Low temperature etchant for treatment of silicon-containing surfaces

Abstract
In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes removing contaminants and/or smoothing the surface contained on the surface by a slow etch process (e.g., about <100 Å/min). The silicon-containing surface is exposed to an etching gas that contains an etchant, a silicon source and a carrier gas. Preferably, the etchant is chlorine gas so that a relatively low temperature (e.g., <800° C.) is used during etching or smoothing processes. In another embodiment of the invention, a method for etching a silicon-containing surface during a fast etch process (e.g., about >100 Å/min) is provided which includes removing silicon-containing material to form a recess in a source/drain (S/D) area on the substrate. The silicon-containing surface is exposed to an etching gas that contains an etchant, preferably chlorine, a carrier gas and an optional silicon source.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the invention generally relate to the field of electronic manufacturing processes and devices, more particular, to methods of etching and depositing silicon-containing materials while forming electronic devices.


2. Description of the Related Art


Electronic devices such as semiconductor devices are fabricated by an assortment of steps including the deposition and removal of silicon-containing material. These deposition and removal steps as well as other process steps can cause the substrate surface containing a silicon-containing material to become rough and/or bare contaminant. Rough or contaminated substrate surfaces generally lead to poor quality interfaces which provide poor device performance and reliability.


Etching processes have been developed to combat contamination and roughness on substrate surfaces. However, these traditional etching processes have some draw backs. Usually, etchants, such as hydrogen chloride (HCl), require a high activation temperature in order to remove silicon-containing materials. Therefore, etching processes are often conducted at temperatures of 1,000° C. or higher. Such high temperatures are not desirable during a fabrication process due to thermal budget considerations, possible uncontrolled nitridation reactions to the substrate surface and loss of economically efficiencies. Chlorine (Cl2) has been used to remove silicon-containing materials during etch processes at lower temperatures than processes that utilize hydrogen chloride etchants. However, chlorine reacts very quickly with silicon-containing materials and thus the etch rate is not easily controlled. Therefore, silicon-containing materials are usually over etched by processes using chlorine gas.


Also, traditional etching processes generally are conducted in an etching chamber or a thermal processing chamber. Once the etching of the silicon-containing material is complete, the substrate is transferred into a secondary chamber to for a subsequent deposition process. Often, the substrate is exposed to the ambient environment between the etching process and the deposition process. The ambient environment may introduce the substrate surface to water and/or oxygen and form an oxide layer.


Even before the etching processor depositing process is conducted, substrates are usually exposed to a pre-treatment process that may include a wet clean process, such as a HF-last process, a plasma clean or an acid wash process. After a pre-treatment process and prior to starting an etching process, the substrate may have to reside outside the process chamber or controlled environment for a period of time called the queue time (Q-time). During the Q-time, the substrate is exposed to ambient environmental conditions that include an oxygen and water at atmospheric pressure and room temperature. The ambient exposure forms an oxide layer on the substrate surface, such as silicon oxide. Generally, longer Q-times form thicker oxide layers and therefore more extreme etching processes must be conducted at higher temperatures and pressures.


Therefore, there is a need to have an etching process for treating a silicon-containing material on a substrate surface to remove any surface contaminants contained thereon and/or to smooth the substrate surface. There is also a need to be able to treat the substrate surface in a process chamber which could subsequently be used during the next process step, such as to deposit an epitaxy layer. Furthermore, there is a need to maintain the process temperature at a low temperature, such as below 1,000° C., and preferably below 800° C., even on substrates that have endured long Q-times (e.g., about 10 hours).


SUMMARY OF THE INVENTION

In one embodiment of the invention, a method of etching a silicon-containing material on a substrate surface is provided which includes positioning a substrate containing a contaminant into a process chamber, exposing the substrate surface to an etching gas that contains chlorine gas, a silicon source and a carrier gas and removing a first layer of the substrate surface and the contaminant. In one example, the process may remove the first layer at a rate in a range from about 2 Å per minute to about 20 Å per minute. In another example, the carrier gas is nitrogen, the silicon source is silane and the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.


In another embodiment of the invention, a method of smoothing a silicon-containing material on a substrate surface is provided which includes positioning a substrate into a process chamber, wherein the substrate contains a silicon-containing material with a first surface roughness of about 1 nm RMS or greater, exposing the silicon-containing material to an etching gas that contains an etchant, a silicon source and a carrier gas and redistributing the silicon-containing material to form a second surface roughness of less than about 1 nm RMS. In one example, the carrier gas is nitrogen, the silicon source is silane and the etchant is chlorine gas.


In another embodiment of the invention, a method of etching a silicon-containing material on a substrate that contains a monocrystalline surface and at least a second material selected from a nitride surface, an oxide surface or combinations thereof is provided which includes positioning the substrate into a process chamber and exposing the substrate surface to an etching gas that contains chlorine gas and a carrier gas. The method further includes removing a first layer of the monocrystalline surface to form an exposed monocrystalline surface and depositing an epitaxy layer on the exposed monocrystalline surface in the same process chamber as used during the removing step. In one example, the etching gas also contains a silicon source.


In another embodiment of the invention, a method of forming a silicon-containing monocrystalline material on a substrate is provided which includes exposing a substrate to a HF-last wet clean process, positioning the substrate into a process chamber and exposing the substrate to an etching gas containing chlorine gas and a carrier gas. A predetermined thickness of the silicon-containing monocrystalline material is removed to form an exposed monocrystalline surface. The method further includes depositing an epitaxy layer on the exposed monocrystalline surface in the process chamber and subsequently cleaning the process chamber with the chlorine gas to remove silicon-containing contaminant adhered thereon.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a flow chart describing a process to treat silicon-containing materials in one embodiment described herein;



FIGS. 2A-2C show schematic illustrations of layers treated by processes described in FIG. 1;



FIG. 3 is a flow chart describing a process to treat silicon-containing materials in another embodiment described herein;



FIGS. 4A-4C show schematic illustrations of layers treated by processes described in FIG. 3; and



FIG. 5 is a flow chart describing a method to process a substrate and thereafter clean the process chamber by one embodiment described herein.





