate,” Appl. Phys. Lett., 86, 033105.
So et al. (2008) Organic Light-Emitting Devices for Solid-State Lighting, MRS Bull. 33:663-669.
Sofia et al. (2001) “Functionalized Silk-Based Biomaterials for Bone Formation,” J. Biomed. Mater. Res. 54:139-148.
Someya et al. (2005) “Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes,” Proc. Nat. Acad. Sci. USA 102:12321-12325.
Someya et al. (2005) “Integration of Organic FETs with Organic Photodiodes for a Large Area, Flexible, and Lightweight Sheet Image Scanners,” IEEE Trans. Electron Devices 52:2502-2511.
Someya et al. (Jul. 6, 2004) “A Large-Area, Flexible Pressure Sensor Matrix With Organic Field-Effect Transistors for Artificial Skin Applications,” Proc. Nat. Acad. Sci. USA 101 (27):9966-9970.
Someya, T. (Aug. 7, 2008) “Electronic Eyeballs,” Nature 454:703-704.
Soole et al. (Mar. 1991) “InGaAs Metal-Semiconductor-Metal Photodetectors for Long Wavelength Optical Communications,” IEEE J. Quantum Electron. 27(3):737-752.
Soong et al. (1984) “Adverse Reactions to Virgin Silk Sutures in Cataract Surgery,” Ophthalmology 91:479-483.
Srinivasan et al. (Web Release Mar. 26, 2007) “Piezoelectric/Ultrananocrystalline Diamond Heterostructures for High-Performance Multifunctional Micro/Nanoelectromechanical Systems,” Appl. Phys. Lett. 90: 1341 01.
Stafford et al. (2004) “A Buckling-Based Metrology for Measuring the Elastic Moduli of Polymeris Thin Films,” Nature Mater. 3:545-550.
Star et al. 2004 “Nanotube Optoelectric Memo Devices,” Nano Lett., vol. 4, No. 9, pp. 1587-1591.
Storm et al. (Web Release Jul. 13, 2003) “Fabrication of Solid-State Nanopores with Single-Nanometre Precision,” Nat. Mater. 2:537-540.
Strukov et al. (2005) “CMOL FPGA: A Reconfigurable Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices,” Nanotechnology 16:888-900.
Su et al. (2000) “Lattice-Oriented Growth of Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 104(28):6505-6508.
Sum et al. (2009) “Near-Infrared Spectroscopy for the Detection of Lipid Core Coronary Plagues,” Curr. Cardiovasc. Imag. Rep. 2:307-315.
Sumant et al. (Apr. 2005) “Toward the Ultimate Tribological Interface: Surface Chemistry and Nanotribology of Ultrananocrystalline Diamond,” Adv. Mater 17(8):1039-1045.
Sun et al. (2004) “Fabricating Semiconductor Nano/Microwires and Transfer Printing Ordered Arrays of them onto Plastic Substrates,” Nano Lett. 4: 1953-1959.
Sun et al. (2005) “Advances in Organic Field-Effect Transistors,” J. Mater. Chem.15:53-65.
Sun et al. (2005) “Bendable GaAs Metal-Semiconductor Field-Effect Transistors Formed with a Printed GaAs Wire Arrays on Plastic Substrates,” Appl. Phys. Lett. 87:083501.
Sun et al. (2005) “Photolithographic Route to the Fabrication of Micro/Nanowires of II I-V Semiconductors,” Adv. Funct. Mater. 15:30-40.
Sun et al. (2007) “Inorganic Semiconductors for Flexible Electronics,” Adv. Mater. 19:1897-1916.
Sun et al. (2007) “Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics,” Nat. Nanotechnol. 1:201-207.
Sun et al. (Nov. 2006) “Buckled and Wavy Ribbons of GaAs for High-Performance Electronics on Elastomeric Substrates,” Adv. Mater. 18(21):2857-2862.
Sun et al. (Web Release Dec. 5, 2006) “Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics,” Nature Nanotech. 1:201-207.
Sundar et al. (2004) “Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals,” Science 303: 1644-1646.
Suo et al. (Feb. 22, 1999) “Mechanics of Rollable and Foldable Film-on-Foil Electronics,” Appl. Phys. Lett. 74(8):11771179.
Supplementary European Search Report dated Jun. 15, 2012, corresponding to European Patent Application No. 09 71 6695.
