IMPROVED CMOS DEVICES WITH STRESSED CHANNEL REGIONS, AND METHODS FOR FABRICATING THE SAME

Information

  • Patent Application
  • 20080001182
  • Publication Number
    20080001182
  • Date Filed
    June 29, 2006
    18 years ago
  • Date Published
    January 03, 2008
    17 years ago
Abstract
The present invention relates to improved complementary metal-oxide-semiconductor (CMOS) devices with stressed channel regions. Specifically, each improved CMOS device comprises an field effect transistor (FET) having a channel region located in a semiconductor device structure, which has a top surface oriented along one of a first set of equivalent crystal planes and one or more additional surfaces oriented along a second, different set of equivalent crystal planes. Such additional surfaces can be readily formed by crystallographic etching. Further, one or more stressor layers with intrinsic compressive or tensile stress are located over the additional surfaces of the semiconductor device structure and are arranged and constructed to apply tensile or compressive stress to the channel region of the FET. Such stressor layers can be formed by pseudomorphic growth of a semiconductor material having a lattice constant different from the semiconductor device structure.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a silicon crystal unit cell with certain crystal orientations specifically indicated by arrowheads.



FIG. 2 shows certain specific crystal planes in silicon crystal unit cells.



FIG. 3 illustrates crystal lattices of Si:C, Si, and SiGe and pseudomorphic growth of a second material layer having a smaller lattice constant (lattice 1) over a first material layer that has a larger lattice constant (lattice 2).



FIG. 4 is a simulated stress contour map that illustrates stress profiles around two SiGe structures embedded in a silicon substrate.



FIG. 5 is a cross-sectional view of an exemplary FET device with a channel region located in a trapezoidal semiconductor device structure with acute angles formed between a top surface and sidewall surfaces of the trapezoidal semiconductor device structure, according to one embodiment of the present invention.



FIGS. 6-9 illustrate exemplary processing steps that can be used for fabricating the FET device of FIG. 5, according to one embodiment of the present invention.



FIGS. 10-12 illustrates exemplary processing steps that can be used for fabricating an exemplary FET device with a channel region located in a double trapezoid semiconductor device structure with acute angles formed between a top surface and sidewall surfaces of the double trapezoid semiconductor device structure, according to one embodiment of the present invention.



FIG. 13 is a cross-sectional view of an exemplary FET device with a channel region located in a trapezoidal semiconductor device structure with obtuse angles formed between a top surface and sidewall surfaces of the trapezoidal semiconductor device structure, according to one embodiment of the present invention.



FIGS. 14-16 illustrate exemplary processing steps that can be used for fabricating the FET device of FIG. 5, according to one embodiment of the present invention.



FIGS. 17-19 illustrate exemplary processing steps that can be used for forming an exemplary FET device with a channel region located in a trapezoidal semiconductor device structure, which is similar to that shown by FIG. 13 but has significant undercut beneath the FET gate stack, according to one embodiment of the present invention.



FIGS. 20-23 illustrate exemplary processing steps for forming an FET device with a channel region located in an hourglass-shaped semiconductor device structure with acute angles formed between a top surface and sidewall surfaces of the hourglass-shaped semiconductor device structure, according to one embodiment of the present invention.



FIGS. 24-26 illustrate exemplary processing steps for forming an FET device with a channel region located in a semiconductor device structure that contains a floating semiconductor body with acute angles formed between a top surface and sidewall surfaces of the floating semiconductor body, according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION, AND PREFERRED EMBODIMENTS THEREOF

In the following description, numerous specific details are set forth, such as particular structures, components, materials, dimensions, processing steps and techniques, in order to provide a thorough understanding of the present invention. However, it will be appreciated by one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known structures or processing steps have not been described in detail in order to avoid obscuring the invention.


It will be understood that when an element as a layer, region or substrate is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “beneath” or “under” another element, it can be directly beneath or under the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly beneath” or “directly under” another element, there are no intervening elements present.


The term “equivalent crystal planes” as used in the present invention refers to a family of equivalent crystal planes or facets as defined by the Miller Indexes, as described hereinabove.


The term “Si:C” or “carbon-doped silicon” as used herein refers to a single crystal silicon having substitutional carbon atoms located therein. The substitutional carbon atoms and the silicon atoms form a silicon-carbon alloy, which is still a semiconductor material. The Si:C or carbon-doped silicon as used in the present invention is therefore distinguished from silicon carbide, which is a dielectric material that contains a carbon-silicon compound.


The present invention provides various configurations of semiconductor device structures with stressor layers that can be readily formed by crystallographic etching and pseudomorphic growth of semiconductor materials. Specifically, the semiconductor device structures and the stressor layers of the present invention can be arranged and constructed in various different manners to provide different strain conditions in the channel regions of FET devices for achieving optimal device performance.


The inventors of the present invention have discovered that a specific stress-inducing structure embedded in a semiconductor substrate can induce different types of stresses, depending on the locations of the stress measurement point in relation to the stress-inducing structure.