DETAILED DESCRIPTION

Embodiments of the invention disclose processes to etch and deposit silicon-containing materials on substrate surfaces. The etching processes include a slow etch process (e.g., <100 Å/min) that utilizes an etching gas that contains an etchant and a silicon source as well as a fast etch process (e.g., >100 Å/min).


In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes smoothing the surface and/or removing contaminants contained on the surface. According to one example, a substrate having a silicon-containing surface is placed into a process chamber and heated to a temperature in a range from about 500° C. to about 700° C. While the substrate is heated, the silicon-containing surface is exposed to an etching gas that contains an etchant, a silicon source and a carrier gas. An etchant, such as chlorine gas (Cl2) may be selected so that a relatively low temperature is used during the etching process. A silicon source is provided simultaneously with the etchant in order to counter act any over etching caused by the etchant. That is, the silicon source is used to deposit silicon on the silicon-containing layer while the etchant removes the silicon. The rates at which the etchant and the silicon source are introduced to the substrate are adjusted so that the overall reaction favors material removal and/or redistribution. Therefore, in one example, the overall reaction removes silicon-containing material while the etch rate is finely controlled to several angstroms or less per minute. During an example of a process to redistribute silicon-containing material, the surface is smoothed as material is removed from higher portions of the surface (i.e., peaks) while material is added to the lower portions of the surface (i.e., troughs). Embodiments of the invention can transform a silicon-containing surface with a surface roughness of about 6 nm root mean square (RMS) or more into a much smoother surface with a surface roughness of less than about 0.1 nm RMS.


In another embodiment of the invention, a method for etching a silicon-containing surface is provided which includes removing silicon-containing material at a fast rate in order to form a recess in a source/drain (S/D) area on the substrate. According to one example of the fast etch process, a substrate having a silicon-containing surface is placed into a process chamber and heated to a temperature in a range from about 500° C. to about 700° C. While the substrate is heated, the silicon-containing surface is exposed to an etching gas that contains an etchant and a carrier gas. The etchant, such as chlorine gas, may be selected so that a relatively low temperature is used during the etching process while maintaining a fast etch rate. A silicon source may be added to the etching gas to have more control of the removal rate.


Slow Etch (Pre-clean and Smooth)

In one embodiment, a slow etch process (e.g., <100 Å/min) is conducted to remove contaminants and/or surface irregularities, such as roughness, from a substrate surface. The substrate surface is etched to expose an underlayer free of the contaminants and/or material of the substrate surface is redistributed to minimize peaks and troughs that attribute to surface irregularities. During the slow etch process, the substrate is exposed to an etching gas containing an etchant, a silicon source and a carrier gas. The overall reaction is controlled in part by the relative flow rates of the etchant and the silicon source, the specific etchant and silicon source, and the temperature and the pressure that the process is conducted.


Prior to starting an etching process, a substrate may be exposed to a pre-treatment process to prepare the surface for the subsequent etching. A pre-treatment process may include a wet clean process, such as a HF-last process, a plasma clean, an acid wash process and combinations thereof. In one example, the substrate is treated to a HF-last wet clean process by exposing the surface to a hydrofluoric acid solution for about 2 minutes.



FIG. 1 depicts process 100 conducted to remove contaminants and/or rough areas on substrate 200, as depicted in FIG. 2. In FIG. 2A, substrate 200 contains contaminants and/or rough areas on surface 210. A pre-determined thickness 220 of the substrate 200 including surface 210 is removed during the etching process to reveal exposed surface 230. A layer 240 is optionally deposited on exposed surface 230. Usually, layer 240 is a silicon-containing material deposited by an epitaxy deposition process.


Embodiments of the processes described herein etch and deposit silicon-containing materials on various substrates surfaces and substrates. A “substrate” or “substrate surface” as used herein refers to any substrate or material surface formed on a substrate upon which film processing is performed. For example, a substrate surface on which processing may be performed include materials such as silicon, silicon-containing materials, silicon oxide, strained silicon, silicon on insulator (SOI), carbon doped silicon oxides, silicon nitride, doped silicon, silicon germanium, silicon germanium carbon, germanium, gallium arsenide, glass, sapphire, and any other materials depending on the application. A substrate surface may also include dielectric materials such as silicon dioxide, silicon nitride, silicon oxynitride and/or carbon doped silicon oxides. Substrates may have various dimensions, such as 200 mm or 300 mm diameter round wafers, as well as, rectangular or square panes. Embodiments of the processes described herein etch and deposit on many substrates and surfaces, especially, silicon and silicon-containing materials. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers silicon nitride and patterned or non-patterned wafers.


Throughout the application, the terms “silicon-containing” materials, compounds, films or layers should be construed to include a composition containing at least silicon and may contain germanium, carbon, boron, arsenic, phosphorous gallium and/or aluminum. Other elements, such as metals, halogens or hydrogen may be incorporated within a silicon-containing material, compound, film or layer, usually in part per million (ppm) concentrations. Compounds or alloys of silicon-containing materials may be represented by an abbreviation, such as Si for silicon, SiGe, for silicon germanium, SiC for silicon carbon and SiGeC for silicon germanium carbon. The abbreviations do not represent chemical equations with stoichiometrical relationships, nor represent any particular reduction/oxidation state of the silicon-containing materials. Silicon-containing materials, compounds, films or layers may include substrates or substrate surfaces.


