Microelectronics devices, having vias, and packaged microelectronic devices having vias

Abstract
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming vias and conductive interconnects in microfeature workpieces and dies are disclosed herein. In one embodiment, a method includes forming a bond-pad on a die having an integrated circuit, the bond-pad being electrically coupled to the integrated circuit. A conductive line is then formed on the die, the conductive line having a first end portion attached to the bond-pad and a second end portion spaced apart from the bond-pad. The method can further include forming a via or passage through the die, the bond-pad, and the first end portion of the conductive line, and depositing an electrically conductive material in at least a portion of the passage to form a conductive interconnect extending at least generally through the microelectronic device.
Description
TECHNICAL FIELD

The following disclosure relates generally to microelectronic devices and methods for packaging microelectronic devices and, more particularly, to methods for forming vias in microelectronic workpieces.


BACKGROUND

Conventional die-level packaged microelectronic devices can include a microelectronic die, an interposer substrate or lead frame attached to the die, and a moulded casing around the die. The die generally includes an integrated circuit and a plurality of bond-pads coupled to the integrated circuit. The bond-pads are typically coupled to terminals on the interposer substrate or lead frame and serve as external electrical contacts on the die through which supply voltage, signals, etc., are transmitted to and from the integrated circuit. In addition to the terminals, the interposer substrate can also include ball-pads coupled to the terminals by conductive traces supported in a dielectric material. Solder balls can be attached to the ball-pads in one-to-one correspondence to define a “ball-grid array.” Packaged microelectronic devices with ball-grid arrays are generally higher grade packages having lower profiles and higher pin counts than conventional packages using lead frames.


One process for packaging a die with a ball-grid array at the die level includes (a) forming a plurality of dies on a semiconductor wafer, (b) cutting the wafer to separate or singulate the dies, (c) attaching individual dies to an interposer substrate, (d) wire-bonding the bond-pads of the dies to the terminals of the interposer substrate, and (e) encapsulating the dies with a suitable moulding compound. Mounting individual dies to interposer substrates or lead frames in the foregoing manner can be a time-consuming and expensive process. In addition, forming robust wire-bonds that can withstand the forces involved in moulding processes becomes more difficult as the demand for higher pin counts and smaller packages increases. Moreover, the process of attaching individual dies to interposer substrates or lead frames may damage the bare dies. These difficulties have made the packaging process a significant factor in the production of microelectronic devices.


Another process for packaging microelectronic devices is wafer-level packaging. In this process, a plurality of microelectronic dies are formed on a wafer, and then a redistribution layer is formed over the dies. The redistribution layer can include a dielectric layer and a plurality of exposed ball-pads forming arrays on the dielectric layer. Each ball-pad array is typically arranged over a corresponding die, and the ball-pads in each array are coupled to corresponding bond-pads of the die by conductive traces extending through the dielectric layer. After forming the redistribution layer on the wafer, discrete masses of solder paste are deposited onto the individual ball-pads. The solder paste is then reflowed to form small solder balls or “solder bumps” on the ball-pads. After forming the solder balls, the wafer is singulated to separate the individual microelectronic devices from each other.


Wafer-level packaging is a promising development for increasing efficiency and reducing the cost of microelectronic devices. By “pre-packaging” individual dies with a redistribution layer before cutting the wafers to singulate the dies, sophisticated semiconductor processing techniques can be used to form smaller arrays of solder balls. Additionally, wafer-level packaging is an efficient process that simultaneously packages a plurality of dies, thereby reducing costs and increasing throughput.


Packaged microelectronic devices such as those described above are used in cellphones, pagers, personal digital assistants, computers, and many other electronic products. To meet the demand for smaller electronic products, there is a continuing drive to increase the performance of packaged microelectronic devices, while at the same time reducing the height and the surface area or “footprint” of such devices on printed circuit boards. Reducing the size of microelectronic devices, however, becomes more difficult as the performance increases because higher performance typically means more integrated circuitry and bond-pads. This results in larger ball-grid arrays and thus larger footprints. One technique for increasing the component density of microelectronic devices within a given footprint is to stack one device on top of another.



FIG. 1 schematically illustrates a first microelectronic device 10 attached to a second microelectronic device 20 in a wire-bonded, stacked-die arrangement. The first microelectronic device 10 includes a die 12 having an integrated circuit 14 electrically coupled to a series of bond-pads 16. A redistribution layer 18 electrically couples a plurality of first solder balls 11 to corresponding bond-pads 16. The second microelectronic device 20 similarly includes a die 22 having an integrated circuit 24 electrically coupled to a series of bond-pads 26. A redistribution layer 28 electrically couples a plurality of second solder balls 21 to corresponding bond-pads 26. Wire-bonds 13 extending from the first solder balls 11 to the second solder balls 21 electrically couple the first microelectronic device 10 to the second microelectronic device 20.


The second solder balls 21 on the second microelectronic device 20 are positioned outboard of the first microelectronic device 10 to facilitate installation of the wire-bonds 13. As mentioned above, such installation can be a complex and/or expensive process. Forming the wire-bonds 13, for example, is not only difficult because it requires individual wires between each pair of solder balls, but it may not be feasible to form wire-bonds for the high-density, fine-pitch arrays of some high performance devices. In addition, positioning the second solder balls 21 outboard of the first microelectronic device 10 to accommodate the wire-bonds 13 undesirably increases the footprint of the stacked-die arrangement.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates a first microelectronic device attached to a second microelectronic device in a stacked-die arrangement in accordance with the prior art.



FIG. 2 is a cut-away isometric view of a microfeature workpiece configured in accordance with an embodiment of the invention.



FIGS. 3A-3G are schematic cross-sectional views illustrating various stages in a method of forming a conductive interconnect in a microelectronic device in accordance with an embodiment of the invention.



FIG. 4 is a schematic cross-sectional view illustrating a stage in a method of forming a conductive interconnect in a microelectronic device in accordance with another embodiment of the invention.



FIGS. 5A-5C are schematic cross-sectional views illustrating various stages in a method of forming a conductive interconnect in a microelectronic device in accordance with a further embodiment of the invention.



FIG. 6 is a schematic side cross-sectional view of a microelectronic device set configured in accordance with an embodiment of the invention.



FIG. 7 is a schematic side cross-sectional view of a microelectronic device set configured in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

A. Overview


The following disclosure describes several embodiments of microelectronic devices, methods for packaging microelectronic devices, and methods for forming vias in dies and other substrates. One aspect of the invention is directed toward a method of manufacturing a microelectronic device having a die with an integrated circuit. In one embodiment, the method includes forming a bond-pad on the die electrically coupled to the integrated circuit, and forming a redistribution layer on the die. The redistribution layer can include a conductive line having a first end portion attached to the bond-pad and a second end portion spaced apart from the bond-pad. The method can further include forming a via or passage through the die, the bond-pad, and the first end portion of the conductive line. An electrically conductive material can then be deposited into at least a portion of the passage to provide a conductive interconnect extending through the die that is electrically coupled to the bond-pad and the conductive line.


In one aspect of this embodiment, the method can further include cleaning the passage and applying a passivation layer to at least a portion of the passage before depositing the electrically conductive material into the passage. In one embodiment, the passivation layer can at least generally insulate the die from the electrically conductive material filling the passage. In another aspect of this embodiment, the method can further include applying a TiCL4 TiN layer to at least a portion of the passage, and applying a Ni layer over at least a portion of the TiCL4 TiN layer before depositing the electrically conductive material into the passage.


