Nanolaminates of hafnium oxide and zirconium oxide

Abstract
A dielectric film containing a HfO2/ZrO2 nanolaminate and a method of fabricating such a dielectric film produce a reliable dielectric layer having an equivalent oxide thickness thinner than attainable using SiO2. A dielectric layer containing a HfO2/ZrO2 nanolaminate may be realized in a wide variety of electronic devices and systems.
Description
FIELD OF THE INVENTION

The invention relates to semiconductor devices and device fabrication. Specifically, the invention relates to gate dielectric layers of transistor devices and their method of fabrication.


BACKGROUND OF THE INVENTION

The semiconductor device industry has a market driven need to improve speed performance, improve its low static (off-state) power requirements, and adapt to a wide range of power supply and output voltage requirements for it silicon based microelectronic products. In particular, in the fabrication of transistors, there is continuous pressure to reduce the size of devices such as transistors. The ultimate goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, or memory devices such as DRAMs. The smaller devices are frequently powered by batteries, where there is also pressure to reduce the size of the batteries, and to extend the time between battery charges. This forces the industry to not only design smaller transistors, but to design them to operate reliably with lower power supplies.


Currently, the semiconductor industry relies on the ability to reduce or scale the dimensions of its basic devices, primarily, the silicon based metal-oxide-semiconductor field effect transistor (MOSFET). A common configuration of such a transistor is shown in FIG. 1. While the following discussion uses FIG. 1 to illustrate a transistor from the prior art, one skilled in the art will recognize that the present invention could be incorporated into the transistor shown in FIG. 1 to form a novel transistor according to the invention. The transistor 100 is fabricated in a substrate 110 that is typically silicon, but could be fabricated from other semiconductor materials as well. The transistor 100 has a first source/drain region 120 and a second source/drain region 130. A body region 132 is located between the first source/drain region and the second source/drain region, where the body region 132 defines a channel of the transistor with a channel length 134. A gate dielectric, or gate oxide 140 is located on the body region 132 with a gate 150 located over the gate dielectric. Although the gate dielectric can be formed from materials other than oxides, the gate dielectric is typically an oxide, and is commonly referred to as a gate oxide. The gate may be fabricated from polycrystalline silicon (polysilicon), or other conducting materials such as metal may be used.


In fabricating transistors to be smaller in size and reliably operate on lower power supplies, one important design criteria is the gate dielectric 140. The mainstay for forming the gate dielectric has been silicon dioxide, SiO2. A thermally grown amorphous SiO2 layer provides an electrically and thermodynamically stable material, where the interface of the SiO2 layer with underlying Si provides a high quality interface as well as superior electrical isolation properties. In typical processing, use of SiO2 on Si has provided defect charge densities on the order of 1010/cm2, midgap interface state densities of approximately 1010/cm2 eV, and breakdown voltages in the range of 15 MV/cm. With such qualities, there would be no apparent need to use a material other than SiO2, but increased scaling and other requirements for gate dielectrics create the need to find other dielectric materials to be used for a gate dielectric.


What is needed is an alternate dielectric material for forming a gate dielectric that has a high dielectric constant relative to SiO2, and is thermodynamically stable with respect to silicon such that forming the dielectric on a silicon layer will not result in SiO2 formation, or diffusion of material, such as dopants, into the gate dielectric from the underlying silicon layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a common configuration of a transistor in which an embodiment of a gate dielectric can be formed, according to the teaching of the present invention.



FIG. 2A shows an embodiment of an atomic layer deposition system for processing a layer of HfO2 and a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.



FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing a layer of HfO2 and a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.



FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.



FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO2/ZrO2 by atomic layer deposition, according to the teachings of the present invention.



FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention.



FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO2 to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.



FIG. 7A shows an embodiment of a zirconium layer deposited on a layer of HfO2, according to the teachings of the present invention.



FIG. 7B shows an embodiment of a partially oxidized zirconium layer deposited on a layer of HfO2, according to the teachings of the present invention.



FIG. 7C shows an embodiment of a ZrO2 substantially completely oxidized and formed on a layer of HfO2 to form a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.



FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and chemical vapor deposition, according to the teachings of the present invention.



FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention.



FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention.



FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention.



FIG. 12 shows an embodiment of a personal computer incorporating devices, according to the teachings of the present invention.



FIG. 13 illustrates a schematic view of an embodiment of a central processing unit incorporating devices, according to the teachings of the present invention.



FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device, according to the teachings of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.


The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.


The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.


A gate dielectric 140 of FIG. 1, when operating in a transistor, has both a physical gate dielectric thickness and an equivalent oxide thickness (teq). The equivalent oxide thickness quantifies the electrical properties, such as capacitance, of a gate dielectric 140 in terms of a representative physical thickness. teq is defined as the thickness of a theoretical SiO2 layer that would be required to have the same capacitance density as a given dielectric, ignoring leakage current and reliability considerations.


