Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer

Information

  • Patent Grant
  • 7101795
  • Patent Number
    7,101,795
  • Date Filed
    Tuesday, October 3, 2000
    23 years ago
  • Date Issued
    Tuesday, September 5, 2006
    17 years ago
Abstract
A method and system to form a refractory metal layer on a substrate features nucleating a substrate using sequential deposition techniques in which the substrate is serially exposed to first and second reactive gases followed by forming a layer, employing vapor deposition, to subject the nucleation layer to a bulk deposition of a compound contained in one of the first and second reactive gases.
Description
BACKGROUND OF THE DISCLOSURE

1. Field of the Invention


This invention relates to the processing of semiconductor substrates. More particularly, this invention relates to improvements in the process of depositing refractory metal layers on semiconductor substrates.


2. Description of the Related Art


The semiconductor processing industry continues to strive for larger production yields while increasing the uniformity of layers deposited on substrates having larger surface areas. These same factors in combination with new materials also provide higher integration of circuits per unit area of the substrate. As circuit integration increases, the need for greater uniformity and process control regarding layer thickness rises. As a result, various technologies have been developed to deposit layers on substrates in a cost-effective manner, while maintaining control over the characteristics of the layer. Chemical Vapor Deposition (CVD) is one of the most common deposition processes employed for depositing layers on a substrate. CVD is a flux-dependent deposition technique that requires precise control of the substrate temperature and precursors introduced into the processing chamber in order to produce a desired layer of uniform thickness. These requirements become more critical as substrate size increases, creating a need for more complexity in chamber design and gas flow technique to maintain adequate uniformity.


A variant of CVD that demonstrates superior step coverage, compared to CVD, is Atomic Layer Deposition (ALD). ALD is based upon Atomic Layer Epitaxy (ALE) that was employed originally to fabricate electroluminescent displays. ALD employs chemisorption to deposit a saturated monolayer of reactive precursor molecules on a substrate surface. This is achieved by alternatingly pulsing an appropriate reactive precursor into a deposition chamber. Each injection of a reactive precursor is separated by an inert gas purge to provide a new atomic layer additive to previously deposited layers to form a uniform layer on the substrate. The cycle is repeated to form the layer to a desired thickness. A drawback with ALD techniques is that the deposition rate is much lower than typical CVD techniques by at least one order of magnitude.


Formation of film layers at a high deposition rate while providing adequate step coverage are conflicting characteristics often necessitating sacrificing one to obtain the other. This conflict is true particularly when refractory metal layers are deposited to cover gaps or vias during formation of contacts that interconnect adjacent metallic layers separated by dielectric layers. Historically, CVD techniques have been employed to deposit conductive material such as refractory metals in order to inexpensively and quickly form contacts. Due to the increasing integration of semiconductor circuitry, tungsten has been used based upon superior step coverage. As a result, deposition of tungsten employing CVD techniques enjoys wide application in semiconductor processing due to the high throughput of the process.


Depositing tungsten by traditional CVD methods, however, is attendant with several disadvantages. For example, blanket deposition of a tungsten layer on a semiconductor wafer is time-consuming at temperatures below 400° C. The deposition rate of tungsten may be improved by increasing the deposition temperature to, e.g., about 500° C. to about 550° C.; however, temperatures in this higher range may compromise the structural and operational integrity of the underlying portions of the integrated circuit being formed. Use of tungsten has also frustrated photolithography steps during the manufacturing process as it results in a relatively rough surface having a reflectivity of 20% or less than that of a silicon substrate. Finally, tungsten has proven difficult to deposit uniformly. Variance in film thickness of greater than 1% has been shown with tungsten, thereby frustrating control of the resistivity of the layer. Several prior attempts to overcome the aforementioned drawbacks have been attempted.