Contaminants left on the surface 210 from a previous process may include organic residues, carbon, oxides, nitrides, halides (e.g., fluorides or chlorides) and combinations thereof. For example, surface 210 may contain a layer of silicon oxide after being exposed to the ambient air or may contain a layer of silicon fluoride after being treated with a HF-last wet clean process. Surface 210 may also contain irregularities, such as regional areas of roughness that include troughs and peaks.


During step 110, substrate 200 is positioned into a process chamber and heated to a predetermined temperature. The substrate and/or the process chamber is maintained at temperature in a range from about 400° C. to about 800° C., preferably from about 500° C. to about 700° C. The process chamber is maintained at a pressure in a range from about 0.1 Torr to about 750 Torr, preferably from about 1 Torr to about 100 Torr and more preferably from about 10 Torr to about 40 Torr.


The etching gas used during the slow etch process in step 120 contains an etchant, a silicon source and a carrier gas. Preferably, the etchant is chlorine gas (Cl2). In one example, it has been found that chlorine works exceptionally well as an etchant for silicon-containing materials at temperatures lower than processes using more common etchants. Therefore, an etching process utilizing chlorine may be conducted at a lower process temperature. The silicon source is provided simultaneously with the etchant in order to counter act any over etching of the substrate 200. The silicon source is used to deposit silicon on the silicon-containing layer while the etchant removes the silicon-containing material. The rates at which the etchant and the silicon source are introduced to the substrate are adjusted so that the overall reaction favors material removal and/or material redistribution. Therefore, the overall reaction is removing or redistributing silicon-containing material and the etch rate may be finely controlled to several angstroms per minute.


The etchant is provided into the process chamber in the etching gas at a rate in a range from about 1 standard cubic centimeters per minute (sccm) to about 100 sccm, preferably from about 5 sccm to about 50 sccm, and more preferably from about 10 sccm to about 30 sccm, for example, about 20 sccm. While chlorine is the preferred etchant, other etchants that may be used solely or in combination include chlorine trifluoride (ClF3), tetrachlorosilane (SiCl4) and derivatives thereof.


The silicon source is usually provided into the process chamber in the etching gas for slow etch processes at a rate in a range from about 5 sccm to about 500 sccm, preferably from about 10 sccm to about 100 sccm, and more preferably from about 20 sccm to about 80 sccm, for example, about 50 sccm. Silicon sources that may be used in the etching include silanes, halogenated silanes, organosilanes and derivatives thereof. Silanes include silane (SiH4) and higher silanes with the empirical formula SixH(2x+2), such as disilane (Si2H6), trisilane (Si3H8), and tetrasilane (Si4H10), as well as others. Halogenated silanes include compounds with the empirical formula X′ySixH(2x+2−y), where X′ is independently selected from F, Cl, Br or I, such as hexachlorodisilane (Si2Cl6), tetrachlorosilane (SiCl4), dichlorosilane (Cl2SiH2) and trichlorosilane (Cl3SiH). Organosilanes include compounds with the empirical formula RySixH(2x+2−y), where R is independently selected from methyl, ethyl, propyl or butyl, such as methylsilane ((CH3)SiH3), dimethylsilane ((CH3)2SiH2), ethylsilane ((CH3CH2)SiH3), methyldisilane ((CH3)Si2H5), dimethyldisilane ((CH3)2Si2H4) and hexamethyldisilane ((CH3)6Si2). The preferred silicon sources include silane, dichlorosilane and disilane.


The carrier gas is usually provided into the process chamber in the etching gas at a flow rate in a range from about 1 slm (standard liters per minute) to about 100 slm, preferably from about 5 slm to about 80 slm, and more preferably from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen (N2), hydrogen (H2), argon, helium and combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium and combinations thereof. A carrier gas may be selected based on the precursor(s) used and/or the process temperature during the etching process in step 120.


Preferably, nitrogen is utilized as a carrier gas in embodiments featuring low temperature (e.g., <800° C.) processes. Low temperature processes are accessible due in part to the use of chlorine gas in the etching process. Nitrogen remains inert during low temperature etching processes. Therefore, nitrogen is not incorporated into silicon-containing materials on the substrate during low temperature processes. Also, a nitrogen carrier gas does not form hydrogen-terminated surfaces as does a hydrogen carrier gas. The hydrogen-terminated surfaces formed by the adsorption of hydrogen carrier gas on the substrate surface inhibit the growth rate of subsequently deposited silicon-containing layers. Finally, the low temperature processes may take economic advantage of nitrogen as a carrier gas, since nitrogen is far less expensive than hydrogen, argon or helium. In one example of an etching gas, chlorine is the etchant, silane is the silicon source and nitrogen is the carrier gas.


During step 120, substrate 200 and surface 210 are exposed to an etching gas to remove a predetermined thickness 220 of substrate 200. Surface 210 is also etched during the removal of the predetermined thickness 220. The etching gas is exposed to substrate 200 for a period of time from about 5 seconds to about 5 minutes, preferably from about 30 seconds to about 2 minutes. The amount of time is adjusted relative to the etch rate used in a particular process. The etch rate of a slow etch process is usually less than about 100 Å/min, preferably less than about 50 Å/min. In one embodiment, the slow etch rate is in a range from about 2 Å/min to about 20 Å/min, preferably from about 5 Å/min to about 15 Å/min, for example, about 10 Å/min. In another embodiment, the etch rate is less than about 2 Å/min, preferably less than about 1 Å/min, and more preferably approaches a redistribution of material on the substrate such that the net removal rate is non-measurable relative to the thickness of the layer. As the etch process is slowed to a redistribution reaction, material is removed from the peaks thereon the surface and material is added to troughs thereon the surface. The troughs may be filled by the material derived from the peaks and/or virgin material being produced by the introduction of precursors (e.g., silicon source) in the etching gas.