For example, FIG. 4 shows the stress profile near two compressively stressed SiGe layers that are embedded in a silicon substrate. Two white dotted lines are drawn at the respective ends of the SiGe layers along directions that are perpendicular to the linear portions of such SiGe layers. Each compressively stressed SiGe layer induces tensile stress in the region located at the side of the white dotted line that is immediately adjacent to the linear portion of the SiGe layer, but it induces compressive stress in the region located at the other side of the white dotted line away from the linear portion of the SiGe layer, as shown in FIG. 4.


It can therefore be inferred that if a channel layer is formed in the silicon substrate of FIG. 4 within the region located at the side of the white dotted line that is immediately adjacent to the linear portion of the SiGe layer, such a channel layer will contain tensile stress and is therefore suitable for forming an n-channeled FET due to enhanced electron mobility. However, if the channel layer is formed in the silicon substrate of FIG. 4 within the region located at the other side of the white dotted line away from the linear portion of the SiGe layer, such a channel layer will contain compressive stress and is suitable for forming a p-channeled FET instead, due to enhanced hole mobility.


Although FIG. 4 only shows the stress profile of compressively stressed SiGe layers that are embedded in a silicon substrate, a similar stress profile has been observed for tensilely stressed Si:C layers that are embedded in a silicon substrate, except that the types of stresses generated by the embedded Si:C layers are exactly opposite to those shown in FIG. 4. Specifically, the tensilely stressed Si:C layers will induce compressive stress in the regions located at the sides of the white dotted lines that are immediately adjacent to the linear portions of the Si:C layers, but they will induce tensile stress in the regions located at the other sides of the white dotted lines away from the linear portions of the Si:C layers.


In summary, embedded stressor layers containing a specific type of intrinsic stress (i.e., either compressive stress or tensile stress) can be used to create different types of stresses in different regions of the semiconductor substrate, depending on the spatial relations of such regions with respect to the embedded stressor layers. Therefore, by changing the relative positions of FET channel regions with respect to the stressor layers, the same type of stressor layers can be used to create different types of stresses in the FET channels. Correspondingly, the device performance of both n-FETs and p-FETs can be enhanced using the same type of stressor layers, with few or no additional processing steps.



FIG. 5 shows a cross-sectional view of an exemplary FET device with a channel region located in a trapezoidal semiconductor device structure 14. The trapezoidal semiconductor device structure 14 is located above a substrate structure that comprises an insulator layer 12 and a base semiconductor substrate 10 and underneath a gate stack that comprises a gate dielectric layer 22, a gate conductor 24, a dielectric cap layer 26, and optional spacers 27 and 28. The trapezoidal semiconductor device structure 14 has an upper surface 14A that is in direct contact with the gate dielectric layer 22 and two slanted sidewall surfaces 14B. Acute angles are formed between the upper surface 14A and the sidewall surfaces 14B of the trapezoidal semiconductor device structure 14. The FET channel (not shown) is defined by the gate stack and is therefore located in a portion of the trapezoidal semiconductor device structure 14 underneath the gate dielectric layer 22.


Two stressor layers 30, which contain intrinsic stresses of either compressive or tensile type, are formed over the slanted sidewall surfaces 14B of the trapezoidal semiconductor device structure 14, as shown in FIG. 5. Two dotted lines can be drawn at the respective ends of the stressor layers 30 along directions that are perpendicular to the linear portions of such stressor layers 30. As explained hereinabove, the stressor layers 30, which contain a specific type of intrinsic stress (either compressive or tensile) will create an opposite type of stress in regions of the trapezoidal semiconductor device structure 14 that are located at the sides of the dotted lines immediately adjacent to the linear portions of the stressor layers 30, and they will create the same type of stress in regions of the trapezoidal semiconductor device structure 14 that are located at the other sides of the dotted lines away from the linear portions of the stressor layers 30. Since most of the trapezoidal semiconductor device structure 14, including the portion directly underneath the gate dielectric layer 22, is located at the sides of the dotted lines immediately adjacent to the linear portions of the stressor layers 30, opposite type of stress will be created by the stressor layers 30 in most of the trapezoidal semiconductor device structure 14, including the portion directly underneath the gate dielectric layer 22.


Correspondingly, the FET channel (not shown), which is located in the portion of the trapezoidal semiconductor structure 14 directly underneath the gate dielectric layer 22, will have an opposite type of stress in comparison with the intrinsic stress contained by the stressor layers 30. For example, when the stressor layers 30 contain intrinsic compressive stress, the FET channel (not shown) will have tensile stress and is thus suitable for forming an n-channel in an n-FET due to enhanced electron mobility. Alternatively, when the stressor layers 30 contain intrinsic tensile stress, the FET channel (not shown) will have compressive stress created therein and is then suitable for forming a p-channel in a p-FET due to enhanced hole mobility.



FIGS. 6-9 illustrate exemplary processing steps that can be used for fabricating the FET device of FIG. 5, according to one embodiment of the present invention.