For example, in U.S. Pat. No. 5,028,565 to Chang et al., which is assigned to the assignee of the present invention, a method is disclosed to improve, inter alia, uniformity of tungsten layers by varying the deposition chemistry. The method includes, in pertinent part, formation of a nucleation layer over an intermediate, barrier layer before depositing the tungsten layer via bulk deposition. The nucleation layer is formed from a gaseous mixture of tungsten hexafluoride, hydrogen, silane and argon. The nucleation layer is described as providing a layer of growth sites to promote uniform deposition of a tungsten layer thereon. The benefits provided by the nucleation layer are described as being dependent upon the barrier layer present. For example, were the barrier layer formed from titanium nitride, the tungsten layer's thickness uniformity is improved as much as 15%. Were the barrier layer formed from sputtered tungsten or sputtered titanium tungsten, the benefits provided by the nucleation layer are not as pronounced.


U.S. Pat. No. 5,879,459 to Gadgil et al. discloses an apparatus that takes advantage of ALD. To that end, the apparatus, a low profile, compact atomic layer deposition reactor (LP-CAR), has a body with a substrate processing region adapted to serve a single substrate or a planar array of substrates, as well as a valve, and a port for substrate loading and unloading. In some embodiments multiple reactors are stacked vertically and share a common robotic handler interface with a CVD system. In this manner, the robotic handler may manipulate substrates associated with both the CVD system and the LP-CAR. The compact reactor is distinguished by having individual injectors, each of which comprises a charge tube formed between a charge valve and an injection valve. The charge valve connects the charge tube to a pressure regulated supply, and the injection valve opens the charge tube into the compact reactor. Rapidly cycling the valves injects fixed mass-charges of gas or vapor into the compact reactor.


What is needed, however, is a technique to deposit conductive layers having a deposition rate comparable to CVD techniques while providing the step coverage associated with ALD techniques.


SUMMARY OF THE INVENTION

A method and system to form a refractory metal layer on a substrate features nucleating a substrate using sequential deposition techniques in which the substrate is serially exposed to first and second reactive gases followed by forming a layer, employing vapor deposition, to subject the nucleation layer to a bulk deposition of a compound contained in one of the first and second reactive gases. To that end, the system includes a processing chamber that has a holder disposed therein to support the substrate. A gas delivery system and a pressure control system is in fluid communication with the processing chamber. A temperature control system is in thermal communication therewith. A controller is in electrical communication with gas delivery systems, temperature control systems and pressure control systems. A memory is in data communication with the controller. The memory comprises a computer-readable medium having a computer-readable program embodied therein. The computer-readable program includes instructions for controlling the operation of the processing chamber.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a semiconductor processing system in accordance with the present invention;



FIG. 2 is a detailed view of the processing chambers shown above in FIG. 1;



FIG. 3 is a schematic view showing deposition of a first molecule onto a substrate during ALD;



FIG. 4 is a schematic view showing deposition of second molecule onto a substrate during ALD to form a refractory metal layer;



FIG. 5 is a graphical representation showing the concentration of gases, introduced into the processing chamber shown above in FIG. 2, and the time in which the gases are present in the processing chamber, in accordance with the present invention;



FIG. 6 is a graphical representation showing the relationship between the number of ALD cycles and the thickness of a layer formed on a substrate employing ALD, in accordance with present invention;



Fig. 7 is a graphical representation showing the relationship between the number of ALD cycles and the resistivity of a layer formed on a substrate employing ALD, in accordance with the present invention;



Fig. 8 is a graphical representation showing the relationship between the deposition rate of a layer formed on a substrate employing ALD and the temperature of the substrate;



FIG. 9 is a graphical representation showing the relationship between the resistivity of a layer formed on a substrate employing ALD and the temperature of the substrate, in accordance with the present invention;



FIG. 10 is a cross-sectional view of a patterned substrate having a nucleation layer formed thereon employing ALD, in accordance with the present invention;



FIG. 11 is a partial cross-sectional view of the substrate, shown above in FIG. 10, with a refractory metal layer formed atop of the nucleation layer employing CVD, in accordance with the present invention; and



