The present invention relates to microelectronic components. In particular, aspects of the invention relate to microelectronic component assemblies and methods of manufacturing microelectronic component assemblies. Certain embodiments of the invention provide packaged microelectronic component assemblies.
Semiconductor chips or dies typically are manufactured from a semiconductor material such as silicon, germanium, or gallium/arsenide. An integrated circuit or other active feature(s) is incorporated in the die adjacent one surface, often referred to as the “active surface,” of the die. The active surface typically also includes input and output terminals to facilitate electrical connection of the die with another microelectronic component.
Since semiconductor dies can be degraded by exposure to moisture and other chemical attack, most dies are encapsulated in a package that protects the dies from the surrounding environment. The packages typically include leads or other connection points that allow the encapsulated die to be electrically coupled to another electronic component, e.g., a printed circuit board. One common package design, referred to as a board-on-chip (BOC) package, includes a semiconductor die attached to a small circuit board, e.g., via a die attach adhesive. Some or all of the terminals of the semiconductor die then may be electrically be connected to a first set of contacts of the board, e.g., by wire bonding. The connected board and die may then be encapsulated in a mold compound to complete the packaged microelectronic component assembly. A second set of contacts carried on an outer surface of the board remain exposed; these exposed contacts are electrically connected to the first contacts, allowing the features of the semiconductor die to be electrically accessed.
The microelectronic component assembly 10 also includes a plurality of bond wires 40. A first set of bond wires 40a may extend from individual terminals 24 of the die 20 to a first set of bond pads 32a arranged on the front side 36 of the board 30 along a first side of the passage 34. Similarly, a series of second bond wires 40b may extend from other terminals 24 in the terminal array to a second set of bond pads 32b arranged on the front side 36 along the opposite side of the passage 34. Typically, these bond wires 40 are attached using wire-bonding machines that spool a length of wire through a capillary. A molten ball may be formed at a protruding end of the wire and the capillary may push this molten ball against one of the terminals 24, thereby attaching the terminal end 42 of the wire 40 to the die 20. The capillary moves laterally in a direction away from the bond pad 32 to which the wire 40 will be attached (referred to as the reverse motion of the capillary), then a further length of the wire will be spooled out and the board end 44 of the wire 40 will be attached to the bond pad 32. The reverse motion of the capillary is required to bend the wire into the desired shape to avoid undue stress at either the terminal end 42 or the board end 44. The need to move the capillary in the reverse direction to form the bend in the wire 40 requires significant clearance between the terminal end 42 and the inner surface of the passage 34, increasing the width W of the passage 34. The reverse motion also increases the length of each of the bond wires 40 and often requires an increased loop height L of the wire 40 outwardly from the front surface 22 of the die 20.
As noted above, most commercial microelectronic component assemblies are packaged in a mold compound 50. The mold compound 50 typically encapsulates the die 20, the adhesive members 35, the bond wires 40, and an inner portion of the board 30. A remainder of the board 30 extends laterally outwardly from the sides of the mold compound 50. In many conventional applications, the mold compound 50 is delivered using transfer molding processes in which a molten dielectric compound is delivered under pressure to a mold cavity having the desired shape. In conventional side gate molds, the mold compound will flow from one side of the cavity to the opposite side. As the front of the molten dielectric compound flows along the passage 34 under pressure, it will tend to deform the wires. This deformation, commonly referred to as “wire sweep,” can cause adjacent wires 40 to abut one another, creating an electrical short. Wire sweep may also cause one of the wires 40 to bridge two adjacent leads, creating an electrical short between the two leads. These problems become more pronounced as the wire pitch becomes smaller and as thinner wires 40 are used.
To protect the bond wires, a conventional BOC package is positioned in the mold cavity with the die oriented downwardly and the substrate oriented upwardly, i.e., generally in the orientation illustrated in
A. Overview
Various embodiments of the present invention provide various microelectronic component assemblies and methods for forming microelectronic component assemblies. The terms “microelectronic component” and “microelectronic component assembly” may encompass a variety of articles of manufacture, including, e.g., SIMM, DRAM, flash-memory, ASICs, processors, flip chips, ball grid array (BGA) chips, or any of a variety of other types of microelectronic devices or components therefor.