First, a patterned gate stack, which comprises a gate dielectric layer 22, a gate conductor layer 24, a dielectric cap layer 26, and optional spacers 27 and 28, is formed over a substrate structure 5, which preferably has a semiconductor-on-insulator (SOI) configuration and comprises a base semiconductor substrate 10, an insulator layer 12, and a semiconductor device layer 13, as shown in FIG. 6.


The base semiconductor substrate 10 may comprise any suitable semiconductor material, which includes, but is not limited to: Si, SiC, SiGe, SiGeC, Ge alloys, GaAs, InAs, InP, as well as other III-V or II-VI compound semiconductors, either in their single crystalline or polycrystalline form. The base semiconductor substrate 10 may also comprise an organic semiconductor or a layered semiconductor such as Si/SiGe, a silicon-on-insulator (SOI) or a SiGe-on-insulator (SGOI). Preferably, the base semiconductor substrate 10 is composed of a Si-containing semiconductor material, i.e., a semiconductor material that includes silicon. More preferably, the base semiconductor substrate 10 consists essentially of bulk single crystal silicon. Alternatively, the base semiconductor substrate 10 may comprise one or more buried insulator layers (not shown) therein. The base semiconductor substrate layer 10 may be doped, undoped or contain both doped and undoped regions (not shown) therein.


The insulator layer 12 may comprise any suitable insulator material(s), and it typically comprises an oxide, a nitride, or an oxynitride in either a crystalline phase or a non-crystalline phase. The physical thickness of the insulator layer 12 typically ranges from about 10 nm to about 400 nm, and more typically from about 20 nm to about 200 nm.


The semiconductor device layer 13 may comprise any single crystal semiconductor material, which includes, but is not limited to: Si, SiC, SiGe, SiGeC, Ge alloys, GaAs, InAs, InP, as well as other III-V or II-VI compound semiconductors. Preferably, the semiconductor device layer 13 is composed of a Si-containing semiconductor material, i.e., a semiconductor material that includes silicon. More preferably, the semiconductor device layer 13 consists essentially of single crystal silicon and has an upper surface 13A that is oriented along one of a first set of equivalent crystal planes of silicon. In one specific embodiment of the present invention, the upper surface 13A of the semiconductor device layer 13 is oriented along one of the {100} planes of silicon, so that the semiconductor device layer 13 can be used for forming a channel region for an n-FET device. In an alternative embodiment of the present invention, the upper surface 13A of the semiconductor device layer 13 is oriented along one of the {110} planes of silicon, so that the semiconductor device layer 13 can be used for forming a channel region for a p-FET device. Note that the semiconductor device layer 13 and the base semiconductor substrate layer 10 may be formed of the same semiconductor material or different types of semiconductor materials.


The SOI substrate structure 5 as shown in FIG. 6 can be formed in situ by depositing the insulator layer 12 over the base semiconductor substrate layer 10 via chemical vapor deposition, thermal oxidation or a combination thereof, followed by deposition of the semiconductor device layer 13. Alternatively, the SOI substrate structure 5 of FIG. 6 can be formed in situ by a silicon implanted oxide (SIMOX) process, during which oxygen ions are implanted into a bulk semiconductor substrate at a predetermined depth, followed by high temperature anneal to effectuate reaction between the semiconductor material and the implanted oxygen ions, thereby forming an oxide layer in the semiconductor substrate at the predetermined depth. Further, the SOI substrate structure 5 of FIG. 6 may be fabricated from pre-formed insulator and semiconductor layers by wafer-bonding or layer transfer techniques.


The gate dielectric layer 22 of the present invention may be comprised of any suitable dielectric material, including, but not limited to: oxides, nitrides, oxynitrides and/or silicates (including metal silicates and nitrided metal silicates). In one embodiment, it is preferred that the gate dielectric layer 22 is comprised of an oxide such as, for example, SiO2, HfO2, ZrO2, Al2O3, TiO2, La2O3, SrTiO3, LaAlO3, and mixtures thereof. The physical thickness of the gate dielectric layer 22 may vary widely, depending on the specific deposition technique employed. Typically, the gate dielectric layer 24 has a thickness from about 0.5 to about 10 nm, with a thickness from about 1 to about 5 nm being more typical. The gate dielectric layer 22 can be formed by a thermal growing process such as, for example, oxidation, nitridation or oxynitridation. Alternatively, the gate dielectric layer 22 can be formed by a deposition process such as, for example, chemical vapor deposition (CVD), plasma-assisted CVD, atomic layer deposition (ALD), evaporation, reactive sputtering, chemical solution deposition and other like deposition processes. The gate dielectric layer 22 may also be formed utilizing any combination of the above processes.