FIG. 12 is a graphical representation showing the concentration of gases shown above in FIG. 3 in accordance with a first alternate embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, an exemplary wafer processing system includes one or more processing chambers 12 and 14 disposed in a common work area 16 surrounded by a wall 18. The processing chambers 12 and 14 are in data communication with a controller 22 that is connected to one or more monitors, shown as 24 and 26. The monitors typically display common information concerning the process associated with the processing chamber 12 and 14. One of the monitors 26 is mounted to the wall 18, with the remaining monitor 24 being disposed in the work area 16. Operational control of the processing chambers 12 and 14 may be achieved by the use of a light pen, associated with one of the monitors 24 and 26, to communicate with the controller 22. For example, light pen 28 is associated with monitor 24 and facilitates communication with the controller 22 through monitor 24. Light pen 39 facilitates communication with the controller 22 through monitor 26.


Referring both the to FIGS. 1 and 2, each of the processing chambers 12 and 14 includes a housing 30 having a base wall 32, a cover 34, disposed opposite to the base wall 32, and a sidewall 36, extending therebetween. The housing 30 defines a chamber 37, and a pedestal 38 is disposed within the processing chamber 37 to support a substrate 42, such as a semiconductor wafer. The pedestal 38 may be mounted to move between the cover 34 and the base wall 32, using a displacement mechanism (not shown), but the position thereof is typically fixed. Supplies of processing gases 39a, 39b and 39c are in fluid communication with the processing chamber 37 via a showerhead 40. Regulation of the flow of gases from the supplies 39a, 39b and 39c is effectuated via flow valves 41.


Depending on the specific process, the substrate 42 may be heated to a desired temperature prior to layer deposition via a heater embedded within the pedestal 38. For example, the pedestal 38 may be resistively heated by applying an electric current from an AC power supply 43 to the heater element 44. The substrate 42 is, in turn, heated by the pedestal 38, and can be maintained within a desired process temperature range of, for example, about 20° C. to about 750° C. A temperature sensor 46, such as a thermocouple, is also embedded in the wafer support pedestal 38 to monitor the temperature of the pedestal 38 in a conventional manner. For example, the measured temperature may be used in a feedback loop to control the electrical current applied to the heater element 44 by the power supply 43 such that the substrate temperature can be maintained or controlled at a desired temperature that is suitable for the particular process application. Optionally, the pedestal 38 may be heated using radiant heat (not shown). A vacuum pump 48 is used to evacuate the processing chamber 37 and to help maintain the proper gas flows and pressure inside the processing chamber 37.


Referring to FIGS. 1 and 3, one or both of the processing chambers 12 and 14, discussed above may operate to deposit refractory metal layers on the substrate employing sequential deposition techniques. One example of sequential deposition techniques in accordance with the present invention includes atomic layer deposition. Depending on the specific stage of processing, the refractory metal layer may be deposited on the material from which the substrate 42 is fabricated, e.g., SiO2. The refractory metal layer may also be deposited on a layer previously formed on the substrate 42, e.g., titanium, titanium nitride and the like.


During the sequential deposition technique in accordance with the present invention, a batch of a first processing gas, in this case Aax, results in a layer of A being deposited on the substrate 42 having a surface of ligand x exposed to the processing chamber 37. Thereafter, a purge gas enters the processing chamber 37 to purge the gas Aax. After purging gas Aax, from the processing chamber 37, a second batch of processing gas, Bby, is introduced into the processing chamber 37. The a ligand present on the substrate surface reacts with the b ligand and B atom on the, releasing molecules ab and Ba, that move away from the substrate 42 and are subsequently pumped from the processing chamber 37. In this manner, a surface comprising a layer of A compound remains upon the substrate 42 and exposed to the processing chamber 37, shown in FIG. 4. The composition of the layer of A compound may be a monolayer of atoms typically formed employing ATD techniques. Alternatively, the layer of compound A may include a layer of multiple atoms. In such as case, the first processing gases may include a mixture of process gases each of which has atoms that would adhere to the substrate 42. The process proceeds cycle after cycle, until the desired thickness is achieved.