Supplementary European Search Report, Corresponding to European Application No. 04 81 2651, Completed Oct. 19, 2010.
Supplementary European Search Report, Corresponding to European Application No. EP 05 75 6327, Completed Sep. 25, 2009.
Swain et al. (2004) “Curved CCD Detector Devices and Arrays for Multi-Spectral Astrophysical Application and Terrestrial Stereo Panoramic Cameras,” Proc. SPIE 5499:281-301.
Sze, S. (1985) “Lithography and Etching,” in; Semiconductor Devices: Physics and Technology, New York: Wiley, pp. 428-467.
Sze S. 1988 VLSI Technology, Chapter 8, ION Implantation, McGraw-Hill, 327-374, 566-611.
Sze, S. (1994) “Semiconductor Sensor Technologies,” in; Semiconductor Sensors,John Wiley and Sons: New York pp. 17-95.
Takamoto et al. (Jan. 20, 1997) “Over 30% Efficient InGaP/GaAs Tandem Solar Cells,” Appl. Phys. Lett. 70(3):381-383.
Talapin et al. (Oct. 7, 2005) “PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors,” Science 310:86-89.
Tan et al. (Apr. 12, 2004) “Performance Enhancement of InGaN Light Emitting Diodes by Laser-Lift-off and Transfer from Sapphire to Copper Substrate,” Appl. Phys. Lett. 84(15):2757-2759.
Tanase et al. (2002) “Magnetic Trapping and Self-Assembly of Multicomponent Nanowires,” J. Appl. Phys. 91 :8549-8551.
Tang et al. (2005) “One-Dimensional Assemblies of Nanoparticles: Preparation,Properties, and Promise,” Adv. Mater. 17:951-962.
Tao et al. (2003) “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3:1229-1233.
Tate et al. (2000) “Anodization and Microcontact Printing on Elotroless Silver: Solution-Based Fabrication Procedures for Low-Voltage Electronic Systems with Organic Active Components,” Langmuir 16:6054-6060.
Teshima et al. (2001) “Room-Temperature Deposition of High-Purity Silicon Oxide Films by RF Plasma-Enhanced CVD,” Surf. Coat. Technol. 146-147:451-456.
Theiss et al. (1998) “PolySilicon Thin Film Transistors Fabricated at 100° C on a Flexible Plastic Substrate,” IEDM 98:257-260.
Thornwood et al. (Oct. 1, 1990) “Utilizing Olptical Lithography in the Sub-Micron Dimensional Regime,” IBM Tech. Disc. Bull. 33(5):187-188.
Timko et al. (2009) “Electrical Recording from Hearts with Flexible Nanowire Device Arrays,” Nano Lett. 9:914-918.
Toader et al. (2004) “Photonic Band Gap Architectures for Holographic lithography,” Phy. Rev. Lett. 043905/1-043905/4.
Toader et al. (2004) “Photonic Band Gaps Based on Tetragonal Lattices of Slanted Pores,” Phys. Rev. Lett. 90:233901/1-233901/4.
Tong (1999) “Stresses in Bonded Wafers,” in; Semiconductor Wafer Bonding: Science and Technology, John Wiley; New York, pp. 187-221.
Tong (1999) Semiconductor Wafer Bonding: Science and Technology, John Wiley; New York, pp. 187-221.
Trau et al. (1997) “Microscopic Patterning of Orientated Mesoscopic Silica Through Guided Growth,” Nature 390:674-676.
Trentler et al. (1995) “Solution-liquid-Solid Growth of Crytalline III-V Semiconductors: An Analogy to Vapor-liquid-Solid Growth,” Science 270:1791-1794.
Tseng et al. (Web Release Dec. 19, 2003) “Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology” Nano Lett. 4(1):123-127.
Ucjikoga, S. (2002) “Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technologies of System-on-Glass Displays,” MRS Bull. 27:881-886.
Upon the Schottky Barrier Height of Au/n-GaAs and Ti/n-GaAs Diodes, Semicond. Sci. Technol. 19:1391-1396.
Urruchi et al. (2000) “Etching of DLC Films Using a Low Intensity Oxygen Plasma Jet,” Diamond Relat. Mater. 9:685-688.
US Office Action for U.S. Appl. No. 12/575,008 mailed Feb. 17, 2011.