For ease of understanding, the following discussion is subdivided into two areas of emphasis. The first section discusses microelectronic component assemblies in accordance with- selected embodiments of the invention. The second section outlines methods in accordance with other embodiments of the invention.
B. Microelectronic Component Assemblies Having Recessed Wire Bonds
Turning first to
The microelectronic component 110 has an active surface 112 and a back surface 116. The active surface 112 carries an array of terminals 114. In one embodiment (not shown), the terminals 114 are aligned along a longitudinal midline of the microelectronic component 110. In the illustrated embodiment, the terminals 114 are arranged in a longitudinally extending array in which the terminals 114 are staggered along either side the midline of the microelectronic component. As is known in the art, such a staggered arrangement can facilitate a smaller wire pitch, increasing the maximum number of terminals 114 in a given length. Arrays in which the terminals 114 are more widely distributed on the active surface 112 may be used instead.
The microelectronic component 110 may comprise a single microelectronic component or a subassembly of separate microelectronic components. In the embodiment shown in
The substrate 120 may include a back surface 130 and a contact surface 128 that carries a plurality of contacts 129. The distance between the back surface and the contact surface defines a thickness of a body 126 of the substrate 120. A recess 132 in the substrate extends inwardly from the contact surface 128 to a bond pad surface 124 (shown as 124a and 124b in
In the illustrated embodiment, the passage 134 may have a width W that is less than a width of the recess 132 and have a midline that generally bisects the width of the recess 132. This will define a first bond pad surface 124a extending along one edge of the passage 134 and a second bond pad surface 124b extending along the other edge of the passage 134. As explained below, aspects of the microelectronic component assembly 101 allow the width W of the recess 134 to be substantially smaller than the gap width W encountered in conventional designs such as the one shown in
Any of a variety of common microelectronic component substrate materials may be used to form the substrate 120. For example, the substrate may have a laminate structure such as those used in some printed circuit boards. In one embodiment, the substrate 120 may be formed of a first ply or set of plies that define the thickness of the base 122 and a second ply or set of plies that have a thickness equal to the height of the recess HR. If so desired, a printed circuit may be defined between the first and second plies to electrically connect the bond pads 125 to the contacts 129.
The substrate 120 may be attached to the microelectronic component 110 by means of an adhesive member. In the microelectronic component subassembly 101 of
The contact surface 128 of the substrate 120 is spaced a first height H1 from the active surface 112 of the microelectronic component 110. The bond pad surfaces 124a and 124b each may be positioned at a second height H2 from the active surface 112. The first height H1 is greater than the second height H2, defining a recess height HR between the bond pad surfaces 124 and the contact surface 128 of the substrate 120. The relative dimensions of these heights H1, H2, and HR may be varied to meet the needs of a particular application.
In the embodiment shown in
In the subassembly 102 of
The microelectronic component subassembly 102 illustrated in
In one embodiment, the first portion 154 of the dielectric matrix 150 may have a maximum height outwardly from the active surface 112 of the microelectronic component that is no greater than the height (H1 in
The dielectric matrix 150 may be formed of any material that will provide suitable protection for the elements within the matrix 150. It is anticipated that most conventional, commercially available microelectronic packaging mold compounds may be useful as the dielectric matrix 150. Such mold compounds typically comprise a dielectric thermosetting plastic that can be heated to flow under pressure into a mold cavity of a transfer mold. In other embodiments, the dielectric matrix 150 may comprise a more flowable dielectric resin that can be applied by wicking under capillary action instead of delivered under pressure in a transfer mold.
As noted previously, terminal pitch and bond wire pitch in packaged microelectronic components (e.g., microelectronic component 10 of
Because the bond wires 140 need not extend outwardly from the active surface 112 as far or extend laterally as far to reach the bond pads 125 of the substrate 120, the length of each of the bonding wires 140 can be materially reduced. Wire sweep increases as the bonding wires become longer. Shortening the bond wires 140, therefore, will reduce the wire sweep encountered for bond wires 140 having the same diameter, or it may permit the use of thinner (and cheaper) bond wires 140 that experience about the same degree of wire sweep.