Referring to both FIGS. 2 and 5, although any type of processing gas may be employed, in the present example, the processing gas Aax includes WF6 and the processing gas Bby is B2H6. Two purge gases are employed: Ar and N2. Each of the processing gases was flowed into the processing chamber 37 with a carrier gas, which in this example were one of the purge gases: WF6 is introduced with Ar and B2H6 is introduced with N2. It should be understood, however, that the purge gas may differ from the carrier gas, discussed more fully below. One cycle of the ALD technique in accordance with the present invention includes flowing the purge gas, N2, into the processing chamber 37 during time to, which is approximately 0.01 to 15 seconds before B2H6 is flowed into the processing chamber 37. During time t2, the processing gas B2H6 is flowed into the processing chamber 37 for a time in the range of 0.01 to 15 seconds, along with a carrier gas, which in this example is N2. After 0.01 to 15 seconds have lapsed, the flow of B2H6 terminates and the flow of N2 continues during time t3 for an additional time in the range of 0.01 to 15 seconds, purging the processing chamber of B2H6. During time t4, the processing chamber 37 is pumped so as to remove most, if not all, gases. After pumping of the process chamber 37, the carrier gas Ar is introduced for a time in the range of 0.01 to 15 seconds during time t5, after which time the process gas WF6 is introduced into the processing chamber 37, along with the carrier gas Ar during time t6. The time t6 lasts between 0.01 to 15 seconds. The flow of the processing gas WF6 into the processing chamber 37 is terminated approximately 0.01 to 15 seconds after it commenced. After the flow of WF6 into the processing chamber 37 terminates, the flow of Ar continues for an additional time in the range of 0.01 to 15 seconds, during time t7. Thereafter, the processing chamber 37 is pumped so as to remove most, if not all, gases therein, during time t8. As before, the pumping process lasts approximately thirty seconds, thereby concluding one cycle of the sequential deposition technique in accordance with the present invention.


The benefits of employing the sequential deposition technique are manifold, including flux-independence of layer formation that provides uniformity of deposition independent of the size of a substrate. For example, the measured difference of the layer uniformity and thickness measured between a 200 mm substrate and a 32 mm substrate deposited in the same chamber is negligible. This is due to the self-limiting characteristics of the sequential deposition techniques. Further, this technique contributes to a near-perfect step coverage over complex topography.


In addition, the thickness of the layer B, shown in FIG. 4, may be easily controlled while minimizing the resistance of the same by employing sequential deposition techniques. With reference to FIG. 6 it is seen in the slope of line 50 that the thickness of the tungsten layer B is proportional to the number of cycles employed to form the same. The resistivity of the tungsten layer, however, is relatively independent of the thickness of the layer, as shown by the slope of line 52 in FIG. 7. Thus, employing sequential deposition techniques, the thickness of a refractory metal layer may be easily controlled as a function of the cycling of the process gases introduced into the processing chamber with a negligible effect on the resistivity.


Referring to FIG. 8, control of the deposition rate was found to be dependent upon the temperature of the substrate 42. As shown by the slope of line 54, increasing the temperature of the substrate 42 increased the deposition rate of the tungsten layer B. For example, at 56, the deposition rate is shown to be approximately 2 Å/cycle at 250° C. However at point 56 the deposition rate is approximately 5 Å/cycle at a temperate of 450° C. The resistivity of the tungsten layer, however, is virtually independent of the layer thickness, as shown by the slope of curve 58, shown in FIG. 9. As a result, the deposition rate of the tungsten layer may be controlled as a function of temperature without compromising the resistivity of the same. However, it may be desired to reduce the time necessary to deposit an entire layer of a refractory metal.