Vanhollenbeke et al. (2000) “Compliant Substrate Technology: Integration of Mismatched Materials for Opto-Electronic Applications,” Prog. Cryst. Growth Charact. Mater. 41(1-4):1-55.
Velev et al. (1997) “Porous silica via colloidal crystallization,” Nature 389:447-448.
Vepari et al. (Aug.-Sep. 2007) “Silk as a Biomaterial,” Prog. Polym. Sci. 32(8-9):991-1007.
Vilan et al. (2000) “Molecular Control Over Au/GaAs Diodes,” Nature 404:166-168.
Vinck et al. (2003) “Increased Fibroblast Proliferation Induced by Light Emitting Diode and Low Power Laser Irradiation,” Lasers Med. Sci. 18:95-99.
Viventi et al. (Mar. 2010) “A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology,” Sci. Trans. Med. 2(24):24ra22.
Vlasov et al. (2001) “On-Chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature 414:289-293.
Voss, D. (2000) “Cheap and Cheerful Circuits,” Nature 407:442-444.
Wagner et al. (2003) “Silicon for Thin-Film Transistors,” Thin Solid Films 430: 15-19.
Wagner et al. (2005) “Electronic Skin: Architecture and Components,” Physica E 25:326-334.
Wagner et al. (Mar. 1, 1964) “Vapor-liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5):89-90.
Waksman et al.(2008) “Photopoint Photodynamic Therapy Promotes Stabilization of Atherosclerotic Plaques and Inhibits Plaque Progression,” J. Am. Coll. Cardiol. 52:1024-1032.
Wang et al. (2003) “A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowores That can be Used for Gas Sensing under Ambient Conditions,” J. Am. Chem. Soc. 125:16176-16177.
Wang et al. (2005) “Oxidation Resistant Germanium Nanowires: Bulk Synthesis, Long Chain Alkanethiol Functionalization, and Langmuir-Blodgett Assembly,” J. Am. Chem. Soc. 127(33):11871-11875.
Wang et al. (2005) “Electronically Selective Chemical Functionalization of Carbon Nanotubes: Correlation between Raman Spectral and Electrical Responses,” J. Am. Chem. Soc., 127:11460-11468.
Wang et al. (2006) “Direct Synthesis and Characterization of CdS Nanobelts,” Appl. Phys. Lett. 89:033102.
Wang et al. (Aug.-Sep. 2008) “In Vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds,” Biomaterials 29(24-25):3415-3428.
Waxman et al. (2009) “In vivo Validation of a Catheter-Based Near-Infrared Spectroscopy System for Detection of Lipid Core Coronary Plaques: Initial Results of the Spectacl Study,” J. Am. Coll. Cardiol. Img. 2:858-868.
Waxman, S. (2008) “Near-Infrared Spectroscopy for Plaque Characterization,” J. Interv. Cardiol. 21:452-458.
Whang et al. (2003) “Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems,” Nano Lett. 3(9): 1255-1259.
Williams et al. (Oct. 2006) “Growth and Properties of Nanocrystalline Diamond Films,” Phys. Stat. Sol. A 203(13):3375-3386.
Williams et al. (Web Release Jan. 23, 2006) “Comparison of the Growth and Properties of Ultranocrystalline Diamond and Nanocrystalline Diamond,” Diamond Relat. Mater. 15:654-658.
Willner et al. (2002) “Functional Nanoparticle Architectures for Senoric, Optoelectronic, and Bioelectronic Applications,” Pure Appl. Chem. 74(9): 1773-1783.
Wilson et al. (2006) “ECoG Factors Underlying Multimodal Control of a Brain-Computer Interface,” IEEE Trans. Neural Syst. Rehabil. Eng. 14:246-250.
Wind et al. (May 20, 2002) “Vertical Scaling of Carbon Nanotube-Field-Effect Transitors Using Top Gate Electrodes,” Appl. Phys. Lett. 80(20):3871-3819.
Wise et al. (Jul. 2008) “Microelectrodes, Microelectronics, and Implantable Neural Microsystems,” Proc. IEEE 96(7):1184-1202.
Won et al. (2004) “Effect of Mechanical and Electrical Stresses on the Performance of an a-Si:H TFT on Plastic Substrate,” J. Electrochem. Soc. 151:G167-G170.