Another aspect of the invention is directed toward a set of microelectronic devices. In one embodiment, the microelectronic device set includes a first microelectronic device stacked on a second microelectronic device in a stacked-die arrangement. The first microelectronic device can include a first die with a first integrated circuit, a first bond-pad electrically coupled to the first integrated circuit, and a passage through the first die and the first bond-pad. The first die also includes a metal interconnect in the passage and coupled to the first bond-pad to form a conductive link extending at least partially through the first microelectronic device. The second microelectronic device can include a second die with a second integrated circuit and a second bond-pad electrically coupled to the second integrated circuit. The second bond-pad can be electrically coupled to the conductive link of the first microelectronic device.


Many specific details of the present invention are described below with reference to semiconductor devices. The term “microfeature workpiece,” however, as used throughout this disclosure includes substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, such microelectronic workpieces can include semiconductor wafers (e.g., silicon or gallium arsenide wafers), glass substrates, insulated substrates, and many other types of substrates. The feature signs in microfeature workpieces can include very small features of 0.11 μm or less, but larger features are also included on microfeature workpieces.


Specific details of several embodiments of the invention are described below with reference to microelectronic dies and other microelectronic devices in order to provide a thorough understanding of such embodiments. Other details describing well-known structures often associated with microelectronic devices are not set forth in the following description to avoid unnecessarily obscuring the description of the various embodiments. Persons of ordinary skill in the art will understand, however, that the invention may have other embodiments with additional elements or without several of the elements shown and described below with reference to FIGS. 2-7.


In the Figures, identical reference numbers identify identical or at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. For example, element 210 is first introduced and discussed with reference to FIG. 2.


B. Embodiments of Microfeature Workpieces



FIG. 2 is a cut-away isometric view of a wafer or microfeature workpiece 200 in accordance with an embodiment of the invention. In one aspect of this embodiment, the microfeature workpiece 200 includes a front side 201, a back side 202, and a plurality of microelectronic devices 210 (identified individually as microelectronic devices 210a-f). Each microelectronic device 210 can include a microelectronic die 212 and a redistribution layer 218 (RDL 218) formed on the die 212. Each die 212 can include an integrated circuit 214 (shown schematically), a first surface 241, a second surface 242, and a plurality of metallic and/or conductive bond-pads 216 electrically coupled to the integrated circuit 214. The RDL 218 can include a plurality of metallic and/or conductive lines 230 that each have a first end portion 231 electrically coupled to a corresponding bond-pad 216, a second end portion 232 spaced outwardly from the first end portion 231, and a trace between the first and second end portions 231 and 232. As described in greater detail below, the second end portions 232 in one embodiment can have ball-pads configured to receive solder balls for electrically connecting the microelectronic devices 210 to other devices.


In the embodiment illustrated in FIG. 2, the processing of the microelectronic devices 210 has not been completed. As described below with reference to FIGS. 3A-6, additional processing can be carried out on the microfeature workpiece 200 to configure or package the individual microelectronic devices 210 for use in an electronic device or product. After this additional processing is complete, the microfeature workpiece 200 is cut along lines A1-A1 to singulate the microelectronic devices 210.



FIGS. 3A-3G illustrate various stages in a method of forming a conductive interconnect in the microelectronic device 210b in accordance with an embodiment of the invention. FIG. 3A, more specifically, is a schematic side cross-sectional view of the microfeature workpiece 200 taken substantially along line 3A-3A in FIG. 2. In one aspect of this embodiment, the RDL 218 includes a first passivation layer 350 applied to the second surface 242 of the die 212, and a first dielectric layer 351 applied over the first passivation layer 350. The first dielectric layer 351 can be removed around the bond-pad 216 by etching or another known process to expose the bond-pad 216. Exposing the bond-pad 216 in this manner allows the fist end portion 231 of the conductive line 230 to contact the bond-pad 216 when the conductive line 230 is formed over the first dielectric layer 351.


After forming the conductive line 230, a first hole 360 is formed through the first end portion 231 of the conductive line 230 and the bond-pad 216. In one embodiment, the first hole 360 can be formed by an etching process. In other embodiments, the first hole 360 can be formed using other suitable methods. Additionally, a second dielectric layer 352 is applied over the microfeature workpiece 200 to cover the conductive line 230 and fill the first hole 360.


In one embodiment, the first and second dielectric layers 351, 352 include a polyimide material. In other embodiments, the first and second dielectric layers 351, 352 include other nonconductive and/or insulative materials. The first passivation layer 350 and/or one or more subsequent passivation layers can include a low temperature chemical vapor deposition (low temperature CVD) material, such as tetraethylorthosilicate (TEOS). In other embodiments, one or more of the passivation layers on the microfeature workpiece 200 can include parylene and/or other suitable materials, such as silicon oxide (SiOx) or silicon nitride (Si3N4). The foregoing list of passivation and dielectric material options is not exhaustive. Accordingly, in other embodiments, it is expected that other suitable materials and processes can be used to form one or more of the layers discussed herein. In addition, it is further expected that, in yet other embodiments, one or more of the layers described above with reference to FIG. 3A, or described below with reference to subsequent Figures, may be omitted.



FIG. 3A illustrates one method for providing an RDL on a die in accordance with the present invention. In other embodiments, other methods resulting in other RDL/die configurations can be used. Accordingly, as those of ordinary skill in the art will recognize, the methods described in detail below for forming vias in microelectronic devices are not limited to the particular RDL/die configuration illustrated in FIG. 3A.



FIGS. 3B-3G are schematic side cross-sectional views similar to FIG. 3A showing the microfeature workpiece 200 in subsequent stages of forming the interconnect. FIG. 3B, for example, is a schematic side cross-sectional view of the microfeature workpiece 200 after a second hole 361 and a third hole 362 have been formed through the second dielectric layer 352. In one aspect of this embodiment, forming the second hole 361 includes removing the second dielectric layer 352 from the first hole 360, thereby exposing the bond-pad 216 and the first end portion 231 of the conductive line 230. The third hole 362 is formed through the second dielectric layer 352 to expose part of the second end portion 232 of the conductive line 230. In one aspect of this embodiment, the second and third holes 361, 362 can be formed by dry-etching or by other suitable methods known to those of skill in the semiconductor processing art.



FIG. 3C illustrates the microfeature workpiece 200 of FIG. 3B after application of a second passivation layer 354 and a third passivation layer 356. The second passivation layer 354 is applied over the second dielectric layer 352 such that it is deposited into the first hole 360, the second hole 361, and the third hole 362. The third passivation layer 356 is applied to the first surface 241 of the die 212. In one aspect of this embodiment, the second and third passivation layers 354, 356 can include parylene. In other embodiments, the second passivation layer 354 can include other materials, such as an oxide.


Referring next to FIG. 3D, after application of the second and third passivation layers 354, 356, a laser 363 (shown schematically) cuts a passage or through-hole 364 through the microelectronic device 210b. In one aspect of this embodiment, the through-hole 364 extends at least through the die 212, the bond-pad 216, and the first end portion 231 of the conductive line 230. For example, in the illustrated embodiment, the through-hole 364 extends entirely through the third passivation layer 356, the die 212, and the second passivation layer 354. The laser 363 generally cuts from the back side 202 of the microfeature workpiece 200 toward the front side 201, but it can conceivably cut from the front side 201 toward the back side 202. Further, the laser 363 can be aligned with respect to the bond-pad 216 using a pattern recognition system or other known alignment system. In other embodiments, the through-hole 364 can be formed using other suitable methods known to those of skill in the art. For example, in another embodiment, it is expected that the through-hole 364 can be formed by a suitable etching or drilling process.