To that end, a bulk deposition of the refractory metal layer may be included in the deposition process. Typically, the bulk deposition of the refractory metal occurs after the nucleation layer is formed in a common processing chamber. Specifically, in the present example, nucleation of a tungsten layer occurs in chamber 12 employing the sequential deposition techniques discussed above, with the substrate 42 being heated in the range of 200° C. to 400° C., and the processing chamber 37 being pressurized in the range of 1 to 10 Torr. A nucleation layer 60 of approximately 12 to 20 nm is formed on a patterned substrate 42, shown in FIG. 10. As shown, the substrate 42 includes a barrier layer 61 and a patterned layer having a plurality of vias 63. The nucleation layer is formed adjacent to the patterned layer covering the vias 63. As shown, forming the nucleation layer 60 employing ALD techniques provides 100% step coverage. To decrease the time required to form a complete layer of tungsten, a bulk deposition of tungsten onto the nucleation layer 60 occurs using CVD techniques, while the substrate 42 is disposed in the same processing chamber 12, shown in FIG. 1. The bulk deposition may be performed using recipes well known in the art. In this manner, a tungsten layer 65 providing a complete plug fill is achieved on the patterned layer with vias having aspect ratios of approximately 6:1, shown in FIG. 11.


As mentioned above, in an alternate embodiment of the present invention, the carrier gas may differ from the purge gas, as shown in FIG. 12. The purge gas, which is introduced at time intervals t1, t3, t5 and t7 comprises of Ar. The carrier gas, which is introduced at time intervals t2 and t6, comprises of N2. Thus, at time interval t2 the gases introduced into the processing chamber include a mixture of B2H6 and N2, and a time interval t6, the gas mixture includes WF6 and N2. The pump process during time intervals t4 and t8 is identical to the pump process discussed above with respect to FIG. 5.


Referring again to FIG. 2, the process for depositing the tungsten layer may be controlled using a computer program product that is executed by the controller 22. To that end, the controller 22 includes a central processing unit (CPU) 70, a volatile memory, such as a random access memory (RAM) 72 and permanent storage media, such as a floppy disk drive for use with a floppy diskette, or hard disk drive 74. The computer program code can be written in any conventional computer readable programming language; for example, 68000 assembly language, C, C++, Pascal, Fortran and the like. Suitable program code is entered into a single file, or multiple files, using a conventional text editor and stored or embodied in a computer-readable medium, such as the hard disk drive 74. If the entered code text is in a high level language, the code is compiled and the resultant compiler code is then linked with an object code of precompiled Windows® library routines. To execute the linked and, compiled object code the system user invokes the object code, causing the CPU 70 to load the code in RAM 72. The CPU 70 then reads and executes the code to perform the tasks identified in the program.


Although the invention has been described in terms of specific embodiments, one skilled in the art will recognize that various changes to the reaction conditions, i.e., temperature, pressure, film thickness and the like can be substituted and are meant to be included herein. Additionally, while the deposition process has been described as occurring in the same chamber, it may be bifurcated. In this manner, the nucleation layer may be deposited in one chamber and the bulk deposition occurring in a differing chamber, located within the same mainframe deposition system. However, the bulk deposition may occur in a processing chamber of a mainframe deposition system that is different from the mainframe deposition system in which the processing chamber is located that is employed to deposit the nucleation layer. Finally, other refractory metals may be deposited, in addition to tungsten, and other deposition techniques may be employed in lieu of CVD. For example, physical vapor deposition (PVD) techniques, or a combination of both CVD and PVD techniques may be employed. The scope of the invention should not be based upon the foregoing description. Rather, the scope of the invention should be determined based upon the claims recited herein, including the full scope of equivalents thereof.