The gate conductor 24 and the optional dielectric cap layer 26 are formed over the gate dielectric layer 22, by first depositing a blanket gate conductor layer (not shown) and a blanket dielectric capping layer (not shown) over the gate dielectric layer 22, followed by patterning the blanket gate conductor layer (not shown) and the dielectric capping layer (not shown) into the gate conductor 24 and the optional dielectric cap layer 26 using conventional lithography and etching. The lithography step, preferably inverse gate level (PC) lithography, includes applying a photoresist (not shown) to the upper surface of the blanket dielectric capping layer (not shown), exposing the photoresist (not shown) to a desired pattern of radiation and developing the exposed photoresist (not shown) utilizing a conventional resist developer. The pattern in the photoresist (not shown) is then transferred to the underneath dielectric capping layer (not shown), the blanket gate conductor layer (not shown), and the blanket gate dielectric layer (not shown) utilizing one or more dry etching steps. Suitable dry etching processes that can be used in the present invention include, but are not limited to: reactive ion etching (RIE), ion beam etching, plasma etching or laser ablation. Preferably, but not necessarily, the gate conductor layer 24 comprises polycrystalline silicon (poly-Si), and the dielectric capping layer 26 comprises silicon nitride. The etching step preferably is carried out by RIE techniques. The patterned photoresist (not shown) is then removed by resist stripping after etching has been completed.


Although FIG. 6 shows formation of the gate stack before subsequent processing steps, such as etching, stressor deposition, and dopant implantation, it is also understood that a dummy gate (not shown) can be first formed in place of the gate stack as shown hereinabove in FIG. 6, and such a dummy gate (not shown) can then be replaced by a functional gate stack during a replacement gate process after the subsequent processing steps have been completed.


Next, an anisotropic etching step is carried out using the gate stack as a mask to pattern the semiconductor device layer 13, as shown in FIG. 7. The patterned semiconductor device layer 13 contains exposed sidewalls 13B that are aligned with the gate stack, and such exposed sidewalls 13B are oriented along the same set of equivalent crystal planes as the upper surface 13A of the semiconductor device layer 13. Any suitable etching chemistry that selectively etches silicon over silicon oxide and silicon nitride in an anisotropic manner can be used for patterning the semiconductor layer 13.


Preferably, but not necessarily, the anisotropic etching of the semiconductor device layer 13 is carried out by using one or more dry-etching processes, such as reactive ion etching (RIE), sputter etching, vapor phase etching, ion beam etching, plasma etching, and laser ablation. The dry-etching processes are directional (i.e., anisotropic), but they are mostly non-selective to different crystal planes or orientations, i.e., they etch the semiconductor material in approximately equal rates along all directions. In a particularly preferred embodiment of the present invention, the semiconductor device layer 13 is patterned using a reactive ion etching (RIE) process.


A lateral etching step is subsequently carried out to selectively removing a potion of the insulator layer 12 from underneath the patterned semiconductor layer 13, thereby forming undercut regions 2 and exposing portions of a lower surface 13C of the patterned semiconductor device layer 13, as shown in FIG. 8. The lateral etching step can be carried out using any suitable etching chemistry that selectively etches the insulator material contained by layer 12 over the semiconductor material contained by the semiconductor device layer 13.


After formation of the undercut regions 2 and exposure of the lower surface 13C of the patterned semiconductor device layer 13, a crystallographic etching step is carried out to etch the exposed sidewall surfaces 13B and the exposed portions of the lower surface 13C of the patterned semiconductor device layer 13.


Crystallographic etching of the semiconductor device layer 13 is preferably carried out by one or more wet-etching processes, which employ etching solutions such as hydroxide-based etching solutions, ethylene diamine pyrocatechol (EDP)-based etching solutions, etc., to etch the semiconductor device layer 13 at significantly different rates along different crystal planes or orientations. Therefore, the crystallographic etching is an isotropic process, but the etching pattern formed by the crystallographic etching process proceeds along the fast-etched crystal planes and is eventually terminated by the slowly etched crystal planes.


For example, an etching solution that comprises approximately 23.4% KOH, 13.3% isopropyl alcohol (IPA), and 63.3% water, when heated to about 80° C., etches the single crystal silicon at an etching rate of about 1.0 μm/minute along the {100} planes, but at an etching rate of about 0.06 μm/minute along the {110} planes. In other words, this etching solution etches the {100} planes about 17 times faster than the {110} planes. Therefore, such an etching solution can be used to etch a silicon substrate to form a recess that is terminated at the {110} planes.


In contrast, an etching solution that comprises approximately 44% KOH and 56% water, when heated to about 120° C., etches the single crystal silicon at an etching rate of about 11.7 μm/minute along the {110} planes, about 5.8 μm/minute along the {100} planes, and about 0.02 μm/minute along the {111} planes. In other words, this etching solution etches the {110} and {100} planes significantly faster than the {111} planes (more than 550 and 250 times faster, respectively). Therefore, such an etching solution can be used to etch a silicon substrate to form a recess that is terminated at the {111} planes.