The microelectronic component assembly 100 of
C. Methods of Manufacturing Microelectronic Component Assemblies
As noted above, other embodiments of the invention provide methods of manufacturing microelectronic component assemblies. In the following discussion, reference is made to the particular microelectronic component assemblies shown in
In one embodiment, a method of the invention may include juxtaposing an active surface 112 of a microelectronic component 110 with the back surface 130 of a substrate 120. This may include aligning the passage 134 in the base 122 with the terminals 114 of the microelectronic component 110. Once the substrate 120 is in the desired position with respect to the microelectronic component 110, the substrate 120 may be attached to the active surface 112 of the microelectronic component 110 with the array of terminals 114 accessible through the passage 134. In one embodiment, this attachment is accomplished via a pair of adhesive members 135. If the adhesive members 135 each comprise a die attach tape, the first adhesive member 135a may be attached to the active surface 112 along a first longitudinal side of the array of terminals 114 and the second die attach tape 135b may be attached to the active surface 112 along the opposite side of the array of terminals. The substrate 120 may then be brought into contact with the outer surfaces of the adhesive members 135, thereby attaching the substrate 120 to the microelectronic component 110.
In one embodiment, at least two bond wires 140 are used to electrically couple the microelectronic component 110 to the substrate 120. Using a conventional, commercially available wire bonding machine, a terminal end 142 of a first bond wire 140a may be attached to one of the terminals 114 of the microelectronic component 110 and the bond pad end 144 of the first bond wire 140a may be bonded to a bond pad 125a on the bond pad surface 124 of the substrate 120. In a similar fashion, a second bond wire 140b may be attached to a second terminal 114 of the microelectronic component 110 and to another bond pad 125b. In one embodiment, each of the bond wires 140 has a maximum height outwardly from the active surface 112 of the microelectronic component 110 that is less than the height H1, of the contact surface 128.
A dielectric matrix 150 may be used to protect the microelectronic component subassembly 102. For example, the microelectronic component assembly 100 shown in
The back surface 130 of the substrate 120 may be spaced from the upper mold cavity surface 262, defining a first void 265 of the mold cavity 255. The contact surface 128 of the microelectronic component subassembly 102 may be oriented downwardly and disposed in contact with the lower mold cavity surface 272. This defines a second void 275 of the mold cavity 255 between the bond pad surface 124 and the lower mold cavity surface 272. The second void 275 is further bounded by the recess (132 in
The first and second voids 265 and 275 may be substantially filled with a dielectric matrix (150 in
If necessary, any inadvertent flash coating of the dielectric matrix 150 on the contact surface 128 of the substrate 120 may be removed by etching or grinding. As noted above, though, this is less likely to occur than in conventional, substrate-up molding operations. The conductive structures 220 (
The above-detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, whereas steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein can be combined to provide further embodiments. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above-detailed description explicitly defines such terms.