Claims
  • 1. A method for forming a layer on a substrate disposed in a processing chamber, said method comprising: forming a nucleation layer by serially exposing said substrate to first and second reactive gases; and forming atop of said nucleation layer, a bulk deposition layer employing vapor deposition to subject said nucleation layer to a bulk deposition of a compound contained in one of said first and second reactive gases.
  • 2. The method as recited in claim 1 wherein forming atop of said nucleation layer includes forming said bulk deposition layer employing chemical vapor deposition.
  • 3. The method as recited in claim 1 wherein forming atop of said nucleation layer includes forming said bulk deposition layer employing physical vapor deposition.
  • 4. The method as recited in claim 1 wherein forming a nucleation layer further includes introducing said first and second gases therein so as to purge said processing chamber of said first reactive gas by introducing a purge gas therein, before exposing said substrate to said second reactive gas.
  • 5. The method as recited in claim 1 wherein forming a nucleation layer further includes purging said processing chamber of said first reactive gas by pumping said processing chamber clear of all gases disposed therein before introducing said second reactive gas.
  • 6. The method as recited in claim 1 wherein forming a nucleation layer further includes purging said processing chamber of said first reactive gas by introducing a purge gas subsequently pumping said processing chamber clear of all gases disposed therein before exposing said substrate to said second reactive gas.
  • 7. The method as recited in claim 1 wherein forming a nucleation layer includes forming alternating layers of a boron-containing compound and a refractory metal compound onto said substrate.
  • 8. The method as recited in claim 7 wherein the boron-containing compound is diborane B2H6.
  • 9. The method as recited in claim 7 further including subject said substrate to a purge gas following formation of each of said alternating layers.
  • 10. A method for forming a layer on a substrate, said method comprising: serially exposing said substrate to first and second reactive gases, while said substrate is disposed in a processing chamber, to form a nucleation layer; removing from said processing chamber said first reactive gas before exposing said substrate to said second reactive gas; forming said layer adjacent to said nucleation layer by chemical vapor deposition while said substrate is disposed in said processing chamber by concurrently exposing said nucleation layer to said second reactive gas and a reducing agent.
  • 11. The method of claim 10 wherein said second reactive gas includes a refractory metal and said reducing agent includes silane.
  • 12. The method of claim 11 wherein said refractory metal is selected from the group consisting of titanium (Ti) and tungsten (W).
  • 13. The method of claim 10 wherein removing from said processing chamber further includes introducing a purge gas into said processing chamber and pumping said first processing chamber clear of all gases present therein.
  • 14. The method as recited in claim 10 wherein said nucleation layer has a thickness in the range of 10 to 100 Å.
US Referenced Citations (162)
Number Name Date Kind
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Nishizawa et al. Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuka et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 NIshizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5835677 Li et al. Nov 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6158446 Mohindra et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
20010000866 Sneh et al. May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
Foreign Referenced Citations (196)
Number Date Country
196 27 017 Jan 1997 DE
198 20 147 Jul 1999 DE
344 352 Dec 1989 EP
0 429 270 May 1991 EP
0 442 490 Aug 1991 EP
0799641 Oct 1997 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-236657 Sep 1989 JP
01-245512 Sep 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Oct 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04-151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-285167 Oct 1992 JP
04-291916 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-132236 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-188840 Jul 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-218445 Aug 2000 JP
2000-319772 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-020075 Jan 2001 JP
2001-62244 Mar 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-189312 Jul 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
9002216 Mar 1990 WO
WO910510 Jul 1991 WO
9302111 Feb 1993 WO
9617107 Jun 1996 WO
9618756 Jun 1996 WO
9806889 Feb 1998 WO
WO 9851838 Nov 1998 WO
WO9901595 Jan 1999 WO
9913504 Mar 1999 WO
WO9929924 Jun 1999 WO
9941423 Aug 1999 WO
0011721 Mar 2000 WO
WO0015865 Mar 2000 WO
0015881 Mar 2000 WO
0016377 Mar 2000 WO
0054320 Sep 2000 WO
0063957 Oct 2000 WO
0079019 Dec 2000 WO
0079576 Dec 2000 WO
0115220 Mar 2001 WO
0115220 Mar 2001 WO
0127346 Apr 2001 WO
0127347 Apr 2001 WO
0129280 Apr 2001 WO
0129891 Apr 2001 WO
0129893 Apr 2001 WO
0136702 May 2001 WO
0140541 Jun 2001 WO
0166832 Sep 2001 WO