Surface 210 may have had a surface roughness of about 6 nm root mean square (RMS) or more. However, once the predetermined thickness 220 is removed, the exposed surface 230 is much smoother than surface 210. The exposed surface may have a surface roughness of about 1 nm RMS or less, preferably about 0.1 nm RMS or less and more preferably about 0.07 nm RMS. Contaminants previously disposed on surface 210 are removed. The exposed surface 230 is free or substantially free of contaminants that include organic residues, carbon, oxides, nitrides, halides (e.g., fluorides or chlorides) or combinations thereof.


Once the predetermined thickness 220 and surface 210 of substrate 200 are removed, layer 240 may be deposited during step 130. Preferably, layer 240 is a silicon-containing material that may be selectively and epitaxially deposited on the exposed surface 230 a chemical vapor deposition (CVD) process. Chemical vapor deposition described herein includes the use of many techniques, such as atomic layer epitaxy (ALE), atomic layer deposition (ALD), plasma-assisted CVD (PA-CVD), atomic layer CVD (ALCVD), organometallic or metalorganic CVD (OMCVD or MOCVD), laser-assisted CVD (LA-CVD), ultraviolet CVD (UV-CVD), hot-wire (HWCVD), reduced-pressure CVD (RP-CVD), ultra-high vacuum CVD (UHV-CVD) and others. In one example, a preferred process is to use thermal CVD to epitaxially grow or deposit a silicon-containing compound as layer 240 on exposed surface 230. The deposition gas used during step 130 may also contain at least one secondary elemental source, such as a germanium source and/or a carbon source. The germanium source may be added to the process chamber with the silicon source, etchant and carrier gas to form a silicon-containing compound. Therefore, the silicon-containing compound may include silicon, SiGe, SiC, SiGeC, doped variants thereof and combinations thereof. Germanium and/or carbon may be added to the silicon-containing material by including germanium source (e.g., germane) or a carbon source (e.g., methylsilane) during the deposition process. Dopants may also be included by including a boron source (e.g., diborane), an arsenic source (e.g., arsine) or a phosphorous source (e.g., phosphine) during or after the deposition process.


In another example, a preferred process is to use the CVD process called alternating gas supply (APG) to epitaxially grow or deposit a silicon-containing compound as layer 240 on exposed surface 230. The APG deposition process includes a cycle of alternating exposures of silicon-sources and etchants to the substrate surface. An APG deposition is further disclosed in commonly assigned U.S. patent application Ser. No. 11/001,774, filed Dec. 1, 2004, entitled “Selective Epitaxy Process with Alternating Gas Supply,” is incorporated herein by reference in entirety for the purpose of describing the process.


Process 100 may be used to etch and deposit silicon-containing materials in the same process chamber. Preferably, the slow etch process and the subsequent deposition process are performed in the same process chamber to improve throughput, be more efficient, decrease probability of contamination and benefit process synergies, such as common chemical precursors. In one example, both the slow etch process and the selective, epitaxial deposition process of a silicon-containing compound use chlorine as an etchant and nitrogen as a carrier gas.


Fast Etch

In another embodiment, a fast etch process (e.g., >100 Å/min) is performed to selectively remove silicon-containing material from the substrate surface. The fast etch process is a selective etch process to remove silicon-containing material while leaving barrier material unscathed. Barrier materials may include silicon nitride, silicon oxide or silicon oxynitride used as spacers, capping layers and mask.


In FIG. 3, process 300 is initiated by positioning the substrate into a process chamber and adjusting the process parameters during step 310. The substrate and/or the process chamber is heated at a temperature in a range from about 400° C. to about 800° C., preferably from about 500° C. to about 700° C. The process chamber is maintained at a pressure in a range from about 1 Torr to about 750 Torr, preferably from about 100 Torr to about 700 Torr and more preferably from about 400 Torr to about 600 Torr.


The etching gas used during the fast etch process in step 320 contains an etchant, a carrier gas and an optional silicon source. Preferably, the etchant is chlorine gas, the carrier gas is nitrogen and the silicon source is silane. The etchant is provided into the process chamber in the etching gas at a rate in a range from about 1 sccm to about 100 sccm, preferably from about 5 sccm to about 50 sccm, and more preferably from about 10 sccm to about 30 sccm, for example, about 20 sccm. While chlorine is the preferred etchant in the fast etch process, other etchants that may be used solely or in combination include chlorine trifluoride (ClF3), tetrachlorosilane (SiCl4) and derivatives thereof.


The carrier gas is usually provided into the process chamber in the etching gas at a flow rate in a range from about 1 slm to about 100 slm, preferably from about 5 slm to about 80 slm, and more preferably from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen (N2), hydrogen (H2), argon, helium and combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium and combinations thereof. A carrier gas may be selected based on the precursor(s) used and/or the process temperature during the etching process in step 320. Preferably, nitrogen is utilized as a carrier gas in embodiments featuring low temperature (e.g., <800° C.) processes. In one example of an etching gas, chlorine is the etchant and nitrogen is the carrier gas.


In some embodiments, the silicon source is optionally included in the etching gas to provide additional control of the etch rate during fast etch processes. The silicon source is delivered into the process chamber at a rate in a range from about 5 sccm to about 500 sccm, preferably from about 10 sccm to about 100 sccm, and more preferably from about 20 sccm to about 80 sccm, for example, about 50 sccm. Silicon sources that may be used in the etching include silanes, halogenated silanes, organosilanes and derivatives thereof, as discussed above.