After forming the through-hole 364, it is cleaned to remove ablation (i.e., slag) and/or other undesirable byproducts resulting from the laser cut. In one embodiment, the through-hole 364 is cleaned using a wet-etch process. In this embodiment, the portion of the second passivation layer 354 remaining in the first hole 360 protects the bond-pad 216 and the first end portion 231 of the conductive line 230 from the wet-etch chemistry used to clean the slag from the die area of through-hole 364. This feature allows a single cleaning process/chemistry to clean the slag from the via for the interconnect without having to use a second cleaning process to clean residue on the bond-pad 216 and first end portion 231. In other embodiments, the through-hole 364 can be cleaned using other methods. For example, in some embodiments (one of which is described in greater detail below), cleaning agents that do not attack the metal of the bond-pad 216 can be used to clean the through-hole 364 so that the second passivation layer 354 is not needed to protect the bond-pad 216. One such cleaning agent may include 6% TMAH: propylene glycol for removing laser ablation. Alternatively, in certain other embodiments, the through-hole 364 can remain uncleaned after formation.


Referring to FIG. 3E, after cleaning the through-hole 364, a fourth passivation layer 358 is applied to the microfeature workpiece 200 to at least cover the portion of the die 212 exposed by the through-hole 364. The fourth passivation layer 358 can be applied in a number of different ways. For example, in the illustrated embodiment, the second and third passivation layers 354, 356 (FIG. 3D) are removed from the microfeature workpiece 200, and the fourth passivation layer 358 is then applied to the entire workpiece so that it covers the exposed portions of the die 212, the bond-pad 216, the conductive line 230, and the second dielectric layer 352. In one aspect of this embodiment, the fourth passivation layer 358 can include a low temperature CVD oxide. In other embodiments, the fourth passivation layer 358 can include other suitable materials. The fourth passivation layer 358 can insulate the die 212 from electrical leakage after the through-hole 364 has been filled with conductive metal (not shown) as described in greater detail below.


After application of the fourth passivation layer 358, a first metal layer 371 is applied to the microfeature workpiece 200. In the illustrated embodiment, the first metal layer 371 covers the entire fourth passivation layer 358. In one aspect of this embodiment, the first metal layer 371 can include TiCL4 TiN. In other embodiments, the first metal layer 371 can include other suitable materials known to those of skill in the art. For ease of reference, the passage formed by the through-hole 364, the first hole 360, and the second hole 361 is referred to herein as a via or passage 374 extending through the microfeature workpiece 200.


Referring next to FIG. 3F, the first metal layer 371 is removed from the horizontal and diagonal surfaces of the microfeature workpiece 200. The fourth passivation layer 358 is similarly removed from these surfaces, except that it is left on the first surface 241 of the die 212. In one embodiment, the first metal layer 371 and the fourth passivation layer 358 can be removed from these surfaces by a suitable etching process, such as a “dry etch” or “spacer etch” process that only removes material from horizontal surfaces and surfaces having horizontal components. In other embodiments, other processes can be used to remove these layers from the designated surfaces.


After the first metal layer 371 and the fourth passivation layer 358 have been removed from the horizontal and diagonal surfaces of the microfeature workpiece 200 as described above, a second metal layer 372 is applied to the first metal layer 371. The second metal layer 372 can act as a wetting agent to facilitate flowing and/or adhesion of subsequent metals in the passage 374. In one embodiment, for example, the second metal layer 372 can include Ni that is applied over the TiCL4 TiN of the first metal layer 371 in an electroless plating operation. In this embodiment, when the TiCL4 TiN is activated by an HF:Pd wet dip, it provides nucleation for the Ni during the plating process. In other embodiments, the passage 374 can be coated with other suitable materials using other methods or, alternatively, one or more of the first and second metal layers 371, 372 may be omitted.


Referring next to FIG. 3G, the passage 374 receives a metal fill 376 to form a conductive interconnect 377 extending through the microelectronic device 210b. In one aspect of this embodiment, the metal fill 376 can include solder or electroplating material. In other embodiments, other electrically conductive materials can be used to fill the passage 374. After filling the passage 374, a first cap 381 can be formed before depositing the fill 376 in the passage 374, or in another embodiment the cap 381 can be applied to the interconnect 377 so that it makes intimate contact with the first end portion 231 of the conductive line 230. A second cap 382 can be applied to the second end portion 232 of the conductive line 230. In one embodiment, the first and second caps 381, 382 can include Ni applied in an electroless plating process. In other embodiments, the first and second caps 381, 382 can include other wetting agents and/or other materials. Alternatively, the first cap 381 and the second cap 382 can be omitted. In another aspect of this embodiment, a solder ball 384 is attached to the second cap 382 to provide an external connection to other electronic devices in a subsequent assembly operation.


In addition to requiring only a single cleaning process for the through-hole 364, another feature of aspects of the embodiments described above with reference to FIGS. 3A-3G is that the passage 374 extends through the entire microfeature workpiece 200. One advantage of this feature is that it makes the passage 374 easier to clean and fill than would otherwise be the case if the passage were “blind” (i.e., a passage that extends only partially through the workpiece). For example, in certain applications where the passage 374 has an aspect ratio of 25-30:1 or greater, a blind passage is difficult to fill with metallic materials using known physical vapor deposition (PVD), atomic level deposition (ALD), or plating processes. The passage 374 mitigates this problem.



FIGS. 4 illustrates a stage in a method of forming a conductive interconnect in a microelectronic device 410 in accordance with another embodiment of the invention. In one aspect of this embodiment, the first part of this method is at least generally similar to the steps described above with reference to FIGS. 3A-3B, and results in the workpiece configuration illustrated in FIG. 3B. The second part of this method, however, differs from that described above with reference to FIGS. 3C-3G in that no passivation is deposited into the first hole 360 before the laser 363 cuts a through-hole 464 through the die 212. Instead, the through-hole 464 is cut and cleaned in the absence of any protection over the exposed metal of the bond-pad 216 and the conductive line 230. In the absence of such protection, the cleaning agents may be limited to those chemistries that do not attack or otherwise degrade the metal of the bond-pad 216 or the conductive line 230. For example, in one embodiment, such cleaning agents can include tetramethylammonium hydroxide (TMAH). In other embodiments, other cleaning agents can be used to clean the through-hole 464. After the through-hole 464 has been suitably cleaned, the microelectronic device 410 can undergo additional packaging steps that are at least generally similar to those described above with reference to FIGS. 3E-3G to arrive at the configuration illustrated in FIG. 3G.



FIGS. 5A-5C illustrate various stages in a method of forming a conductive interconnect in a microelectronic device 510 in accordance with another embodiment of the invention. Referring first to FIG. 5A, the first part of this method can be at least generally similar to the steps described above with reference to FIGS. 3A-3D to arrive at the workpiece configuration illustrated in FIG. 3D. In a further aspect of this embodiment, however, an additional passivation layer 558 is applied to the portion of the die 212 left exposed by the through-hole 364. In addition, after the passivation layer 558 has been applied, a first metal layer 571 is applied to the through-hole 364 and to the back side 202 of the microfeature workpiece 200. In one embodiment, the first metal layer 571 can include TiCL4 TiN. In other embodiments, the first metal layer 571 can include other suitable materials.


