The entire teachings of the above application(s) are incorporated herein by reference.
Doping Gallium Arsenide (GaAs) heavily n-type is known to generate defects which can move throughout semiconductor layers. These defects can move out of the semiconductor layer from which they originate into all other layers in a stack of semiconductor layers. Upon moving into other layers, these defects can cause mixing of these other layers and their dopant profiles. This intermixing of layers and dopant profiles is undesirable because it can modify material properties including bandgap, conductivity, and etch rate relative to the unmixed layers. Therefore a way to prevent intermixing would be of great benefit.
Indium gallium phosphide (InGaP) and arsenic-based layers (e.g., GaAs, AlAs, InAs layers and all their combinations—such as AlGaAs, InGaAs, AlInAs, etc.) typically undergo severe intermixing of the group V elements (phosphorous (P) and arsenic (As)) during epitaxial growth when heavily doped n-type (e.g., >1e18 cm−3) GaAs is placed anywhere in the semiconductor layer stack. There is also dopant diffusion and group III intermixing present. InGaP and InAlGaAs layer stacks have multiple applications (etch-stop layers for semiconductor device fabrication and distributed Bragg reflector (DBR) stacks for optical applications are two of many examples) where such diffusion and intermixing is highly detrimental to the processing and/or functioning of the semiconductor device.
Typical semiconductor devices are fabricated by the deposition of semiconductor layers in a controlled manner, often by techniques such as metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). These layers may consist of constant composition and doping, or they may contain gradients and/or discontinuities in either or both of these. Often, pluralities of layers are fabricated in sequence, forming a stack of semiconductor layers designed to achieve certain electrical, optical, or other functions. Herein, the term “layer” refers to a region of semiconductor material with finite thickness and at least one level of composition and doping density. A “stack,” “layer stack,” or “layer structure” refers to a plurality of layers and therefore may also contain more than one composition or doping density.
There is very high wet etch selectivity between (Al,In)GaAs layers and InGaP which allows for a high degree of control during the device fabrication process. However, if the material in these layers becomes mixed with each other, this wet etch selectivity is lost. An InGaP etch-stop significantly mixed with arsenic-based layers can become difficult to etch at all. In other cases, depending on etch chemistry and layer thicknesses, a mixed InGaP etch stop can be removed (etched) unintentionally, thus failing to serve its intended purpose as an etch-stop.
One such example of using InGaP and InAlGaAs layer combinations for etch-stops exists when a bipolar transistor structure is grown over a field-effect transistor (FET) structure. By combining the advantages of bipolar and field-effect transistors in the same monolithic circuit, these structures can address the demands for greater circuit functionality with minimal increase to die size. A specific example of such a device is Bipolar-High Electron Mobility Transistor (BiHEMT), in which a Heterojunction Bipolar Transistor (HBT) structure is grown on top of a High Electron Mobility Transistor (HEMT) structure. The HBT is a specific type of bipolar transistor and the HEMT is a specific type of FET, each with associated advantages. The HBT is advantageous due to its high gain and low base current and the HEMT is advantageous due to high channel electron velocity and associated high frequency performance. Specific types of HEMT devices include pseudomorphic HEMT (pHEMT) or metamorphic HEMT (mHEMT). Both pHEMT and mHEMT are subsets of HEMTs, just as HEMTs are a subset of FETs, as will be readily understood by those of skill in the art. BiHEMT circuits are attractive for many applications such as in wireless handsets and wireless local area networks. For example, power amplifier circuits and switches can be integrated in a BiHEMT chip instead of having a separate power amplifier circuit in an HBT structure and a separate switch circuit in a HEMT structure.
The thickness and doping level of GaAs contact layers contained in a BiHEMT semiconductor layer structure generally are sufficient to cause severe intermixing of the InGaP etch-stop layer with surrounding arsenic-based (GaAs, AlAs, InAs, AlGaAs, InGaAs, AlInAs, AlInGaAs) layers during layer formation by MOCVD or MBE. This makes etching of the InGaP etch-stop and surrounding layers very difficult to control. Etch-stop layers can exist in multiple locations in a BiHEMT structure. The most common locations are between the HEMT and HBT layer structures and/or in the HEMT structure just above the Schottky layer. For the former, the etch-stop layer is used during a wet etch process to selectively remove the HBT layers in desired locations, uncovering the underlying HEMT structure for subsequent processing. For the latter, once the HEMT structure has been uncovered, the etch-stop layer is used to selectively remove contact or other optional layers from the HEMT in order to locate the Schottky contact (also sometimes called the gate contact) on the Schottky layer at the desired distance from the HEMT channel. This distance is critical to control, for example, the pinchoff voltage of the HEMT.
A mixture of phosphoric acid: H2O2: H2O is a common etchant for GaAs and AlGaAs which does not etch InGaP. HCl is a common InGaP etchant which does not etch GaAs or AlGaAs. However, if InGaP layers become mixed with surrounding As-containing layers, then either the HCl will not be able to remove the InGaP, or the phosphoric acid mix will etch through the InGaP (due to its defective nature) depending upon the thickness of the InGaP layer and the exact concentrations of acid. It should be understood that other wet etch combinations will have similar problems with intermixed InGaP etch-stop layers. Both of these types of failures will prevent the fabrication of a properly functioning BiHEMT device.
For the case of an etch-stop separating HEMT and HBT layers, unintentional removal of the etch-stop (e.g., with the phosphoric acid mix) will lead to undesired etching of HEMT contact layers and can degrade HEMT properties such as contact resistance. If the etch-stop wet etch (e.g., HCl) is unable to remove the etch-stop, subsequent HEMT processing steps that rely on absence of the InGaP etch stop layer, such as ohmic contact formation or recess etching, will be impacted.