In FIG. 4A, at least one source/drain feature 410 is disposed on substrate 400. Substrate 400 may be doped or undoped, bare silicon substrate or include a silicon-containing layer disposed thereon. Feature 410 includes gate layer 412 on gate oxide layer 414 surrounded by spacers 416 and protective capping layer 418. Generally, gate layer 412 is composed of a polysilicon. Gate oxide layer 414 is composed of silicon dioxide, silicon oxynitride or hafnium oxide. Partially encompassing the gate oxide layer 414 is a spacer 416, which is usually an isolation material such as a nitride/oxide stack (e.g., Si3N4/SiO2/Si3N4). Gate layer 412 may optionally have a protective capping layer 418 adhered thereon.


During step 320, substrate 400 is exposed to an etching gas to remove a predetermined thickness 425 of substrate 400 and form a recess 430, as depicted in FIG. 4B. The etching gas is exposed to substrate 400 for a period of time from about 10 seconds to about 5 minutes, preferably from about 1 minute to about 3 minutes. The amount of time is adjusted relative to the etch rate used in a particular process. The etch rate of a fast etch process is usually more than about 100 Å/min, preferably more than about 200 Å/min, such as at rate in a range from about 200 Å/min to about 1,500 Å/min, preferably from about 200 Å/min to about 1,000 Å/min, for example about 600 Å/min.


In one example, the etching process may be kept at a fast rate to remove the predetermined thickness 425, and then reduced to a slow rate process to smooth the remaining surface. The reduced etching rate may be controlled by an etching process described by process 100.


Once the predetermined thickness 425 of substrate 400 is removed, layer 440 may be deposited during step 330. Preferably, layer 440 is a silicon-containing material that may be selectively and epitaxially deposited on the exposed surface of recess 430 a CVD process. In one example, the CVD process includes an AGS deposition technique. Alternatively, recess 430 may be exposed to another fabrication process prior to the deposition of layer 440, such as a doping process. One example of a doping process includes ion implantation, in which a dopant (e.g., boron, phosphorous or arsenic) may be implanted into the surface of the recess 430.


Process 300 may be used to etch and deposit silicon-containing materials in the same process chamber. Preferably, the fast etch process and the subsequent deposition is performed in the same process chamber to improve throughput, be more efficient, decrease probability of contamination and benefit process synergies, such as common chemical precursors. In one example, both the fast etch process and the selective, epitaxial deposition process of a silicon-containing compound use chlorine as an etchant and nitrogen as a carrier gas.



FIG. 5 illustrates an alternative embodiment of the invention that includes cleaning the process chamber after finishing a fabrication techniques using process 500. During step 510, the substrate is exposed to a pre-treatment process that may include a wet clean process, a HF-last process, a plasma clean, an acid wash process and combinations thereof. After a pre-treatment process and prior to starting an etching process described herein, the substrate may have to remain outside the controlled environment of the process chamber for a period of time called queue time (Q-time). The Q-time in an ambient environment may last about 2 hours or more, usually, the Q-time last much longer, such as from about 6 hours to about 24 hours or longer, such as about 36 hours. A silicon oxide layer usually forms on the substrate surface during the Q-time due to the substrate being exposed to ambient water and oxygen.


During step 520, the substrate is positioned into a process chamber and exposed to an etching process as described herein. The etching process may be a slow etch process as described in step 120 or a fast etch process as described in step 320. The etching process removes a pre-determined thickness of silicon-containing layer thereon the substrate to form an exposed silicon-containing layer. Thereafter, a secondary material is deposited on the exposed silicon-containing layer during step 520. Usually, the secondary material is in a selective, epitaxially deposited silicon-containing compound. The deposition process may include the processes as described in steps 130 and 330. In one aspect of the embodiment, processes 100 or 300 may each be independently used during steps 520 and 530.


A cleaning process is conducted inside the process chamber to remove various contaminants therein during step 540. Etch processes and/or deposition processes may form or deposit contaminants on surfaces within the process chamber. Usually, the contaminants include silicon-containing materials adhered to the walls and other inner surfaces of the process chamber.


The cleaning process includes heating the process chamber to a temperature in a range from about 600° C. to about 900° C., preferably from about 650° C. to about 800° C. The cleaning process is conducted for a period of time in a range from about 30 seconds to about 3 minutes, preferably, from about 1 minute to about 2 minutes. A cleaning gas contains an etchant and a carrier gas. Preferably, the etchant and the carrier gas are the same gases used during step 520. The etchant is provided into the process chamber within the cleaning gas at a rate in a range from about 10 sccm to about 5,000 sccm, preferably from about 100 sccm to about 3,000 sccm, and more preferably from about 500 sccm to about 2,000 sccm, for example, about 1,000 sccm. Etchants that may be used within the cleaning gas include chlorine, chlorine trifluoride, tetrachlorosilane and derivatives thereof.


The carrier is usually provided into the process chamber within the cleaning gas at a flow rate in a range from about 1 slm to about 100 slm, preferably from about 5 slm to about 80 slm, and more preferably from about 10 slm to about 40 slm, for example, about 20 slm. Carrier gases may include nitrogen, hydrogen, argon, helium and combinations thereof. An inert carrier gas is preferred and includes nitrogen, argon, helium and combinations thereof. Preferably, chlorine is used as an etchant and nitrogen is used as a carrier gas in embodiments of the cleaning processes. A cleaning process that may be used within embodiments of the invention described herein is further disclosed in commonly assigned U.S. Pat. No. 6,042,654 and entitled, “Method of Cleaning CVD Cold-Wall Chamber and Exhaust Lines,” and is incorporated herein by reference in entirety. The cleaning process may be repeated after processing each individual substrate or after multiple substrates. In one example, the cleaning process is conducted after processing every 25 substrates.