Wong-Riley et al. (2005) “Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins,” J. Biol. Chem. 280:4761-4771.
Woodburn et al. (1996) “Phototherapy of Cancer and Atheromatous Plaque with Texaphyrins,” J. Clin. Laser Med. Surg. 14:343-348.
Written Opinion of the International Search Authority Corresponding to International patent Application No. PCT/US05/19354 Issued Apr. 18, 2007.
Wu et al. (2001) “Amorphous Silicon Crystallization and Polysilicon Thin Film Transistors on SiO2 Passivated Steel Foil Substrates,” Apple. Surf. Sci 175-176:753-758.
Wu et al. (2001) “Thermal Oxide of Polycrystalline Silicon on Steel Foil as a Thin-Film Transitor Gate Dielectric,” Appl. Phys. Lett. 78:3729-3731.
Wu et al. (2001) “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123(13):3165-3166
Wu et al. (2002) “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 81 :5177-5179.
Wu et al. (2002) “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” Chem. Eur. J. 8(6):1261-1268.
Wu et al. (2003) “Growth, Branching, and Kinking of Molecular-Beam Epitaxial (110) GaAs Nanowires,” Appl. Phys. Lett. 83:3368-3370.
Wu et al. (Jul. 1, 2004) “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature 430:61-65.
Wu et al. (Nov. 2002) “Complementary Metal-Oxide-Semiconductor Thin-Film Transistor Circuits from a High-Temperature Polycrystalline Silicon Process on Steel Foil Substrates,” IEEE Trans. Electr. Dev. 49(11): 1993-2000.
Wu et al. (Web Release Jan. 19, 2002) “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2(2):83-86 Si/SiGe Superlattice Nanowires, Nano Lett. 2(2):83-86.
Wu et al. (Web Release Mar. 13, 2001) “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123(13):3165-3166.
Xia et al. (1996) “Shadowed Sputtering of Gold on V-Shaped Microtrenches Etched in Silicon and Applications in Microfabrication,” Adv. Mater. 8(9):765-768.
Xia et al. (1998) “Soft Lithography,” Annu. Rev. Mater. Sci. 28:153-184.
Xia et al. (1999) “Unconventional Methods for Fabricating and Patterning Nanostructures,” Chem. Rev. 99: 1823-1848.
Xia et al. (2003) “One-Dimensional Nanostructures: Synthesis, Characterization and Applications,” Adv. Mater. 15:353-389.
Xia et al. (Jul. 19, 1996) “Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters,” Science 273:347-349.
Xiang et al. (Mar. 25, 2006) “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors,” Nature 441 :489-493.
Xiao et al. (2003) “High-mobility thin-film transistors based on aligned carbon nanotubes,” Appl. Phys. Lett., vol. 83, No. 1, pp. 150-152.
Xie et al. (May 2003) “Polymer-Controlled Growth of Sb2Se3 Nanoribbons Via a Hydrothermal Process,” J. Cryst. Growth 252(4):570-574.
Xin et al. (Jun. 2005) “Evaluation of Polydimethylsiloxane Scaffolds with Physiologically-Relevant Elastic Moduli: Interplay of Substrate Mechanics and Surface Chemistry Effects on Vascular Smooth Muscle Cell Response,” Biomaterials 26(16):3123-3129.
Yang et al. (1997) “Mesoporous Silica with Micrometer-Scale Desgns,” Adv. Mater. 9:811-814.
Yang et al. (2000) “Stability of Low-Temperature Amorphous Silicon Thin Film Transistors Formed on Glass and Transparent Plastic Substrates,” J. Vac. Sci. Technol. B 18:683-689.
Yang et al. (2002) “Creating Periodic Three-Dimensional Structures by Multibeam Interface of Visible Laser,” Chem. Mater. 14:2831-2833.
Yang et al. (Dec. 2007) “RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology,” IEEE Trans. Microw. Theory Tech. 55(12):2894-2901.
Yang, P. (2005) “The Chemistry and Physics of Semiconductor Nanowires,” MRS Bull. 30:85-91.
Yanina et al. (2002) “Terraces and ledges on (001) spinel surfaces,” Surf. Sci., 513:L402-L412.
Yao et al. (2008) “Seeing Molecules by Eye: Surface Plasmon Resonance Imaging at Visible Wavelengths with High Spatial Resolution and Submonolayer Sensitivity,” Agnew. Chem. 47:5013-5017.