Referring next to FIG. 5B, the first metal layer 571 is removed from the back side 202 of the microfeature workpiece 200, leaving the passivation layer 558 covering this surface. Additionally, the first metal layer 571 and the second passivation layer 354 (FIG. 3D) are removed from the front side 201 of the microfeature workpiece 200 to expose the first hole 360, the second hole 361, and the third hole 362. The portions of the passivation layer 558 and the first metal layer 571 in the through-hole 364 remain after the other layers have been removed to insulate the die 212 from electrical leakage during use. For ease of reference, the passage formed by the through-hole 364, the first hole 360, and the second hole 361 is referred to herein as a via or passage 574 extending through the microfeature workpiece 200.


Referring next to FIG. 5C, the passage 574 receives a metal fill 576 to form a conductive interconnect 577 extending through the microelectronic device 510. In one aspect of this embodiment, the interconnect 577 can include solder or electroplating material. In other embodiments, other electrically conductive materials can be used to fill the passage 574. After filling the passage 574, the first cap 381 can be applied to the interconnect 577, and the second cap 382 can be applied to the second end portion 232 of the conductive line 230 to receive the solder ball 384.


The embodiments described above with reference to FIGS. 3A-5C include three methods forming and/or filling through-holes in microfeature workpieces that extend through bond-pads and/or associated RDLs. In other embodiments, other methods can be used to form and/or fill such through-holes. Accordingly, the present invention is not limited to the particular filling methods described above, but extends to other methods for providing a conductive material in a through-hole formed in accordance with the present invention.



FIG. 6 is a schematic side cross-sectional view of a microelectronic device set 605 configured in accordance with an embodiment of the invention. In one aspect of this embodiment, the microelectronic device set 605 includes a plurality of microelectronic devices 610 (individually identified as a first microelectronic device 610a, a second microelectronic device 610b, and a third microelectronic device 610c) interconnected in a stacked-die arrangement. The first microelectronic device 610a can be at least generally similar to the packaged microelectronic devices 210b and 510 discussed above and illustrated in FIGS. 3G and 5C, respectively. Accordingly, the first microelectronic device 610a can include a plurality of interconnects 677a extending through a die 612a, corresponding bond-pads 616a, and corresponding first end portions 631 of conductive lines 630. In addition, the first microelectronic device 610a can further include solder balls 684 deposited on second end portions 632 of the conductive lines 630 for electrically connecting the microelectronic device set 605 to other electronic devices. The second and third microelectronic devices 610b-c can similarly include interconnects 677b-c extending through dies 612b-c and bond-pads 616b-c, respectively.


In another aspect of this embodiment, first solder balls 686a can be used to electrically connect the first microelectronic device 610a to the second microelectronic device 610b, and second solder balls 686b can in turn be used to electrically connect the second microelectronic device 610b to the third microelectronic device 610c. A suitable adhesive 690 or other compound can also be used to structurally attach the microelectronic devices 610 together in the illustrated stacked-die configuration.



FIG. 7 is a schematic side cross-sectional view of a microelectronic device set 705 configured in accordance with an embodiment of the invention. In one aspect of this embodiment, the microelectronic device set 705 includes a plurality of microelectronic devices 710 (individually identified as a first microelectronic device 710a and a second microelectronic device 710b) interconnected in a stacked-die arrangement. Aspects of the first microelectronic device 710a can be at least generally similar to corresponding aspects of the microelectronic devices 210b and 510 discussed above and illustrated in FIGS. 3G and 5C, respectively. For example, the first microelectronic device 710a can include a top or first RDL 718a disposed on a first surface of a die 712a, and a bottom or second RDL 718b disposed on a second surface of the die 712a. A plurality of interconnects 777a extend through the die 712a interconnecting the first RDL 718a to the second RDL 718b. The second microelectronic device 710b similarly includes a third RDL 718c disposed on a surface of a second die 712b.


In another aspect of this embodiment, solder balls 786 can be used to electrically connect the second RDL 718b of the first microelectronic device 710a to the third RDL 718c of the second microelectronic device 710b. Additionally, a suitable adhesive 790 or other compound can also be used to structurally attach the microelectronic devices 710 together in the illustrated stacked-die configuration.