In one example of process 500, the substrate is first exposed to a HF-last process. The substrate is placed into a process chamber and exposed to an etch process that contains chlorine and nitrogen at about 600° C. Within the same process chamber, a silicon-containing layer is epitaxially deposited on the substrate by a deposition process utilizing chlorine and nitrogen at about 625° C. Subsequent the removal of the substrate, the process chamber is heated to about 675° C. and exposed to a cleaning gas containing chlorine and nitrogen.


Embodiments of the etching and depositing processes of silicon-containing compounds described herein may be utilized for fabricating Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and bipolar transistors, such as Bipolar device fabrication (e.g., base, emitter, collector, emitter contact), BiCMOS device fabrication (e.g., base, emitter, collector, emitter contact) and CMOS device fabrication (e.g., channel, source/drain, source/drain extension, elevated source/drain, substrate, strained silicon, silicon on insulator and contact plug). Other embodiments of processes teach the etching and growing of silicon-containing layers that can be used as gate, base contact, collector contact, emitter contact, elevated source/drain and other uses.


The processes of the invention can be carried out in equipment known in the art of CVD or ALE. Hardware that can be used to etch and/or deposit silicon-containing films includes the Epi Centura® system and the Poly Gen® system available from Applied Materials, Inc., located in Santa Clara, Calif. A process chamber useful to etch and deposit as described herein is further disclosed in commonly assigned U.S. Pat. No. 6,562,720 and entitled, “Apparatus and Methods for Surface Finishing a Silicon Film,” and is incorporated herein by reference in entirety for the purpose of describing the apparatus. Other enabling apparatuses include batch, high-temperature furnaces, as known in the art.


EXAMPLES

The following hypothetical examples were conducted in an Epi Centura® system available from Applied Materials, Inc., located in Santa Clara, Calif. The substrates were 300 mm silicon wafers.


Example 1
Pre-clean Process Comparative Without Silane

A substrate was exposed to an HF-last process to form a fluoride terminated surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 20 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 120 sccm. The surface was etched at a rate of about 500 Å/min.


Example 2
Pre-clean Process with Silane

A substrate was exposed to an HF-last process to form a fluoride terminated surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 20 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 20 sccm and SiH4 at a flow rate of about 50 sccm. The surface was etched at a rate of about 10 Å/min. Therefore, the addition of a silicon source, such as silane in Example 2, reduced the etch rate of the silicon-containing layer by about 50 times as compared to the etch rate in Example 1.


Example 3
Smoothing Process Comparative Without Silane

A substrate surface containing a silicon-containing layer was cleaved forming a surface with a roughness of about 5.5 nm root mean square (RMS). The substrate was placed in the process chamber and heated to about 650° C. while the atmosphere was maintained at about 200 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 20 sccm. The surface was etched at a rate of about 200 Å/min.


Example 4
Smoothing Process with Silane

A substrate surface containing a silicon-containing layer was cleaved forming a surface with a roughness of about 5.5 nm root mean square. The substrate was placed in the process chamber and heated to about 650° C. while the atmosphere was maintained at about 200 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 20 sccm and SiH4 at a flow rate of about 50 sccm. The surface was etched at a rate of about 20 Å/min. The surface roughness was reduced to about 0.1 nm RMS. Therefore, the addition of a silicon source, such as silane used in Example 4, reduced the etch rate of the silicon-containing layer by about 10 times as compared to the etch rate in Example 3.


Example 5
Chlorine Etch Process Followed by Silicon-epitaxy

A silicon substrate contained a series of silicon nitride line features that are about 90 nm tall, about 100 nm wide and about 150 nm apart, baring the silicon surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 40 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm and Cl2 at flow rate of about 80 sccm. The surface was etched at a rate of about 750 Å/min. After about 30 seconds, about 35 nm of the silicon surface was etched. The silicon nitride features remain inert to the etching process. The pressure was increased to about 200 Torr and SiH4 was added to the etching gas at a flow rate of about 50 sccm. The etch rate was reduced to about 18 Å/min to smooth the freshly etched silicon surface. After about 1 minute, the smooth surface is exposed to a selective epitaxy deposition process by increasing the flow of SiH4 to about 100 sccm and maintaining the flow of N2 and Cl2 unchanged. A silicon-containing material was deposited on the silicon surface at a rate of about 25 Å/min.


Example 6
Chlorine Fast Etch Process Containing Silane

A silicon substrate contained a series of silicon nitride line features that are about 90 nm tall, about 100 nm wide and about 150 nm apart, baring the silicon surface. The substrate was placed in the process chamber and heated to about 600° C. while the atmosphere was maintained at about 40 Torr. The substrate was exposed to an etching gas containing N2 at a flow rate of about 20 slm, Cl2 at flow rate of about 80 sccm and SiH4 at flow rate of about 40 sccm. The surface was etched at a rate of about 400 Å/min.