For the case of an etch-stop that is used to create a gate recess and locate the Schottky contact of a HEMT, InGaP intermixing with surrounding arsenic-based layers can cause multiple problems. Unintentional removal of the etch-stop (e.g., with the phosphoric acid mix) will lead to undesired etching of HEMT layers below the Schottky layer. These can include the channel and spacer layers, which house the electrons that carry current through the HEMT structure. If the electron concentration in these layers is reduced or if the layers are completely removed, the drain current of the HEMT will be much lower than desired. If the etch-stop wet etch (e.g., HCl) is unable to remove the etch-stop, the Schottky contact will be placed on the surface of the intermixed etch-stop layer, not the Schottky layer as desired. Since the composition of the etch-stop and Schottky layers is different, and since the intermixed etch-stop layer is highly defective, properties of the Schottky contact are degraded. Specifically, this leads to a shift in pinchoff voltage and can also be accompanied by increased leakage or gate nonideality.
Additionally, the growth of HBT layers over HEMT layers by MOCVD or MBE causes dopant profiles (usually silicon) in HEMT layers to become smeared and/or broadened. Proper placement of these dopants is critical, for example, to the on-resistance, pinchoff voltage, and breakdown voltage of the HEMT device contained within the BiHEMT. One or both of the degradation mechanisms described herein (InGaP mixing and dopant profile smearing/broadening) can take place simultaneously and both lead to poor performance of the HEMT device. For the above reasons, there is a need for methods of depositing semiconductor layers which prevent InGaP layer mixing and dopant profile broadening.
The invention generally is directed to a semiconductor device and a method of fabricating a semiconductor device.
In one embodiment, the semiconductor device includes a field-effect transistor that includes a first layer of at least one arsenic-based semiconductor, and a bipolar transistor that includes a second layer of at least one arsenic-based semiconductor. An etch-stop is between the first and second layers. A p-type layer is between the etch-stop layer and the second layer, whereby the p-type layer inhibits intermixing of the etch-stop layer with at least one of the arsenic-based semiconductor layers.
In another embodiment, the semiconductor device includes a field-effect transistor that includes a first layer of at least one arsenic-based semiconductor and an etch-stop layer, and a bipolar transistor that includes a second layer of at least one arsenic-based semiconductor. A p-type layer is between the etch-stop layer and the second layer, whereby the p-type layer inhibits intermixing of the etch-stop layer with at least one of the arsenic-based semiconductor layers.
In another embodiment, the invention is a method of fabricating a semiconductor device that includes the steps of depositing a field-effect transistor that includes a first layer of at least one arsenic-based semiconductor and an etch-stop layer, depositing a bipolar transistor that includes a second layer of at least one arsenic-based semiconductor, wherein the etch-stop layer is between the first and second layers, and depositing a p-type layer between the etch-stop layer and the second layer, whereby the p-type layer inhibits intermixing of the etch-stop layer with at least one of the arsenic-based semiconductor layers.
In another embodiment, the invention is a method of fabricating a semiconductor device that includes the steps of depositing an etch-stop layer above an arsenic-based semiconductor layer of a field-effect transistor, depositing a p-type layer above the etch-stop layer, and depositing an arsenic-based semiconductor layer of a bipolar transistor above the p-type layer, thereby creating an electric field that prevents intermixing of the etch-stop layer with at least one of the arsenic-based semiconductor layers.
The invention has many advantages. For example, the semiconductor device of the invention includes a doped p-type semiconductor layer that prevents intermixing of an etch-stop layer and arsenic-containing semiconductor layers. By the same mechanism, it also reduces dopant profile broadening. In one embodiment, the p-type layer is deposited between the etch-stop layer in question and some or all of an n-type layer where defects that lead to intermixing originate.
In a specific example, a heavily p-type doped layer is GaAs, doped with carbon (C) to >3×1019 cm−3 and >12 Å thick. This layer is deposited underneath an n-type GaAs (doped with silicon) subcollector contact layer of an HBT, but deposited above the n-type GaAs contact layer of an FET. Embodiments of the present invention work even if there are layers between the p-type GaAs layer and the n-type GaAs contact layers.
It is believed that the p-type semiconductor layer and the n-type semiconductor layer set up a defect-blocking electric field, which subsequently blocks the defects from reaching the etch-stop layer and therefore prevents mixing of the etch-stop layer with adjacent layers. This also prevents dopant profile broadening for layers in the vicinity of the InGaP layer as well.
Those skilled in the art will appreciate that embodiments of the present invention include other means of setting up an electric field pointing in the proper direction for blocking the defects. Such electric fields are the result of electrostatic charge balance in semiconductor stacks and can be engineered in many ways. For example, a modulation doped heterojunction (n+AlGaAs/undoped InGaAs) may set up a strong electric field in the proper direction which could block charged migrating defects.
The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
A description of example embodiments of the invention follows.
Embodiments of the present invention relate in general to deposition of semiconductor layers for subsequent fabrication of semiconductor devices, and in particular to methods of controlling intermixing in these layers. These embodiments reduce or prevent undesirable intermixing between InGaP and adjacent layers in Bipolar-High Electron Mobility Transistor (BiHEMT) structures. They can also minimize dopant diffusion related to the intermixing. Those skilled in the art will readily see many other applications for these inventive techniques, such as Distributed Bragg Reflectors (DBRs) in optical devices.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/384,094, filed on Sep. 17, 2010.
Number | Date | Country | |
---|---|---|---|
61384094 | Sep 2010 | US |