Number | Date | Country | Kind |
---|---|---|---|
200404238-8 | Jul 2004 | SG | national |
This application claims foreign priority benefits of Singapore Application No. 200404238-8 filed Jul. 23, 2004, in the name of Micron Technology, Inc., and entitled “MICROELECTRONIC COMPONENT ASSEMBLIES WITH RECESSED WIRE BONDS AND METHODS OF MAKING SAME,” and is a divisional of application Ser. No. 10/929,640, filed on Aug. 30, 2004 now U.S. Pat. No. 7,250,328, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4996629 | Christiansen et al. | Feb 1991 | A |
5062565 | Wood et al. | Nov 1991 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5145099 | Wood et al. | Sep 1992 | A |
5153981 | Soto | Oct 1992 | A |
5252857 | Kane et al. | Oct 1993 | A |
5311057 | McShane | May 1994 | A |
5518957 | Kim | May 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5714800 | Thompson | Feb 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
D394844 | Wood et al. | Jun 1998 | S |
5818698 | Corisis | Oct 1998 | A |
5826628 | Hamilton | Oct 1998 | A |
5834831 | Kubota et al. | Nov 1998 | A |
D402638 | Wood et al. | Dec 1998 | S |
5851845 | Wood et al. | Dec 1998 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891753 | Akram | Apr 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5894218 | Farnworth et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
5998860 | Chan et al. | Dec 1999 | A |
6008070 | Farnworth | Dec 1999 | A |
6008074 | Brand | Dec 1999 | A |
6018249 | Akram et al. | Jan 2000 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6049129 | Yew et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6064194 | Farnworth et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6087203 | Eng et al. | Jul 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6130474 | Corisis | Oct 2000 | A |
6133068 | Kinsman | Oct 2000 | A |
6133622 | Corisis et al. | Oct 2000 | A |
6137162 | Park et al. | Oct 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150710 | Corisis | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175149 | Akram | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6188232 | Akram et al. | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6201304 | Moden | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6214716 | Akram | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6218202 | Yew et al. | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232666 | Corisis et al. | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239489 | Jiang | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6246110 | Kinsman et al. | Jun 2001 | B1 |
6247629 | Jacobson et al. | Jun 2001 | B1 |
6249052 | Lin | Jun 2001 | B1 |
6252308 | Akram et al. | Jun 2001 | B1 |
6252772 | Allen | Jun 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6271580 | Corisis | Aug 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6281042 | Ahn et al. | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6285204 | Farnworth | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294825 | Bolken et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6329222 | Corisis et al. | Dec 2001 | B1 |
6329705 | Ahmad | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331448 | Ahmad | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6365434 | Rumsey et al. | Apr 2002 | B1 |
6385049 | Chia-Yu et al. | May 2002 | B1 |
6387729 | Eng et al. | May 2002 | B2 |
6420782 | Eng et al. | Jul 2002 | B1 |
6429528 | King et al. | Aug 2002 | B1 |
6437586 | Robinson | Aug 2002 | B1 |
6451709 | Hembree | Sep 2002 | B1 |
6483044 | Ahmad | Nov 2002 | B1 |
6521993 | Masayuki et al. | Feb 2003 | B2 |
6548376 | Jiang | Apr 2003 | B2 |
6548757 | Russell et al. | Apr 2003 | B1 |
6552910 | Moon et al. | Apr 2003 | B1 |
6558600 | Williams et al. | May 2003 | B1 |
6560117 | Moon | May 2003 | B2 |
6561479 | Eldridge | May 2003 | B1 |
6564979 | Savaria | May 2003 | B2 |
6576494 | Farnworth | Jun 2003 | B1 |
6576495 | Jiang et al. | Jun 2003 | B1 |
6589820 | Bolken | Jul 2003 | B1 |
6590281 | Wu et al. | Jul 2003 | B2 |
6607937 | Corisis | Aug 2003 | B1 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6622380 | Grigg | Sep 2003 | B1 |
6638595 | Rumsey et al. | Oct 2003 | B2 |
6644949 | Rumsey et al. | Nov 2003 | B2 |
6650013 | Yin et al. | Nov 2003 | B2 |
6653173 | Bolken | Nov 2003 | B2 |
6656769 | Lee et al. | Dec 2003 | B2 |
6661104 | Jiang et al. | Dec 2003 | B2 |
6664139 | Bolken | Dec 2003 | B2 |
6670719 | Eldridge et al. | Dec 2003 | B2 |
6672325 | Eldridge | Jan 2004 | B2 |
6673649 | Hiatt et al. | Jan 2004 | B1 |
6841863 | Baik et al. | Jan 2005 | B2 |
7057281 | Peng et al. | Jun 2006 | B2 |
20030127712 | Murakami et al. | Jul 2003 | A1 |
20040173899 | Peng et al. | Sep 2004 | A1 |
20060017177 | Seng et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0 204 102 | Dec 1986 | EP |
0 240 433 | Oct 1987 | EP |
0 753 891 | Jan 1997 | EP |
0 849 794 | Jun 1998 | EP |
0921569 | Jun 1999 | EP |
01-309357 | Dec 1989 | JP |
2000-307032 | Nov 2000 | JP |
WO-02082527 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060208366 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10929640 | Aug 2004 | US |
Child | 11437397 | US |