While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of etching a silicon-containing material on a substrate surface, comprising: positioning a substrate comprising the silicon-containing material containing a contaminant into a process chamber;exposing the silicon-containing material to an etching gas comprising chlorine gas, a silicon source and a carrier gas at a temperature less than 800° C.; andremoving the contaminant and a predetermined thickness of the silicon-containing material.
  • 2. The method of claim 1, wherein the silicon-containing material is removed at a rate in a range from about 2 Å per minute to about 20 Å per minute.
  • 3. The method of claim 2, wherein the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.
  • 4. The method of claim 3, wherein the carrier gas is selected from the group consisting of nitrogen, argon, helium and combinations thereof.
  • 5. The method of claim 4, wherein the silicon source is selected from the group consisting of silane, disilane, dichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof and combinations thereof.
  • 6. The method of claim 5, wherein the carrier gas is nitrogen and the silicon source is silane.
  • 7. The method of claim 2, wherein an epitaxy deposition process is conducted in the process chamber after the removing step.
  • 8. The method of claim 7, wherein the contaminant is selected from the group consisting of oxides, fluorides, chlorides, nitrides, organic residues, carbon, derivatives thereof and combinations thereof.
  • 9. The method of claim 8, wherein the substrate is exposed to a wet clean process prior to positioning into the process chamber.
  • 10. The method of claim 9, wherein the substrate is exposed to ambient conditions for a period of time in a range from about 6 hours to about 24 hours after the wet clean process and before positioning into the process chamber.
  • 11. The method of claim 8, wherein the silicon-containing material further comprises a rough surface that is removed during the removing step.
  • 12. The method of claim 1, wherein the step of removing further comprises: forming a recess in a source and drain area on the substrate.
  • 13. A method of smoothing a silicon-containing material on a substrate surface, comprising: positioning a substrate into a process chamber, wherein the substrate contains a silicon-containing material comprising a first surface roughness of about 1 nm RMS or greater;exposing the silicon-containing material to an etching gas comprising an etchant, a silicon source and a carrier gas at a temperature less than 800° C.; andredistributing the silicon-containing material to form a second surface roughness of less than about 1 nm RMS.
  • 14. The method of claim 13, wherein a predetermined thickness of the silicon-containing material is removed at a rate in a range from about 2 Å per minute to about 20 Å per minute.
  • 15. The method of claim 13, wherein the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.
  • 16. The method of claim 15, wherein the carrier gas is selected from the group consisting of nitrogen, argon, helium and combinations thereof.
  • 17. The method of claim 16, wherein the silicon source is selected from the group consisting of silane, disilane, dichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof and combinations thereof.
  • 18. The method of claim 17, wherein the etchant is selected from the group consisting of chlorine, chlorine trifluoride, tetrachlorosilane, derivatives thereof and combinations thereof.
  • 19. The method of claim 18, wherein the carrier gas is nitrogen, the silicon source is silane and the etchant is chlorine gas.
  • 20. The method of claim 15, wherein an epitaxy deposition process is conducted in the process chamber after the redistributing step.
  • 21. The method of claim 20, wherein the silicon-containing material further comprises a contaminant that is removed during the redistributing step and the contaminant is selected from the group consisting of oxides, fluorides, chlorides, nitrides, organic residues, carbon, derivatives thereof and combinations thereof.
  • 22. The method of claim 20, wherein the substrate is exposed to a wet clean process prior to positioning into the process chamber.
  • 23. The method of claim 22, wherein the substrate is exposed to ambient conditions for a period of time in a range from about 6 hours to about 24 hours after the wet clean process and before positioning into the process chamber.
  • 24. The method of claim 13, wherein the step of redistributing further comprises: forming a recess in a source and drain area on the substrate.
  • 25. A method of etching a silicon-containing monocrystalline material on a substrate comprising at least a second material selected from the group consisting of a nitride material, an oxide material or combinations thereof, comprising: positioning a substrate into a process chamber;exposing the substrate to an etching gas comprising chlorine gas and a carrier gas at a temperature less than 800° C.;removing a predetermined thickness of the silicon-containing monocrystalline material to form an exposed monocrystalline surface; anddepositing an epitaxy layer on the exposed monocrystalline surface in the process chamber.
  • 26. The method of claim 25, wherein the etching gas further comprises a silicon source selected from the group consisting of silane, disilane, dichlorosilane, tetrachlorosilane, hexachlorodisilane, derivatives thereof and combinations thereof.
  • 27. The method of claim 25, wherein the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.
  • 28. The method of claim 27, wherein the carrier gas is selected from the group consisting of nitrogen, argon, helium and combinations thereof.
  • 29. The method of claim 28, wherein the predetermined thickness of the monocrystalline material is removed at a rate in a range from about 200 Å per minute to about 1,000 Å per minute.
  • 30. The method of claim 29, wherein the process chamber is maintained at a pressure in a range from about 10 Torr to about 750 Torr.
  • 31. The method of claim 30, wherein the epitaxial layer comprises a material selected from the group consisting of silicon, silicon-germanium, silicon-carbon, silicon-germanium-carbon, derivatives thereof and combinations thereof.
  • 32. The method of claim 25, wherein removing the predetermined thickness of the silicon-containing monocrystalline material forms a recess formation within a source/drain area on the substrate.
  • 33. The method of claim 32, wherein the source/drain area is used within a device selected from the group consisting of CMOS, Bipolar or BiCMOS application.