In the present invention, the crystallographic etching step is carried out using an etching chemistry that etches the crystal planes of the exposed lower surface 13C and the sidewall surfaces 13B of the semiconductor device layer 13 at an etching rate faster than other crystal planes, so that the crystallographic etching terminates along a set of crystal planes that is different from the lower surface 13C and the sidewall surfaces 13B. As specifically illustrated by FIG. 9, the semiconductor device layer 13 is crystallographically etched to form a trapezoidal semiconductor device structure 14 with an upper surface 14A oriented along a first set of crystal planes and sidewall surfaces 14B oriented along a second, different set of crystal planes. The second, different set of crystal planes are slanted away from the first set of crystal planes, and acute angles are formed between the upper surface 14A and the sidewall surfaces 14B of the trapezoidal semiconductor device structure 14.


Note that although dry-etching is typically used for anisotropic etching, certain dry-etching techniques, such as RIE, can also be used for the crystallographic etching. In RIE, the substrate is placed inside a reactor in which several gases are introduced. A plasma is introduced in the gas mixture using an radio-frequency (RF) power source, breaking the gas molecules into ions. The ions are accelerated towards, and react at, the surface of the material being etched, forming another gaseous material. This is known as the chemical part of reactive ion etching, which is isotropic. The RIE also has a physical aspect: if the ions have high enough energy, the ions can knock atoms out of the material to be etched without a chemical reaction. The physical etching aspect of RIE is high anisotropic. Therefore, RIE is a complex process that involves both chemical and physical etching. By carefully adjusting the balance between the chemicals aspect and the physical aspect of RIE, this process can be used to achieve either anisotropic or crystallographic etching results. Similarly, although wet-etching is typically used for the crystallographic etching, certain wet-etching chemistries can also be used to achieve anisotropic etching results.


Therefore, the present invention is not limited to the use of dry-etching for the anisotropic etching process and the use of wet-etching for the crystallographic etching process, but encompasses all suitable etching processes and techniques that can be used to achieved the desired anisotropic and crystallographic results as described hereinabove.


After formation of the trapezoidal semiconductor device structure 14, an epitaxial growth step can be carried out to pseudomorphically grow the stressor structures 30 along the slanted sidewalls 14B of the trapezoidal semiconductor device structure 14 so as to form the FET device structure in FIG. 5.


The stressor structures 30 may comprise any semiconductor material having a lattice constant different from that of the trapezoidal semiconductor device structure 14, so that lattice mismatch between the stressor structures 30 and the semiconductor device structure 14 can generate tensile or compressive stress in the stressor structures 30 as well as in the semiconductor device structure 14, as described hereinabove. For example, when the stressor structures 30 contain SiGe, compressive stress will be created in the stressor structures 30, while tensile stress will be created in the FET channel (not shown) located in the trapezoidal semiconductor device structure 14. In this manner, the trapezoidal semiconductor device structure 14 is suitable for forming an n-channel in an n-FET. Alternatively, when the stressor structures 30 contain Si:C, tensile stress will be created in the stressor structures 30, while compressive stress will be created in the FET channel (not shown) located in the trapezoidal semiconductor device structure 14. In this manner, the trapezoidal semiconductor device structure 14 is suitable for forming an p-channel in a p-FET.


Additional CMOS processing steps, such as source/drain extension implantation, source/drain implantation, salicidation, etc., can be further carried out to form a complete FET (either n-channel or p-channel) device structure, which contain a channel region with the desired stress (either tensile or compressive).



FIGS. 10-12 illustrates exemplary processing steps that can be used for fabricating an exemplary FET device with a channel region located in a double trapezoid semiconductor device structure with acute angles formed between a top surface and sidewall surfaces of the double trapezoid semiconductor device structure, according to one embodiment of the present invention.


Specifically, after the anisotropic patterning of the semiconductor device layer 13, a lateral etching step is carried out to form relatively small undercut regions 2 (in comparison with those shown in FIG. 8), so that the subsequent crystallographic etching of the semiconductor device layer 13 forms a double trapezoid semiconductor device structure 14 with an upper surface 14A and sidewall surfaces 14B, as shown in FIGS. 10-11. Upper portions of the sidewall surfaces 14B still form acute angles with the upper surface 14A of the double trapezoid semiconductor device structure 14, as shown in FIG. 11, although lower portions of the sidewall surfaces 14B now flare out to form a base for the double trapezoid semiconductor device structure 14. An epitaxial growth step can then be carried out to pseudomorphically grow stressor structures 30 along both the upper and lower portions of the sidewalls 14B of the double trapezoidal semiconductor device structure 14, as shown in FIG. 12.



FIG. 13 is a cross-sectional view of an exemplary FET device with a channel region located in a trapezoidal semiconductor device structure 15, according to one embodiment of the present invention. The trapezoidal semiconductor device structure 15 of FIG. 13 is similar to the trapezoidal semiconductor device structure 14 of FIG. 5, except that obtuse (instead of acute) angles are formed between a top surface 15A and sidewall surfaces 15B of the trapezoidal semiconductor device structure 15.