Yao et al. (2010) “Functional Nanostructured Plasmonic Materials,” Adv. Mater. 22:1102-1110.
Yao et al. (Mar. 2000) “High-Field Effect Electrical Transport in Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 84(13):2941-2944.
Yeager et al. (Aug. 30, 2008) “Characterization of Flexible ECoG Electrode Arrays for Chronic Recording in Awake Rats,” J. Neurosci. Methods 173(2):279-285.
Yeh et al. (1994) “Fluidic Self-Assembly for the Integration of GaAs light-Emitting Diodes on Si Substrates,” IEEE Photon. Technol. Lett. 6:706-708.
Yin et al. (2000) “A Soft lithography Approach to the Fabrication of Nanostructures of Single Crystalline Silicon with Well-Defined Dimensions and Shapes,” Adv. Mater. 12:1426-1430.
Yin et al. (2005) “Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface,” Nature 437:664-670.
Yoon et al. (2005) “Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-linked Polymers as Gate Dielectrics,” J. Am. Chem. Soc. 127: 10388-10395.
Yu et al. (2000) “Silicon Nanowires: preparation, Device Fabrication, and Transport Properties,” J. Phys. Chem. B 104(50):11864-11870.
Yu et al. (2003) “Solution-liquid-Solid Growth of Soluble GaAs Nanowires,” Adv. Mater. 15:416-419.
Yu et al. (2003) “Two- Versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots,” Nat. Mater. 2:517-520.
Yu et al. (2004) “The Yield Strength of Thin Copper Films on Kapton,” J. Appl. Phys. 95:2991-2997.
Yuan et al. (2006) “High-Speed Strained-Single-Crystal-Silicon Thin-Film Transistors on Flexible Polymers,” J. Appl. Phys. 100:013708.
Yurelki et al. (Jul. 24, 2004) “Small-Angle Neutron Scattering from Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes,” J. Am. Chem. Soc. 126(32):9902-9903.
Zakhidov et al. (1998) “Carbon Structure with Three-Dimensional Periodicity at Optical Wavelengths,” Science 282:897-901.
Zaumseil et al. (2003) “Nanoscale Organic Transistors that use Source/Drain Electrodes Supported by High Resolution Rubber Stamps,” Appl. Phys. Lett. 82(5):793-795.
Zaumseil et al. (2003) “Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing,” Nano Lett. 3(9):1223-1227.
Zhang et al. (2001) “Electric-field-directed growth of aligned single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 79, No. 19. pp. 3155-3157.
Zhang et al. (2005) “Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons,” J. Phys. Chem. B 109(39)18352-18355.
Zhang et al. (Apr. 2003) “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15(7-8):635-640.
Zhang et al. (Apr. 5, 2004) “Structure and Photoiluminescence of ZnSe Nanoribbons Grown by Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett. 84(14):2641-2643.
Zhang et al. (Feb. 9, 2006) “Electronic Transport in Nanometre-Scale Silicon-on-Insulator Membranes,” Nature 439:703-706.
Zhang et al. (Jun. 6, 2006) “Anomalous Coiling of SiGe/Si and SiGe/Si/Cr Helical Nanobelts,” Nano Lett. 6(7)1311-1317.
Zhao et al. (Mar. 2007) “Improved Field Emission Properties from Metal-Coated Diamond Films,” Diamond Relat Mater. 16(3):650-653.
Zheng et al. (1998) “Sudden Cardiac Death in the United States, 1989 to 1998,” Circulation 104, 2158-2163.
Zheng et al. (2004) “Shape-and Solder-Directed Self-Assembly to Package Semiconductor Device Segments,” Appl. Phys. Lett. 85:3635-3637.
Zheng et al. (Aug. 31, 2004) “Sequential Shape-and-Solder-Directed Self Assembly of Functional Microsystems,” Proc. Natl. Acad. Sci. USA 101(35):12814-12817.
Zhou et al. (2002) “An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication,” Science 296:1106-1109.
Zhou et al. (2004) “p-Channel, n-Channel Thin Film Transistors and p-n. Diodes Based on Single Wall Carbon Nanotube Networks,” Nano Lett. 4:2031-2035.
Zhou et al. (2005) “Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors,” Phys. Rev. Lett. 95:146805.