One feature of aspects of the embodiments illustrated in FIGS. 6 and 7 is that the respective microelectronic devices 610, 710 are electrically connected without the need for wire-bonds. One advantage of this feature is that the added cost and complexity of wire-bonds is avoided. A further advantage of this feature is that the footprint of the microelectronic device sets 605, 705 can be reduced over comparable device sets having wire-bond interconnections.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A packaged microelectronic device comprising: a die having a first surface, a second surface opposite to the first surface, and an integrated circuit positioned at least partially between the first and second surfaces;a bond-pad positioned at least proximate to the second surface of the die and coupled to the integrated circuit, the bond-pad having a third surface at least generally opposite to the first surface of the die;a redistribution layer positioned at least proximate to the second surface of the die, the redistribution layer having a conductive line with a first end portion attached to the bond-pad and a second end portion spaced apart from the bond-pad;a conductive cap attached to the second end portion of the conductive line and spaced apart from the bond-pad;a passage extending completely through the die, the bond-pad, and the first end portion of the conductive line; andelectrically conductive material that fills the passage from at least proximate to the first surface of the die to at least proximate to the third surface of the bond-pad, wherein the electrically conductive material extends through the bond-pad and contacts the bond-pad.
  • 2. The packaged microelectronic device of claim 1 wherein the electrically conductive material contacts the bond-pad and the first end portion of the conductive line.
  • 3. The packaged microelectronic device of claim 1 wherein the conductive cap includes a ball-pad disposed on the second end portion of the conductive line.
  • 4. The packaged microelectronic device of claim 1, further comprising an insulative layer disposed in the passage between the die and the electrically conductive material.
  • 5. A microfeature workpiece having a front side and a back side opposite to the front side, the microfeature workpiece comprising: a die having an integrated circuit;a bond-pad electrically coupled to the integrated circuit, wherein the bond-pad includes a through-hole having an inner sidewall;a redistribution layer disposed on the die toward the front side of the microfeature workpiece, wherein the redistribution layer includes a conductive line having a first end portion attached to the bond-pad and a second end portion spaced apart from the bond-pad;a cap attached to the second end portion of the conductive line and spaced apart from the bond-pad;a passage extending through the microfeature workpiece from the back side to the front side and passing completely through the die, the bond-pad, and the conductive line; anda metal fill at least partially disposed in the passage and electrically coupled to the bond-pad and the conductive line, wherein the metal fill contacts the inner sidewall of the through-hole in the bond-pad.
  • 6. The microfeature workpiece of claim 5 wherein the metal fill contacts the conductive line.
  • 7. The microfeature workpiece of claim 5 wherein the cap includes a ball-pad disposed on the second end portion of the conductive line and spaced apart from the bond-pad.
  • 8. A microelectronic device set comprising: a first microelectronic device having: a first die with a first integrated circuit and a first bond-pad electrically coupled to the first integrated circuit;a redistribution layer disposed on the first die, wherein the redistribution layer includes a conductive line attached to the first bond-pad;a passage extending completely through the first die, the first bond-pad, and the conductive line; anda metal fill that fills the portion of the passage extending through the first die, wherein the metal fill is electrically coupled to the first bond-pad and the conductive line, and wherein the metal fill contacts the first bond-pad;at least a second microelectronic device having a second die with a second integrated circuit and a second bond-pad electrically coupled to the second integrated circuit, wherein the second bond-pad is electrically coupled to the metal fill disposed in the passage of the first microelectronic device; andwherein the conductive line has a first end portion attached to the first bond-pad and a second end portion positioned outward of the first end portion, wherein the second end portion is configured to receive electrical signals and transmit the signals to at least the first integrated circuit of the first die and the second integrated circuit of the second die.
  • 9. The microelectronic device set of claim 8 wherein the first microelectronic device is attached to the second microelectronic device in a stacked-die arrangement.
  • 10. The microelectronic device set of claim 8, further comprising a solder ball disposed between the metal fill of the first microelectronic device and the second bond-pad of the second microelectronic device to electrically couple the metal fill to the second bond-pad.
  • 11. The microelectronic device set of claim 8 wherein the passage is a first passage and the metal fill is a first metal fill, wherein the second microelectronic device further includes a second passage extending through the second die and the second bond-pad, and a second metal fill at least partially disposed in the second passage and electrically coupled to the second bond-pad.
  • 12. The microelectronic device set of claim 8 wherein the passage is a first passage and the metal fill is a first metal fill, wherein the second microelectronic device further includes a second passage extending completely through the second die and the second bond-pad, and a second metal fill at least partially disposed in the second passage and electrically coupled to the second bond-pad, and further comprising: at least a third microelectronic device having a third die with a third integrated circuit and a third bond-pad electrically coupled to the third integrated circuit, wherein the third bond-pad is electrically coupled to the second metal fill disposed in the second passage of the second microelectronic device.
  • 13. The microelectronic device set device of claim 8 wherein the second end portion of the conductive line includes a conductive cap spaced from the first bond-pad.
  • 14. The microelectronic device set device of claim 8 wherein the second end portion of the conductive line includes a ball-pad spaced from the first bond-pad.
  • 15. A packaged microelectronic device comprising: a die having a first surface, a second surface opposite to the first surface, and an integrated circuit positioned at least partially between the first and second surfaces;a redistribution layer positioned at least proximate to the first surface of the die, the redistribution layer including a conductive line having a first end portion spaced apart from a second end portion;a passage extending completely through the die and the first end portion of the conductive line;a conductive pad attached to the second end portion of the conductive line and spaced apart from the passage and the first end portion of the conductive line; andelectrically conductive material disposed in the passage, wherein a first portion of the electrically conductive material extends through the first end portion of the conductive line and is electrically connected to the first end portion of the conductive line, and wherein a second portion of the electrically conductive material fills the portion of the passage extending between the first and second surfaces of the die and is spaced apart from the conductive line.
  • 16. The packaged microelectronic device of claim 15 wherein at least a portion of the electrically conductive material disposed in the passage contacts the first end portion of the conductive line.
  • 17. The packaged microelectronic device of claim 15 wherein the first end portion of the conductive line includes a hole at least partially filled with a passivation material, and wherein the passage extends completely through the die and the passivation material in the hole.
  • 18. The packaged microelectronic device of claim 15 wherein the conductive pad includes a ball-pad disposed on the second end portion of the conductive line.
  • 19. The packaged microelectronic device of claim 15, further comprising an insulative layer disposed in the passage between the die and the electrically conductive material.
  • 20. A packaged microelectronic device comprising: a die having a first surface, a second surface opposite to the first surface, and an integrated circuit positioned at least partially between the first and second surfaces;a bond-pad positioned at least proximate to the second surface of the die and coupled to the integrated circuit, the bond-pad having a third surface at least generally opposite to the first surface of the die;a conductive line formed from a first electrically conductive material and positioned at least proximate to the second surface of the die, the conductive line having a first end portion attached to the bond-pad and a second end portion spaced apart from the bond-pad;a passage extending completely through the die, the bond-pad, and the first end portion of the conductive line; anda second electrically conductive material, different from the first electrically conductive material, disposed in the passage from at least proximate to the first surface of the die to at least proximate to the third surface of the bond-pad, wherein the second electrically conductive material extends through the bond-pad and contacts the bond-pad.
  • 21. The packaged microelectronic device of claim 20 wherein the second electrically conductive material contacts the bond-pad and the first end portion of the conductive line.
  • 22. The packaged microelectronic device of claim 20, further comprising an insulative layer disposed in the passage between the die and the second electrically conductive material.
APPLICATION(S) INCORPORATED BY REFERENCE

This application is a divisional of U.S. patent application Ser. No. 10/713,878, filed Nov. 13, 2003, now U.S. Pat. No. 7,091,124, and incorporated herein in its entirety by reference. This application is related to U.S. patent application Ser. No. 10/733,226, entitled MICROELECTRONIC DEVICES AND METHODS FOR FILLING VIAS IN MICROELECTRONIC DEVICES, filed Dec. 10, 2003.