The stressor layers 30 are formed over the slanted sidewall surfaces 14B of the trapezoidal semiconductor device structure 15, as shown in FIG. 13. Two dotted lines can be drawn at the respective ends of the stressor layers 30 along directions that are perpendicular to the linear portions of such stressor layers 30. As explained hereinabove, the stressor layers 30, which contain a specific type of intrinsic stress (either compressive or tensile) will create an opposite type of stress in regions of the trapezoidal semiconductor device structure 15 that are located at the sides of the dotted lines immediately adjacent to the linear portions of the stressor layers 30, and they will create the same type of stress in regions of the trapezoidal semiconductor device structure 15 that are located at the other sides of the dotted lines away from the linear portions of the stressor layers 30. Since most of the trapezoidal semiconductor device structure 15, including the portion directly underneath the gate dielectric layer 22, is located at the sides of the dotted lines away from the linear portions of the stressor layers 30, same type of stress will be created by the stressor layers 30 in most of the trapezoidal semiconductor device structure 15, including the portion directly underneath the gate dielectric layer 22.


Correspondingly, the FET channel (not shown), which is located in the portion of the trapezoidal semiconductor structure 15 directly underneath the gate dielectric layer 22, will have the same type of stress as that contained by the stressor layers 30. For example, when the stressor layers 30 contain intrinsic compressive stress, the FET channel (not shown) will have compressive stress and is thus suitable for forming a p-channel in a p-FET due to enhanced hole mobility. Alternatively, when the stressor layers 30 contain intrinsic tensile stress, the FET channel (not shown) will have tensile stress created therein and is then suitable for forming an n-channel in an n-FET due to enhanced electron mobility.


The trapezoidal semiconductor device structure 15 of FIG. 13 can be readily formed by exemplary processing steps of FIGS. 14-16, according to one embodiment of the present invention.


First, a patterned gate stack, which comprises a gate dielectric layer 22, a gate conductor layer 24, a dielectric cap layer 26, and optional spacers 27 and 28, is formed over a substrate structure 5, which preferably has a semiconductor-on-insulator (SOI) configuration and comprises a base semiconductor substrate 10, an insulator layer 12, and a semiconductor device layer 13, as shown in FIG. 14. Next, an anisotropic etching step is carried out to pattern the semiconductor device layer 13, while a portion of the upper surface 13A and the sidewall surfaces 13B of the device layer 13 are exposed, as shown in FIG. 15. Subsequent crystallographic etching of such a patterned semiconductor device layer 13 thus forms the trapezoidal semiconductor device structure 15 with obtuse angles formed between the upper surface 15A and the sidewall surfaces 15B, as shown in FIG. 16. Pseudomorphic growth of stressor structures 30 over the sidewall surfaces 15B of the trapezoidal semiconductor device structure 15 will form the FET device as shown in FIG. 13.



FIGS. 17-19 illustrate exemplary processing steps that can be used for forming another exemplary FET device with a channel region located in a trapezoidal semiconductor device structure, which is similar to that shown by FIG. 13 but has significant undercut beneath the FET gate stack, according to one embodiment of the present invention. Specifically, the semiconductor device layer 13 is patterned by an anisotropic etching step, while a relatively smaller portion (in comparison with that shown in FIG. 15) of the upper surface 13A of the layer 13 is exposed, as shown in FIG. 17. Subsequent crystallographic etching of such a patterned semiconductor device layer 13 thus forms a trapezoidal semiconductor device structure 15 that undercuts the gate stack, as shown in FIG. 18. Pseudomorphic growth of stressor structures 30 over the sidewall surfaces 15B of the trapezoidal semiconductor device structure 15 of FIG. 18 will form the FET device as shown in FIG. 19.



FIGS. 20-23 illustrate exemplary processing steps for forming an FET device with a channel region located in an hourglass-shaped semiconductor device structure, according to one embodiment of the present invention. Specifically, a patterned gate stack, which comprises a gate dielectric layer 22, a gate conductor layer 24, a dielectric cap layer 26, and optional spacers 27 and 28, is first formed over a bulk semiconductor substrate structure 13 that has an upper surface 13A, as shown in FIG. 20. An anisotropic etching step is then carried out to form trenches 11 with exposed trench sidewalls 13B in the bulk semiconductor substrate structure 13, as shown in FIG. 21. Subsequent crystallographic etching of the bulk semiconductor substrate structure 13 along the trenches 11 thus forms a hourglass-shaped semiconductor device structure 16 with an upper surface 16A and sidewall surfaces 16B, while acute angles are formed between the top surface 16A and upper portions of the sidewall surfaces 16B, as shown in FIG. 22. Pseudomorphic growth of stressor structures 30 over the sidewall surfaces 16B of the hourglass-shaped semiconductor device structure 16 of FIG. 12 will form the FET device as shown in FIG. 23.



FIGS. 24-26 illustrate exemplary processing steps for forming an FET device with a channel region located in a semiconductor device structure that contains a floating semiconductor body, according to one embodiment of the present invention.