  • 34. The method of claim 25, wherein the step of removing further comprises: forming a recess in a source and drain area on the substrate.
  • 35. A method of forming a silicon-containing monocrystalline material on a substrate, comprising: exposing a substrate to a HF-last wet clean process;positioning the substrate into a process chamber;exposing the substrate to an etching gas comprising chlorine gas and a carrier gas at a temperature less than 800° C.;removing a predetermined thickness of the silicon-containing monocrystalline material to form an exposed monocrystalline surface;depositing an epitaxy layer on the exposed monocrystalline surface in the process chamber; andcleaning the process chamber with the chlorine gas to remove silicon-containing contaminant adhered thereon.
  • 36. The method of claim 35, wherein the epitaxy layer is deposited by a deposition gas containing the chlorine gas.
  • 37. The method of claim 36, wherein the carrier gas is nitrogen.
  • 38. The method of claim 37, wherein nitrogen is co-flowed with the chlorine in the deposition gas and during the process chamber clean step.
  • 39. The method of claim 35, wherein the step of removing further comprises: forming a recess in a source and drain area on the substrate.
  • 40. The method of claim 35, wherein the process chamber is maintained at a temperature in a range from about 500° C. to about 700° C.
US Referenced Citations (148)
Number Name Date Kind
4834831 Nishizawa et al. May 1989 A
5112439 Reisman et al. May 1992 A
5273930 Steele et al. Dec 1993 A
5288658 Ishihara Feb 1994 A
5294286 Nishizawa et al. Mar 1994 A
5372860 Fehlner et al. Dec 1994 A
5374570 Nasu et al. Dec 1994 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5527733 Nishizawa et al. Jun 1996 A
5674304 Fukada et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5796116 Nakata et al. Aug 1998 A
5807792 Ilg et al. Sep 1998 A
5906680 Meyerson May 1999 A
5908307 Talwar et al. Jun 1999 A
5916365 Sherman Jun 1999 A
6025627 Forbes et al. Feb 2000 A
6042654 Comita et al. Mar 2000 A
6124158 Dautartas et al. Sep 2000 A
6144060 Park et al. Nov 2000 A
6159852 Nuttall et al. Dec 2000 A
6200893 Sneh Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6232196 Raaijmakers et al. May 2001 B1
6270572 Kim et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6284686 Marlor Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291319 Yu et al. Sep 2001 B1
6303476 Hawryluk et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6335280 van der Jeugd Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348420 Raaijmakers et al. Feb 2002 B1
6352945 Matsuki et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6383955 Matsuki et al. May 2002 B1
6383956 Hawryluk et al. May 2002 B2
6387761 Shih et al. May 2002 B1
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B2
6410463 Matsuki Jun 2002 B1
6451119 Sneh et al. Sep 2002 B2
6458718 Todd Oct 2002 B1
6462367 Marsh et al. Oct 2002 B2
6468924 Lee et al. Oct 2002 B2
6489241 Thilderkvist et al. Dec 2002 B1
6492283 Raaijmakers et al. Dec 2002 B2
6511539 Raaijmakers Jan 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6544900 Raaijmakers et al. Apr 2003 B2
6559520 Matsuki et al. May 2003 B2
6562720 Thilderkvist et al. May 2003 B2
6620670 Song et al. Sep 2003 B2
6630413 Todd Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6635588 Hawryluk et al. Oct 2003 B1
6645838 Talwar et al. Nov 2003 B1
6797558 Nuttall et al. Sep 2004 B2
6821825 Todd et al. Nov 2004 B2
6969668 Kang et al. Nov 2005 B1
20010000866 Sneh et al. May 2001 A1
20010020712 Raaijmakers et al. Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010024871 Yagi Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010046567 Matsuki et al. Nov 2001 A1
20010054381 Umotoy et al. Dec 2001 A1
20010055672 Todd Dec 2001 A1
20020000598 Kang et al. Jan 2002 A1
20020016084 Todd Feb 2002 A1
20020019148 Hawryluk et al. Feb 2002 A1
20020022294 Hawryluk et al. Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020047151 Kim et al. Apr 2002 A1
20020060363 Xi et al. May 2002 A1
20020074588 Lee Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020090818 Thilderkvist et al. Jul 2002 A1
20020093042 Oh et al. Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020145168 Bojarczuk et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020168868 Todd Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020173113 Todd Nov 2002 A1
20020173130 Pomerede et al. Nov 2002 A1
20020197831 Todd et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030022528 Todd Jan 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030036268 Brabant et al. Feb 2003 A1
20030045074 Seibel et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030060057 Raaijmakers et al. Mar 2003 A1
20030062335 Brewer Apr 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030082300 Todd et al. May 2003 A1
20030089308 Raaijmakers May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030106490 Jailepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030166318 Zheng et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186561 Law et al. Oct 2003 A1
20030188682 Tois et al. Oct 2003 A1
20030189208 Law et al. Oct 2003 A1
20030189232 Law et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040007747 Visokay et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009675 Eissa et al. Jan 2004 A1
20040016973 Rotondaro et al. Jan 2004 A1
20040023462 Rotondaro et al. Feb 2004 A1
20040033674 Todd Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040043149 Gordon et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040226911 Dutton et al. Nov 2004 A1
20040253776 Hoffman et al. Dec 2004 A1
20050079691 Kim et al. Apr 2005 A1
Foreign Referenced Citations (35)
Number Date Country
1 150 345 Oct 2001 EP
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
62-171999 Jul 1987 JP
63-062313 Mar 1988 JP
01-143221 Jun 1989 JP
01-270593 Oct 1989 JP
02-172895 Jul 1990 JP
03-286522 Dec 1991 JP
05-047665 Feb 1993 JP
05-102189 Apr 1993 JP
05-251339 Sep 1993 JP
06-196809 Jul 1994 JP
300649 Nov 1995 JP
2001-111000 Apr 2001 JP
2001-189312 May 2001 JP
2001-172767 Jun 2001 JP
WO 9820524 May 1998 WO
WO 0016377 Mar 2000 WO
WO 0115220 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0117692 Mar 2001 WO
WO 0129893 Apr 2001 WO
WO 0140541 Jun 2001 WO
WO 0141544 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 02064853 Aug 2002 WO
WO 02065508 Aug 2002 WO
WO 02065516 Aug 2002 WO
WO 02065517 Aug 2002 WO
WO 02065525 Aug 2002 WO
WO 02080244 Oct 2002 WO
WO 02097864 Dec 2002 WO
Related Publications (1)
Number Date Country
20060169668 A1 Aug 2006 US