Zhou et al. (2005) “Mechanism for Stamp Collapse in Soft Lithography,” Appl. Phys.Lett. 87:251925.
Zhu et al. (2005) “Spin on Dopants for High-Performance Single Crystal Silicon Transistors on Flexible Plastic Substrates ” Applied Physics Letters 86, 133507 (2005).
Zipes et al. (2006) “ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death,” Circulation 114:385-484.
MY P-020607: Malaysian Office Action for Malaysian application No. PI 20094997 dated Aug. 15, 2012 (English).
Angadi et al. (Web Release Jun. 1,2006) “Thermal Transport and Grain Boundary Conductance in Ultrananocrystalline Diamond Thin Films,” J. Appl. Phys. 99:114301-1 to 114301-6.
Bietsch et al. (2000) “Conformal Contact and Pattern Stability of Stamps Used for Soft Lithography,” J. Appl. Phys. 88:4310-4318.
Bioflex—Biocompatible Flexible Electronic Circuits. Available at tfcg.elis. Ugent.be/projects. Accessed Feb. 8, 2012 (6 pages, print out dated Jul. 23, 2012).
Bourzac, K. (May/Jun. 2010) “TR10: Implantable Electronics,” Technology Review, Published by MIT, www.technologyreview.com/biomedicine/25086/?a=f (2 pages, print out dated Mar. 26, 2012).
Burdinski, D. (non-dated) “Soft Lithography and Microcontact Wave Printing,” www.research.philips.com/technologies/light—dev—microsys/softlitho/index.html, Downloaded May 23, 2007 (3 pages).
Cao et al. (2006) “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes,” Applied Physics Letters 88:113511-1 to 113511-3.
Chaudhury et al. (1991) “Direct Measurement of Interfacial Interactions Between Semispherical Lenses and Flat Sheets of Poly(dimethylsiloxane) and their Chemical Derivatives,” Langmuir 7: 1013-1025.
Chung et al. (2000) “Silicon Nanowire Devices,” Appl. Phys. Lett. 76(15):2068-2070.
Ciesinski, Michael, “Flexible Electronics: Why the Interest? Where are the Markets? What's Next?” Flextech Alliance Apr. 14, 2010, [retrieved online Apr. 29, 2011] www.aysusergroups.org/tfug—pdfs/tfug2010—4ciesinski.pdf (33 pages).
Delamarche et al. (1997) “Stability of Molded Polydimethylsiloxane Microstructures,” Adv. Mat. 9:741-746.
Substantive Examination Adverse Report, Corresponding to Malaysian Patent Application No. PI 20062672, dated Aug. 28, 2006 (English, 3 pages).
Substantive Examination Adverse Report, Corresponding to Malaysian Patent Application No. PI 20052553, dated Mar. 13, 2009 (4 pages)(English).
Substantive Examination Adverse Report, Corresponding to Malaysian Patent Application No. PI 20092343, dated Jun. 15, 2010 (3 pages)(English).
Friedman et al. (2005) “High-Speed Integrated Nanowire Circuits,” Nature 434: 1085.
International Search Report on Patentability for PCT Application PCT/US2010/051196, mailed Dec. 1, 2010 (3 pages).
Jang et al. (2003) “Lateral Growth of Aligned Mutilwalled Carbon Nanotubes Under Electric Field,” Solid State Commun. 126:305-308.
Jiyun C. Hule. (2003) Abstract of “Guided Molecular Self-Assembly: A Review of Recent Efforts,” Smart Mater. Struct. 12:264-271 (2 pages).
Ahn et al. (2006) “Micron and Submicron Patterning of Polydimethylsiloxane Resists on Electronic Materials by Decal Transfer Lithography and Reactive Ion-Beam Etching: Application to the Fabrication of High-Mobility, Thin-Film Transistors,” Journal of Applied Physics 100. 0894907-1 to 0894907-7 (2006).
Li et al. (Web Release Mar. 16, 2006) “Catalyst-Assisted Formation of Nanocantilever Arrays on ZnS Nanoribbons by Post-Annealing Treatment,” J. Phys. Chem. B 110(13):6759-6762.
“Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films,” Nano Lett. 4(9):1643-1647 (2004).
Substantive Examination Adverse Report, Corresponding to Malaysian Patent App. No. PI 20052553, mailed Mar. 13, 2009 (4 pages, English).