Specifically, a patterned gate stack, which comprises a gate dielectric layer 22, a gate conductor layer 24, a dielectric cap layer 26, and optional spacers 27 and 28, is formed over a substrate structure 5, which preferably has a semiconductor-on-insulator (SOI) configuration and comprises a base semiconductor substrate 10, an insulator layer 12, and a semiconductor device layer 13. The semiconductor device layer 13 has an upper surface 13A, and an anisotropic etching step is carried out to form trenches 11 with exposed trench sidewalls 13B in the bulk semiconductor substrate structure 13, as shown in FIG. 24A. FIG. 24B shows a top view of the structure shown by FIG. 24A. Specifically, the patterned gate stack extends beyond the active region defined by the semiconductor device layer 13 to the adjacent isolation regions 9.


The adjacent isolation regions 9 provide the necessary structural support for the gate stack, so that the semiconductor device layer 13 can be crystallographically etched to form a semiconductor device structure 17 that comprises a floating upper portion directly underneath the gate stack and a lower portion that is located over the insulator layer 12 but is disconnected from the floating upper portion, as shown in FIG. 25A. The floating upper portion of the semiconductor device structure 17 has an upper surface 17A and sidewall surfaces 17B, while acute angles are formed between the upper surface 17A and the sidewall surfaces 17B. FIG. 25B shows a top view of the structure of FIG. 24A. The floating upper portion of the semiconductor device structure 17 is visible through the gate stack in FIG. 25B. Pseudomorphic growth of stressor structures 30 over the sidewall surfaces 17B of the semiconductor device structure 17 of FIG. 25A will form the FET device as shown in FIG. 26.


Note that while FIGS. 5-26 illustratively demonstrate exemplary CMOS device structures and processing steps according to specific embodiments of the present invention, it is clear that a person ordinarily skilled in the art can readily modify such device structures and processing steps for adaptation to specific application requirements, consistent with the above descriptions. For example, while the semiconductor substrates shown in FIGS. 5-26 illustrate semiconductor substrates with upper surfaces oriented along the {110} or {100} crystal planes of single crystal silicon, other suitable crystal planes, such as the {111}, {211}, {311}, {511}, and {711} planes of single crystal silicon, can also be used in the semiconductor substrates of the present invention. Moreover, other single crystal semiconductor substrate materials with non-cubic unit cells, such as single crystal gallium nitride having hexagonal unit cells, can also be used for fabricating the CMOS devices of the present invention. A person ordinarily skilled in the art can readily modify the device structures and processing steps illustrated in FIGS. 5-26 for adaptation to other substrate structures, crystal orientations, or semiconductor materials, consistent with the spirit and principles of the present invention.


While the invention has been described herein with reference to specific embodiments, features and aspects, it will be recognized that the invention is not thus limited, but rather extends in utility to other modifications, variations, applications, and embodiments, and accordingly all such other modifications, variations, applications, and embodiments are to be regarded as being within the spirit and scope of the invention.

