This invention relates to an etching method for package assembly, and particularly, to a method of dry etching with a pattern mask.
In the process and manufacture of semiconductor, etching the thin films previously deposited and/or the substrate itself is necessary. In general, there are two classes of etching processes, wet etching and dry etching. Wet etching utilizes a chemical reaction processed between a film and specific chemical solution to remove the film uncovered by photo-resist. Because this etching method uses the chemical reaction to remove the film, the chemical reaction is not particular directional, so the method is so-called an isotropic etching. A disadvantage of wet etching is the undercutting caused by the isotropy of etching. Another, the dry etching employs plasma to remove the film, and the reaction is unconcerned with solution. The purpose of dry etching is to create an anisotropic etch—meaning that the etching is un-directional. An anisotropic etch is critical for high-fidelity pattern transfer.
The fluorine ions are accelerated by the electric field causing them to collide into the surface of the sample or the etching region, where they combine with silicon dioxide and then are dispersed. The phenomenon is Ion Bombardment. Because the electric field accelerates ions toward the surface, the etching caused by these ions is much more dominant than the etching of Radicals—ions traveling in varied directions, so the etching are anisotropic. In dry etching process, a hard mask is used to protect certain areas from etching, and to expose only the areas desired to be etched. Conventionally, RIE or plasma etching employs photo-resist as an etching pattern.
The etching for packaging assembly is quite different from the etching to the chips formation. A certain process maybe introduced to remove the native oxide formed on the metal pad. Typically, it is likely to remove the undesired material by wet etching when the wafer includes general silicon based device formed thereon. However, if a wafer or substrate is packaged with different species of devices, for example, one includes aluminum pad and other includes gold pad. As known, oxide is likely to be formed on the aluminum pad. Thus, an etching is necessary to remove the oxide formed thereon. However, a blanket etching or wet etching will damage the part of wafer without the oxide formation, for instance, the gold pad. The conventional method will cause the gold pad to be damage when the blank etching is performed for package assembly. In addition, increasing the quantity of output effectively is hard. What is desired is a new method for package assembly in order to overcome these problems.
The present invention discloses a structure for etching, the structure comprise a mask for protecting an area of a wafer from being etched, wherein the mask has at least one air opening to expose an area to be etched; and a seal ring attached under a lower surface of the mask, wherein the mask is attached on the wafer through the seal ring.
Furthermore, the present invention discloses a structure for etching, the structure comprises a mask for protecting an area of a wafer from being etched, wherein the mask has at least one air opening to expose an area to be etched; and a cavity to expose a pixels array when the mask is attached to the wafer.
In addition, the present invention discloses a method to form etching mask, the method comprise the steps of providing a base material and coating a first masking material and a second masking material on both sides of the base material. The next step is to pattern the first masking material and the second masking material, thereby forming first openings within the first masking material and the second masking material, and a second opening within one of first masking material and the second masking material. Subsequently, the base material is etched through the first openings and second opening to create at least one mask opening and a mask cavity. Then, the first masking material and the second masking material is stripped.
An aspect of the present invention is to provide a pattern mask structure in dry etching process for packaging a wafer instead of an individual chip. The mask is attached on a wafer through spacer or seal ring, for exposing only the areas desired to be etched and protecting the wafer. There are no exposure or development steps needed for pattern mask. Therefore, the advantage of the present invention is to simplify etching process for improving the quantity of output effectively. In addition, this may further reduce the cost for manufacture.
Furthermore, another aspect of the present invention may be applied to the removal of layer, material formed on an area of signal die. This can control etching process on a particular area of a wafer so that avoid the other area on wafer being etched, whereby improving the process quality and accuracy. Furthermore, the material under removing is not limited to oxide, any undesired material could be removed by the present invention. For example, the present invention can be applied to remove unwanted area coating on a CMOS sensor.
Another aspect of the present invention is having spacer or seal ring formed between the mask and the wafer for reducing the possible that the mask contact with wafer directly, avoiding the surface on wafer being scraped by the mask. In this manner, the present invention can further improve the wafer quality in manufacture process. In addition, an advantage of present invention is to reduce the stress that the mask attached on the wafer because the material of the spacer or seal ring includes elastic material, absorbing indirectly the mechanical stress.
The above objects, and other features and advantages of the present invention will become more apparent after reading the following detailed description when taken in conjunction with the drawings, in which:
The following embodiments and drawings thereof are described and illustrated in the specification that are meant to be exemplary and illustrative, not limiting in scope. One skilled in the relevant art will identify that the invention may be practiced without one or more of the specific details, not limiting in scope.
Referenced throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment and included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Thus, refer to
The mask 202 is attached on the upper surface of the wafer 100 through the seal ring 204 as shown in
During dry etching, applying plasma 400 on the wafer 100 as shown in
Alternatively, in accordance with another embodiment of the present invention, an across-sectional view of a structure for the dry etching process is shown in
Alternatively, the present invention provides another mask design as shown in
Refer to
Alternatively, another mask design is shown in
Therefore, the present invention provides a method to remove undesired material for package. The area to be etched is exposed by the mask with air opening, and the residual area is protected by the mask.
Alternatively, the material under removing is not limited to oxide, any undesired material could be removed by the present invention. For example, in the application for CMOS sensor, the present invention can be applied to remove unwanted layer such as coating on the area except for the lens area.
It will be appreciated to those skilled in the art that the preceding examples and preferred embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention.
This application is a divisional of U.S. application Ser. No. 11/562,442, filed Nov. 22, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11562442 | Nov 2006 | US |
Child | 11837738 | US |