Ramam et al. (1989) “Study of Mesa Undercuts Produced in GaAs with H3 PO4 -Based Etchants,” J. Electrochem. Soc. 136:2405-2410.
Fan et al. (2009) Letter abstract of “Three Dimensional Nanopillar-Array Photovoltaics on Low Cost and Flexible Substrates,” Nature Materials 8:648-653 (2 pages).
Schreiber et al. (1998) “The Effectiveness of Silane Adhesion Promotors in the Performance of Polyurethane Adhesives,” J. Adhesion 68:31-44.
Search Report and Examination Report Corresponding to Singapore Patent Application No. 200901178-4, completed Mar. 13, 2010.
Servati et al. (2005) “Functional Pixel Circuits for Elastic AMOLED displays,” Proceedings of the IEEE 93:1257-1264.
Stella Newsletter IV, Stretchable Electronics for Large Area Applications [online: Apr. 29, 2011] www.stella-project.de/Portals/O/Stella—Newsletter—6.pdf (8 pages).
Streetman et al. (2000) “Intrinsic Material,” In; Solid State Electronic Devices, 5th Ed., Prentice Hall; Upper Saddle River, NJ; pp. 74-75.
Sun et al. (2007) “Structural Forms of Single Crystal Semiconductor Nanoribbons for High-Performance Stretchable Electronics,” J. Mater Chem. 17:832-840.
Supplemental European Search Report dated Apr. 4, 2011 for European Application 07 84 1968, completed Mar. 31, 2011 (6 pages).
Vanfleteren, Sweet: Stretchable and Washable Electronics for Embedding Textiles. Available at tfcg.elis.ugent.be/projects/sweet. Access Feb. 8, 2012 (printout dated Jun. 20, 2012, pp. 1-3 of printout) last page states Page created by Jan Vanfleteren. Latest update: Apr. 6, 2007.
Sze et al. (1985) Semiconductor Devices, Physics and Technology, 2nd ed., Wiley, New York, pp. 190-192.
Demura et al., “Immobilization of Glucose Oxidase with Bombyx MoriSilk Fibroin by Only Stretching Treatment and its Application to Glucose Sensor,” Biotechnology and Bioengineering, vol. 33, 598-603 (6 pages) (1989).
Halsted, “Ligature and Suture Material,” Journal of the American Medical Association, vol. LX, No. 15, 1119-1126, (8 pages) (Apr. 12, 1913).
Kim et al., “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Applied Physics Letters, vol. 93, 044102-044102.3 (3 pages) (Jul. 31, 2008).
Kim et al., “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nature, 1-8 (8 pages) (Apr. 18, 2010).
Kim et al., “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” PNAS, vol. 105, No. 48, 18675-18680 (6 pp.) (Dec. 2, 2008).
Kim et al., “Stretchable and Foldable Silicon Integrated Circuits,” Science, vol. 320, 507-511 (5 pages) (Apr. 25, 2008).
Ko et al., “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, vol. 454, 748-753 (6 pages) (Aug. 7, 2008).
Lawrence et al., “Bioactive Silk Protein Biomaterial Systems for Optical Devices,” Biomacromolecules, vol. 9, 1214-1220 (7 pages) (Nov. 4, 2008).
Meitl et al., “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature, vol. 5, 33-38 (6 pages) (Jan. 2006).
Omenetto et al., “A New Route for Silk,” Nature Photonics, vol. 2, 641-643 (3 pages) (Nov. 2008).
Omenetto et al., “New Opportunities for an Ancient Material,” Science, vol. 329, 528-531 (5 pages) (Jul. 30, 2010).
Tsukada et al., “Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions,” Journal of Polymer Science, vol. 32, 961-968 (8 pages) (1994).
Wang et al., “Controlled Release From Multilayer Silk Biomaterial Coatings to Modulate Vascular Cell Responses” Biomaterials, 29, 894-903 (10 pages) (Nov. 28, 2008).
Supplementary European Search Report for EP 12 793 583.1, Aug. 6, 2015, 2 pages.
European Search Report for EP 12 793 583.1, Aug. 6, 2015, 5 pages.
Related Publications (1)
Number Date Country
20130099358 A1 Apr 2013 US
Provisional Applications (1)
Number Date Country
61490826 May 2011 US