Claims
  • 1. A semiconductor device comprising a field effect transistor (FET) having a channel region located in a semiconductor device structure, said semiconductor device structure having a top surface that is oriented along one of a first set of equivalent crystal planes and one or more additional surfaces that are oriented along a second, different set of equivalent crystal planes, wherein one or more stressor layers are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply stress to the channel region of the FET.
  • 2. The semiconductor device of claim 1, wherein the one or more stressor layers have a different lattice constant from the semiconductor device structure, so that either compressive or tensile stress is created in the stressor layers due to lattice mismatch between the stressor layers and the semiconductor device structure.
  • 3. The semiconductor device of claim 2, wherein the one or more stressor layers have a lattice constant larger than that of the semiconductor device structure, so that compressive stress is created in the stressor layers.
  • 4. The semiconductor device of claim 3, wherein the one or more additional surfaces form acute angles with the top surface of the semiconductor device structure, and said one or more stressor layers apply tensile stress to the channel region of the FET.
  • 5. The semiconductor device of claim 3, wherein the one or more additional surfaces form obtuse angles with the top surface of the semiconductor device structure, and said one or more stressor layers apply compressive stress to the channel region of the FET.
  • 6. The semiconductor device of claim 2, wherein the one or more stressor layers have a lattice constant smaller than that of the semiconductor device structure, so that tensile stress is created in the stressor layers.
  • 7. The semiconductor device of claim 6, wherein the one or more additional surfaces form acute angles with the top surface of the semiconductor device structure, and said one or more stressor layer apply compressive stress to the channel region of the FET.
  • 8. The semiconductor device of claim 6, wherein the one or more additional surfaces form obtuse angles with the top surface of the semiconductor device structure, and said one or more stressor layer apply tensile stress to the channel region of the FET.
  • 9. The semiconductor device of claim 1, wherein the semiconductor device structure comprises single crystal silicon, and the first and second sets of equivalent crystal planes are selected from the group consisting of the {100}, {110}, and {111} planes of silicon.
  • 10. The semiconductor device of claim 1, wherein the semiconductor device structure is located over a substrate that comprises at least one insulator layer with a base semiconductor substrate layer thereunder, forming a semiconductor-on-insulator (SOI) structure.
  • 11. The semiconductor device of claim 1, wherein the semiconductor device structure is located in a bulk semiconductor substrate structure.
  • 12. A semiconductor device comprising an n-channel field effect transistor (n-FET) having an n-doped channel region located in a semiconductor device structure, said semiconductor device structure having a top surface that is oriented along one of a first set of equivalent crystal planes and one or more additional surfaces that are oriented along a second, different set of equivalent crystal planes, wherein one or more stressor layers are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply tensile stress to the n-doped channel region of the FET.
  • 13. The semiconductor device of claim 12, wherein the one or more stressor layers have a different lattice constant from the semiconductor device structure, so that either compressive or tensile stress is created in the stressor layers due to lattice mismatch between the stressor layers and the semiconductor device structure.
  • 14. The semiconductor device of claim 12, wherein the one or more stressor layers have a lattice constant larger than that of the semiconductor device structure, so that compressive stress is created in the stressor layers.
  • 15. The semiconductor device of claim 14, wherein the one or more additional surfaces form acute angles with the top surface of the semiconductor device structure, and said one or more stressor layers with intrinsic compressive stress are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply tensile stress to the n-doped channel region of the n-FET.
  • 16. The semiconductor device of claim 12, wherein the one or more stressor layers have a lattice constant smaller than that of the semiconductor device structure, so that tensile stress is created in the stressor layers.
  • 17. The semiconductor device of claim 16, wherein the one or more additional surfaces form obtuse angles with the top surface of the semiconductor device structure, and said one or more stressor layer with intrinsic tensile stress are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply tensile stress to the n-doped channel region of the n-FET.
  • 18. The semiconductor device of claim 12, wherein the semiconductor device structure comprises single crystal silicon, and the first and second sets of equivalent crystal planes are selected from the group consisting of the {100}, {110}, and {111} planes of silicon.
  • 19. A semiconductor device comprising a p-channel field effect transistor (p-FET) having a p-doped channel region located in a semiconductor device structure, said semiconductor device structure having a top surface that is oriented along one of a first set of equivalent crystal planes and one or more additional surfaces that are oriented along a second, different set of equivalent crystal planes, wherein one or more stressor layers are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply compressive stress to the p-doped channel region of the p-FET.
  • 20. The semiconductor device of claim 19, wherein the one or more stressor layers have a different lattice constant from the semiconductor device structure, so that either compressive or tensile stress is created in the stressor layers due to lattice mismatch between the stressor layers and the semiconductor device structure.
  • 21. The semiconductor device of claim 19, wherein the one or more stressor layers have a lattice constant larger than that of the semiconductor device structure, so that compressive stress is created in the stressor layers.
  • 22. The semiconductor device of claim 21, wherein the one or more additional surfaces form obtuse angles with the top surface of the semiconductor device structure, and said one or more stressor layers with intrinsic compressive stress are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply compressive stress to the p-doped channel region of the p-FET.
  • 23. The semiconductor device of claim 19, wherein the one or more stressor layers have a lattice constant smaller than that of the semiconductor device structure, so that tensile stress is created in the stressor layers.
  • 24. The semiconductor device of claim 23, wherein the one or more additional surfaces form acute angles with the top surface of the semiconductor device structure, and said one or more stressor layer with intrinsic tensile stress are located over said one or more additional surfaces of the semiconductor device structure and are arranged and constructed to apply compressive stress to the p-doped channel region of the p-FET.
  • 25. The semiconductor device of claim 19, wherein the semiconductor device structure comprises single crystal silicon, and the first and second sets of equivalent crystal planes are selected from the group consisting of the {100}, {110}, and {111} planes of silicon.
  • 26. A method for forming a semiconductor device, comprising: forming a semiconductor device structure having a top surface that is oriented along one of a first set of equivalent crystal planes and one or more additional surfaces that are oriented along a second, different set of equivalent crystal planes;forming one or more stressor layers over said one or more additional surfaces of the semiconductor device structure, wherein said one or more stressor layers are arranged and constructed to apply stress to the semiconductor device structure; andforming a field effect transistor (FET) with a channel region located in the semiconductor device structure.
  • 27. The method of claim 26, wherein the semiconductor device structure is formed by: forming a semiconductor device layer having at least a top surface oriented along one of a first set of equivalent crystallographic planes;selectively covering a portion of the semiconductor device layer;anisotropically etching an uncovered portion of the semiconductor device layer to expose at least one of a bottom surface and one or more sidewall surfaces of the semiconductor device layer, said bottom surface and said sidewall surfaces are oriented along the first set of equivalent crystallographic planes; andcrystallographically etching the at least one of the bottom surface and sidewall surfaces of the semiconductor device layer to form one or more additional surfaces that are oriented along a second, different set of equivalent crystallographic planes.
  • 28. The method of claim 27, wherein the one or more additional surfaces form acute angles with the top surface of the semiconductor device layer.
  • 29. The method of claim 27, wherein the one or more additional surfaces form obtuse angles with the top surface of the semiconductor device layer.
  • 30. The method of claim 26, wherein the one or more stressor layers are formed by epitaxially growing a semiconductor material having a lattice constant different from the semiconductor device structure.