US Referenced Citations (488)
Number Name Date Kind
2821959 Franz Feb 1958 A
3006318 Monroe, Jr. et al. Oct 1961 A
3345134 Heymer et al. Oct 1967 A
3865298 Allen et al. Feb 1975 A
3902036 Zaleckas Aug 1975 A
4040168 Huang Aug 1977 A
4368106 Anthony Jan 1983 A
4534100 Lane Aug 1985 A
4581301 Michaelson Apr 1986 A
4608480 Bizot et al. Aug 1986 A
4614427 Koizumi et al. Sep 1986 A
4627971 Ayer Dec 1986 A
4660063 Anthony Apr 1987 A
4756765 Woodroffe Jul 1988 A
4768291 Palmer Sep 1988 A
4959705 Lemnios et al. Sep 1990 A
4964212 Deroux-Dauphin et al. Oct 1990 A
4984597 McConnell et al. Jan 1991 A
5024966 Dietrich et al. Jun 1991 A
5026964 Somers et al. Jun 1991 A
5027184 Soclof Jun 1991 A
5037782 Nakamura et al. Aug 1991 A
5107328 Kinsman Apr 1992 A
5123902 Muller et al. Jun 1992 A
5128831 Fox, III et al. Jul 1992 A
5138434 Wood et al. Aug 1992 A
5145099 Wood et al. Sep 1992 A
5158911 Quentin et al. Oct 1992 A
5219344 Yoder, Jr. Jun 1993 A
5233448 Wu et al. Aug 1993 A
5237148 Aoki et al. Aug 1993 A
5252857 Kane et al. Oct 1993 A
5289631 Koopman et al. Mar 1994 A
5292686 Riley et al. Mar 1994 A
5294568 McNeilly et al. Mar 1994 A
5378312 Gifford et al. Jan 1995 A
5380681 Hsu Jan 1995 A
5402435 Shiono et al. Mar 1995 A
5406630 Piosenka et al. Apr 1995 A
5424573 Kato et al. Jun 1995 A
5438212 Okaniwa et al. Aug 1995 A
5447871 Goldstein Sep 1995 A
5464960 Hall et al. Nov 1995 A
5496755 Bayraktaroglu Mar 1996 A
5515167 Ledger et al. May 1996 A
5518956 Liu et al. May 1996 A
5518957 Kim May 1996 A
5585308 Sardella Dec 1996 A
5585675 Knopf Dec 1996 A
5593927 Farnworth Jan 1997 A
5614743 Mochizuki et al. Mar 1997 A
5624437 Freeman et al. Apr 1997 A
5627106 Hsu et al. May 1997 A
5646067 Gaul Jul 1997 A
5654221 Cronin et al. Aug 1997 A
5673846 Gruber Oct 1997 A
5677566 King et al. Oct 1997 A
5684642 Zumoto et al. Nov 1997 A
5690841 Elderstig et al. Nov 1997 A
5718791 Spengler et al. Feb 1998 A
5723904 Shiga et al. Mar 1998 A
5726493 Yamashita et al. Mar 1998 A
5771158 Yamagishi et al. Jun 1998 A
5773359 Mitchell et al. Jun 1998 A
5776824 Farnworth et al. Jul 1998 A
5807439 Akatsu et al. Sep 1998 A
5811799 Wu Sep 1998 A
5821532 Beaman et al. Oct 1998 A
5825080 Imaoka et al. Oct 1998 A
5826628 Hamilton Oct 1998 A
5847454 Shaw et al. Dec 1998 A
5851845 Wood et al. Dec 1998 A
5857963 Pelchy et al. Jan 1999 A
5861654 Johnson Jan 1999 A
5870289 Tokuda et al. Feb 1999 A
5870823 Bezama et al. Feb 1999 A
5883426 Tokuno et al. Mar 1999 A
5891797 Farrar Apr 1999 A
5893828 Uram Apr 1999 A
5904499 Pace May 1999 A
5925930 Farnworth et al. Jul 1999 A
5933713 Farnworth Aug 1999 A
5938956 Hembree et al. Aug 1999 A
5946553 Wood et al. Aug 1999 A
5986209 Tandy Nov 1999 A
5990566 Farnworth et al. Nov 1999 A
5998240 Hamilton et al. Dec 1999 A
5998292 Black et al. Dec 1999 A
6004867 Kim et al. Dec 1999 A
6008070 Farnworth Dec 1999 A
6008914 Sasagawa et al. Dec 1999 A
6018249 Akram et al. Jan 2000 A
6020624 Wood et al. Feb 2000 A
6020629 Farnworth et al. Feb 2000 A
6028365 Akram et al. Feb 2000 A
6048755 Jiang et al. Apr 2000 A
6051878 Akram et al. Apr 2000 A
6066514 King et al. May 2000 A
6072233 Corisis et al. Jun 2000 A
6072236 Akram et al. Jun 2000 A
6080291 Woodruff et al. Jun 2000 A
6081429 Barrett Jun 2000 A
6089920 Farnworth et al. Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6103547 Corisis et al. Aug 2000 A
6107122 Wood et al. Aug 2000 A
6107180 Munroe et al. Aug 2000 A
6107679 Noguchi et al. Aug 2000 A
6110825 Mastromatteo et al. Aug 2000 A
6114240 Akram et al. Sep 2000 A
6119335 Park et al. Sep 2000 A
6124634 Akram et al. Sep 2000 A
6130141 Degani et al. Oct 2000 A
6130474 Corisis Oct 2000 A
6133622 Corisis et al. Oct 2000 A
6137182 Hause et al. Oct 2000 A
6140604 Somers et al. Oct 2000 A
6143588 Glenn Nov 2000 A
6148509 Schoenfeld et al. Nov 2000 A
6150717 Wood et al. Nov 2000 A
6153924 Kinsman Nov 2000 A
6159764 Kinsman et al. Dec 2000 A
6175149 Akram Jan 2001 B1
6180518 Layadi et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6187615 Kim et al. Feb 2001 B1
6188232 Akram et al. Feb 2001 B1
6191487 Rodenbeck et al. Feb 2001 B1
6201304 Moden Mar 2001 B1
6203539 Shimmick et al. Mar 2001 B1
6212767 Tandy Apr 2001 B1
6214716 Akram Apr 2001 B1
6222136 Appelt et al. Apr 2001 B1
6222270 Lee et al. Apr 2001 B1
6225689 Moden et al. May 2001 B1
6228548 King et al. May 2001 B1
6228687 Akram et al. May 2001 B1
6229202 Corisis May 2001 B1
6232666 Corisis et al. May 2001 B1
6235552 Kwon et al. May 2001 B1
6235554 Akram et al. May 2001 B1
6239489 Jiang May 2001 B1
6246108 Corisis et al. Jun 2001 B1
6247629 Jacobson et al. Jun 2001 B1
6252300 Hsuan et al. Jun 2001 B1
6258623 Moden et al. Jul 2001 B1
6259153 Corisis Jul 2001 B1
6261865 Akram Jul 2001 B1
6265766 Moden Jul 2001 B1
6268114 Wen et al. Jul 2001 B1
6271580 Corisis Aug 2001 B1
6277757 Lin et al. Aug 2001 B1
6281042 Ahn et al. Aug 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6285204 Farnworth Sep 2001 B1
6291894 Farnworth et al. Sep 2001 B1
6294837 Akram et al. Sep 2001 B1
6294839 Mess et al. Sep 2001 B1
6297547 Akram Oct 2001 B1
6303981 Moden Oct 2001 B1
6310390 Moden Oct 2001 B1
6324253 Yuyama et al. Nov 2001 B1
6326689 Thomas Dec 2001 B1
6326697 Farnworth Dec 2001 B1
6326698 Akram Dec 2001 B1
6329222 Corisis et al. Dec 2001 B1
6329632 Fournier et al. Dec 2001 B1
6331221 Cobbley Dec 2001 B1
6341009 O'Connor et al. Jan 2002 B1
6344976 Schoenfeld et al. Feb 2002 B1
6359254 Brown Mar 2002 B1
6359328 Dubin Mar 2002 B1
6372548 Bessho et al. Apr 2002 B2
6391770 Kosaki et al. May 2002 B2
6406636 Vaganov Jun 2002 B1
6429528 King et al. Aug 2002 B1
6432796 Peterson Aug 2002 B1
6433303 Liu et al. Aug 2002 B1
6437284 Okamoto et al. Aug 2002 B1
6437441 Yamamoto et al. Aug 2002 B1
6437586 Robinson Aug 2002 B1
6441487 Elenius et al. Aug 2002 B2
6452270 Huang et al. Sep 2002 B1
6457515 Vafai et al. Oct 2002 B1
6459039 Bezama et al. Oct 2002 B1
6468889 Iacoponi et al. Oct 2002 B1
6483044 Ahmad Nov 2002 B1
6486083 Mizuno et al. Nov 2002 B1
6486549 Chiang et al. Nov 2002 B1
6521516 Monzon et al. Feb 2003 B2
6521530 Peters et al. Feb 2003 B2
6534192 Abys et al. Mar 2003 B1
6534863 Walker et al. Mar 2003 B2
6545563 Smith Apr 2003 B1
6548376 Jiang Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6555782 Isaji et al. Apr 2003 B2
6560047 Choi et al. May 2003 B2
6560117 Moon May 2003 B2
6564979 Savaria May 2003 B2
6569711 Susko et al. May 2003 B1
6569777 Hsu et al. May 2003 B1
6572606 Kliewer et al. Jun 2003 B2
6576531 Peng et al. Jun 2003 B2
6580174 McCormick et al. Jun 2003 B2
6582987 Jun et al. Jun 2003 B2
6593644 Chiu et al. Jul 2003 B2
6599436 Matzke et al. Jul 2003 B1
6606251 Kenny, Jr. et al. Aug 2003 B1
6607937 Corisis Aug 2003 B1
6614033 Suguro et al. Sep 2003 B2
6614092 Eldridge et al. Sep 2003 B2
6620031 Renteln Sep 2003 B2
6620731 Farnworth Sep 2003 B1
6621045 Liu et al. Sep 2003 B1
6638410 Chen et al. Oct 2003 B2
6653236 Wai et al. Nov 2003 B2
6658818 Kurth et al. Dec 2003 B2
6660622 Chen et al. Dec 2003 B2
6660630 Chang et al. Dec 2003 B1
6664485 Bhatt et al. Dec 2003 B2
6667551 Hanaoka et al. Dec 2003 B2
6680459 Kanaya et al. Jan 2004 B2
6699787 Mashino et al. Mar 2004 B2
6703310 Mashino et al. Mar 2004 B2
6708405 Hasler et al. Mar 2004 B2
6746971 Ngo et al. Jun 2004 B1
6756564 Tian Jun 2004 B2
6770958 Wang et al. Aug 2004 B2
6774486 Kinsman Aug 2004 B2
6777244 Pepper et al. Aug 2004 B2
6780749 Masumoto et al. Aug 2004 B2
6790775 Fartash Sep 2004 B2
6797616 Kinsman Sep 2004 B2
6809025 Sandhu et al. Oct 2004 B2
6809421 Hayasaka et al. Oct 2004 B1
6818464 Heschel et al. Nov 2004 B2
6825127 Ouellet et al. Nov 2004 B2
6825557 DiBattista et al. Nov 2004 B2
6828175 Wood et al. Dec 2004 B2
6828223 Chuang Dec 2004 B2
6838377 Tonami et al. Jan 2005 B2
6852621 Hanaoka et al. Feb 2005 B2
6856023 Muta et al. Feb 2005 B2
6858891 Farnworth et al. Feb 2005 B2
6864172 Noma et al. Mar 2005 B2
6864457 Alexander et al. Mar 2005 B1
6867390 Clauer et al. Mar 2005 B2
6873054 Miyazawa et al. Mar 2005 B2
6885107 Kinsman Apr 2005 B2
6903012 Geefay et al. Jun 2005 B2
6903442 Wood et al. Jun 2005 B2
6910268 Miller Jun 2005 B2
6913952 Moxham et al. Jul 2005 B2
6916725 Yamaguchi et al. Jul 2005 B2
6936536 Sinha Aug 2005 B2
6943056 Nemoto et al. Sep 2005 B2
6946325 Yean et al. Sep 2005 B2
6951627 Li et al. Oct 2005 B2
6953748 Yamaguchi et al. Oct 2005 B2
6970775 Lederle et al. Nov 2005 B2
6982487 Kim et al. Jan 2006 B2
7022609 Yamamoto et al. Apr 2006 B2
7023090 Huang et al. Apr 2006 B2
7029937 Miyazawa et al. Apr 2006 B2
7033927 Cohen et al. Apr 2006 B2
7037836 Lee et al. May 2006 B2
7041598 Sharma May 2006 B2
7045015 Renn et al. May 2006 B2
7083425 Chong et al. Aug 2006 B2
7084073 Lee et al. Aug 2006 B2
7091124 Rigg et al. Aug 2006 B2
7092284 Braun et al. Aug 2006 B2
7094677 Yamamoto et al. Aug 2006 B2
7109068 Akram et al. Sep 2006 B2
7151009 Kim et al. Dec 2006 B2
7164565 Takeda Jan 2007 B2
7166247 Kramer Jan 2007 B2
7170183 Kim et al. Jan 2007 B1
7183176 Sankarapillai et al. Feb 2007 B2
7183653 Meyers et al. Feb 2007 B2
7186650 Dakshina-Murthy Mar 2007 B1
7190061 Lee et al. Mar 2007 B2
7199050 Hiatt Apr 2007 B2
7217596 Cobbley et al. May 2007 B2
7217888 Sunohara et al. May 2007 B2
7232754 Kirby et al. Jun 2007 B2
7256073 Noma et al. Aug 2007 B2
7262134 Kirby et al. Aug 2007 B2
7262495 Chen et al. Aug 2007 B2
7265052 Sinha Sep 2007 B2
7271482 Kirby Sep 2007 B2
7300857 Akram et al. Nov 2007 B2
7317256 Williams et al. Jan 2008 B2
20010020739 Honda Sep 2001 A1
20020005583 Harada et al. Jan 2002 A1
20020020898 Vu et al. Feb 2002 A1
20020027293 Hoshino Mar 2002 A1
20020057468 Segawa et al. May 2002 A1
20020059722 Murakami May 2002 A1
20020060208 Liu et al. May 2002 A1
20020094607 Gebauer et al. Jul 2002 A1
20020096729 Tu et al. Jul 2002 A1
20020130390 Ker et al. Sep 2002 A1
20020190371 Mashino et al. Dec 2002 A1
20030014895 Lizotte Jan 2003 A1
20030042564 Taniguchi et al. Mar 2003 A1
20030119308 Geefay et al. Jun 2003 A1
20030148597 Tan et al. Aug 2003 A1
20030216023 Wark et al. Nov 2003 A1
20040004280 Shibata Jan 2004 A1
20040018712 Plas et al. Jan 2004 A1
20040023447 Hirakata et al. Feb 2004 A1
20040041261 Kinsman Mar 2004 A1
20040043607 Farnworth et al. Mar 2004 A1
20040046251 Lee Mar 2004 A1
20040073607 Su et al. Apr 2004 A1
20040087441 Bock et al. May 2004 A1
20040094389 Boyce May 2004 A1
20040137661 Murayama Jul 2004 A1
20040137701 Takao Jul 2004 A1
20040141536 Liu et al. Jul 2004 A1
20040159668 Vasiadis Aug 2004 A1
20040159958 Funaki Aug 2004 A1
20040178491 Akram et al. Sep 2004 A1
20040180539 Yamamoto et al. Sep 2004 A1
20040192033 Hara Sep 2004 A1
20040198033 Lee et al. Oct 2004 A1
20040198040 Geefay et al. Oct 2004 A1
20040219342 Boggs et al. Nov 2004 A1
20040219763 Kim et al. Nov 2004 A1
20040222082 Gopalraja et al. Nov 2004 A1
20040245649 Imaoka Dec 2004 A1
20040255258 Li Dec 2004 A1
20040262753 Kashiwazaki Dec 2004 A1
20050026443 Goo et al. Feb 2005 A1
20050037608 Andricacos et al. Feb 2005 A1
20050046002 Lee et al. Mar 2005 A1
20050064707 Sinha Mar 2005 A1
20050067620 Chan et al. Mar 2005 A1
20050069782 Elenius et al. Mar 2005 A1
20050101116 Tseng May 2005 A1
20050104228 Rigg et al. May 2005 A1
20050106834 Andry et al. May 2005 A1
20050110095 Shih et al. May 2005 A1
20050110889 Tuttle et al. May 2005 A1
20050127478 Hiatt et al. Jun 2005 A1
20050136646 Larnerd et al. Jun 2005 A1
20050139390 Kim et al. Jun 2005 A1
20050150683 Farnworth et al. Jul 2005 A1
20050151228 Tanida et al. Jul 2005 A1
20050164500 Lindgren Jul 2005 A1
20050184219 Kirby Aug 2005 A1
20050191861 Verhaverbeke Sep 2005 A1
20050194169 Tonomura Sep 2005 A1
20050208766 Kirby et al. Sep 2005 A1
20050227382 Hui Oct 2005 A1
20050231626 Tuttle et al. Oct 2005 A1
20050236708 Farnworth et al. Oct 2005 A1
20050247894 Watkins et al. Nov 2005 A1
20050253213 Jiang et al. Nov 2005 A1
20050254133 Akram et al. Nov 2005 A1
20050258530 Vindasius et al. Nov 2005 A1
20050272221 Yen et al. Dec 2005 A1
20050275048 Farnworth et al. Dec 2005 A1
20050275049 Kirby et al. Dec 2005 A1
20050275051 Farnworth et al. Dec 2005 A1
20050275750 Akram et al. Dec 2005 A1
20050277293 Kim et al. Dec 2005 A1
20050282374 Hwang et al. Dec 2005 A1
20050285154 Akram et al. Dec 2005 A1
20060003566 Emesh Jan 2006 A1
20060011809 Farnworth et al. Jan 2006 A1
20060014313 Hall et al. Jan 2006 A1
20060023107 Bolken et al. Feb 2006 A1
20060024856 Derderian et al. Feb 2006 A1
20060035402 Street et al. Feb 2006 A1
20060035415 Wood et al. Feb 2006 A1
20060038183 Oliver Feb 2006 A1
20060038272 Edwards Feb 2006 A1
20060040421 Farnworth et al. Feb 2006 A1
20060040428 Johnson Feb 2006 A1
20060042952 Oliver et al. Mar 2006 A1
20060043262 Akram Mar 2006 A1
20060043509 Watkins et al. Mar 2006 A1
20060043512 Oliver et al. Mar 2006 A1
20060043569 Benson et al. Mar 2006 A1
20060043599 Akram et al. Mar 2006 A1
20060044433 Akram Mar 2006 A1
20060046332 Derderian et al. Mar 2006 A1
20060046438 Kirby Mar 2006 A1
20060046468 Akram et al. Mar 2006 A1
20060046471 Kirby Mar 2006 A1
20060046537 Chong et al. Mar 2006 A1
20060057776 Tao Mar 2006 A1
20060057836 Nagarajan et al. Mar 2006 A1
20060148250 Kirby Jul 2006 A1
20060151880 Tang et al. Jul 2006 A1
20060154153 Chiang et al. Jul 2006 A1
20060160367 Wai et al. Jul 2006 A1
20060177959 Boettiger et al. Aug 2006 A1
20060177999 Hembree et al. Aug 2006 A1
20060180941 Kirby et al. Aug 2006 A1
20060186097 Watkins et al. Aug 2006 A1
20060186492 Boettiger et al. Aug 2006 A1
20060191882 Watkins et al. Aug 2006 A1
20060199363 Kirby et al. Sep 2006 A1
20060204651 Wai et al. Sep 2006 A1
20060208360 Yiu et al. Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060240687 Chong et al. Oct 2006 A1
20060249849 Cohen Nov 2006 A1
20060252254 Basol Nov 2006 A1
20060252262 Kazemi Nov 2006 A1
20060255443 Hwang et al. Nov 2006 A1
20060264041 Rigg et al. Nov 2006 A1
20060270108 Farnworth et al. Nov 2006 A1
20060278979 Rangel Dec 2006 A1
20060278980 Trezza et al. Dec 2006 A1
20060278988 Trezza et al. Dec 2006 A1
20060281224 Edelstein et al. Dec 2006 A1
20060281243 Trezza Dec 2006 A1
20060289967 Heck et al. Dec 2006 A1
20060289968 Sulfridge Dec 2006 A1
20060290001 Sulfridge Dec 2006 A1
20060292877 Lake Dec 2006 A1
20070004079 Geefay et al. Jan 2007 A1
20070012655 Kwon et al. Jan 2007 A1
20070020805 Kim et al. Jan 2007 A1
20070020935 Taylor et al. Jan 2007 A1
20070023121 Jones et al. Feb 2007 A1
20070032061 Farnworth et al. Feb 2007 A1
20070035033 Ozguz et al. Feb 2007 A1
20070037379 Enquist et al. Feb 2007 A1
20070042598 Park Feb 2007 A1
20070045120 Tiwari et al. Mar 2007 A1
20070045388 Farnworth et al. Mar 2007 A1
20070045515 Farnworth et al. Mar 2007 A1
20070045632 Oliver et al. Mar 2007 A1
20070045779 Hiatt Mar 2007 A1
20070045806 Hsuan Mar 2007 A1
20070045812 Heng Mar 2007 A1
20070045826 Lee et al. Mar 2007 A1
20070045834 Chong et al. Mar 2007 A1
20070048896 Andry et al. Mar 2007 A1
20070048994 Tuttle Mar 2007 A1
20070049016 Hiatt et al. Mar 2007 A1
20070049019 Wai et al. Mar 2007 A1
20070057028 Lake et al. Mar 2007 A1
20070077753 Iwatake et al. Apr 2007 A1
20070082427 Shirahama et al. Apr 2007 A1
20070096263 Furukawa et al. May 2007 A1
20070099395 Sridhar et al. May 2007 A1
20070111386 Kim et al. May 2007 A1
20070138562 Trezza Jun 2007 A1
20070145563 Punzalan et al. Jun 2007 A1
20070152342 Tsao et al. Jul 2007 A1
20070155997 Li et al. Jul 2007 A1
20070158839 Trezza Jul 2007 A1
20070158853 Sinha Jul 2007 A1
20070161235 Trezza Jul 2007 A1
20070166991 Sinha Jul 2007 A1
20070166997 Knorr Jul 2007 A1
20070167004 Trezza Jul 2007 A1
20070170574 Lauxtermann et al. Jul 2007 A1
20070178694 Hiatt Aug 2007 A1
20070182020 Trezza et al. Aug 2007 A1
20070190803 Singh et al. Aug 2007 A1
20070197013 Trezza Aug 2007 A1
20070202617 Hembree Aug 2007 A1
20070222050 Lee et al. Sep 2007 A1
20070222054 Hembree Sep 2007 A1
20070228576 Trezza Oct 2007 A1
20070228926 Teo et al. Oct 2007 A1
20070262424 Hiatt Nov 2007 A1
20070267138 White et al. Nov 2007 A1
20070281473 Clark et al. Dec 2007 A1
20070293040 Emesh et al. Dec 2007 A1
20080006850 Ribnicek et al. Jan 2008 A1
20080050904 Lake Feb 2008 A1
20080050911 Borthakur Feb 2008 A1
20080054444 Tuttle Mar 2008 A1
20080057620 Pratt Mar 2008 A1
20080079120 Foster et al. Apr 2008 A1
20080079121 Han Apr 2008 A1
20080081386 Raravikar et al. Apr 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080265933 Tanioka et al. Oct 2008 A1
Foreign Referenced Citations (20)
Number Date Country
0127946 Dec 1984 EP
1415950 May 2004 EP
63052432 Mar 1988 JP
02235589 Sep 1990 JP
2001077496 Mar 2001 JP
2001298147 Oct 2001 JP
2002018585 Jan 2002 JP
2005093980 Apr 2005 JP
2005310817 Nov 2005 JP
20010018694 Mar 2001 KR
20020022122 Mar 2002 KR
20020061812 Jul 2002 KR
250597 Mar 2006 TW
2004109770 Dec 2004 WO
WO-2005022965 Mar 2005 WO
WO-2005036940 Apr 2005 WO
WO-2006053036 May 2006 WO
WO-2006124597 Nov 2006 WO
WO-2007025812 Mar 2007 WO
WO-2007043718 Apr 2007 WO
Related Publications (1)
Number Date Country
20060216862 A1 Sep 2006 US
Divisions (1)
Number Date Country
Parent 10713878 Nov 2003 US
Child 11430735 US