A SiO2 layer of thickness, t, deposited on a Si surface as a gate dielectric will have a teq larger than its thickness, t. This teq results from the capacitance in the surface channel on which the SiO2 is deposited due to the formation of a depletion/inversion region. This depletion/inversion region can result in teq being from 3 to 6 Angstroms (Å) larger than the SiO2 thickness, t. Thus, with the semiconductor industry driving to someday scale the gate dielectric equivalent oxide thickness to under 10 Å, the physical thickness requirement for a SiO2 layer used for a gate dielectric would be need to be approximately 4 to 7 Å.


Additional requirements on a SiO2 layer would depend on the gate electrode used in conjunction with the SiO2 gate dielectric. Using a conventional polysilicon gate would result in an additional increase in teq for the SiO2 layer. This additional thickness could be eliminated by using a metal gate electrode, though metal gates are not currently used in complementary metal-oxide-semiconductor field effect transistor (CMOS) technology. Thus, future devices would be designed towards a physical SiO2 gate dielectric layer of about 5 Å or less. Such a small thickness requirement for a SiO2 oxide layer creates additional problems.


Silicon dioxide is used as a gate dielectric, in part, due to its electrical isolation properties in a SiO2—Si based structure. This electrical isolation is due to the relatively large band gap of SiO2 (8.9 eV) making it a good insulator from electrical conduction. Signification reductions in its band gap would eliminate it as a material for a gate dielectric. As the thickness of a SiO2 layer decreases, the number of atomic layers, or monolayers of the material in the thickness decreases. At a certain thickness, the number of monolayers will be sufficiently small that the SiO2 layer will not have a complete arrangement of atoms as in a larger or bulk layer. As a result of incomplete formation relative to a bulk structure, a thin SiO2 layer of only one or two monolayers will not form a full band gap. The lack of a full band gap in a SiO2 gate dielectric would cause an effective short between an underlying Si channel and an overlying polysilicon gate. This undesirable property sets a limit on the physical thickness to which a SiO2 layer can be scaled. The minimum thickness due to this monolayer effect is thought to be about 7-8 Å. Therefore, for future devices to have a teq less than about 10 Å, other dielectrics than SiO2 need to be considered for use as a gate dielectric.


For a typical dielectric layer used as a gate dielectric, the capacitance is determined as one for a parallel plate capacitance: C=κ∈0A/t, where κ is the dielectric constant, ∈0 is the permittivity of free space, A is the area of the capacitor, and t is the thickness of the dielectric. The thickness, t, of a material is related to teq for a given capacitance with the dielectric constant of SiO2, κox=3.9, associated with teq, as

t=(κ/κox)teq=(κ/3.9)teq.

Thus, materials with a dielectric constant greater than that of SiO2, 3.9, will have a physical thickness that can be considerably larger than a desired teq, while providing the desired equivalent oxide thickness. For example, an alternate dielectric material with a dielectric constant of 10 could have a thickness of about 25.6 Å to provide a teq of 10 Å, not including any depletion/inversion layer effects. Thus, the reduced equivalent oxide thickness of transistors can be realized by using dielectric materials with higher dielectric constants than SiO2.


The thinner equivalent oxide thickness required for lower transistor operating voltages and smaller transistor dimensions may be realized by a significant number of materials, but additional fabricating requirements makes determining a suitable replacement for SiO2 difficult. The current view for the microelectronics industry is still for Si based devices. This requires that the gate dielectric employed be grown on a silicon substrate or silicon layer, which places significant restraints on the substitute dielectric material. During the formation of the dielectric on the silicon layer, there exists the possibility that a small layer of SiO2 could be formed in addition to the desired dielectric. The result would effectively be a dielectric layer consisting of two sublayers in parallel with each other and the silicon layer on which the dielectric is formed. In such a case, the resulting capacitance would be that of two dielectrics in series. As a result, the teq of the dielectric layer would be the sum of the SiO2 thickness and a multiplicative factor of the thickness of the dielectric being formed, written as

teq=tSiO2+(κox/κ)t.

Thus, if a SiO2 layer is formed in the process, the teq is again limited by a SiO2 layer. In the event that a barrier layer is formed between the silicon layer and the desired dielectric in which the barrier layer prevents the formation of a SiO2 layer, the teq would be limited by the layer with the lowest dielectric constant. However, whether a single dielectric layer with a high dielectric constant or a barrier layer with a higher dielectric constant than SiO2 is employed, the layer interfacing with the silicon layer must provide a high quality interface to maintain a high channel carrier mobility.


In a recent article by G. D. Wilk et al., Journal of Applied Physics, vol. 89: no. 10, pp. 5243-5275 (2001), material properties of high dielectric materials for gate dielectrics were discussed. Among the information disclosed was the viability of Al2O3 as a substitute for SiO2. Al2O3 was disclosed has having favourable properties for use as a gate dielectric such as high band gap, thermodynamic stability on Si up to high temperatures, and an amorphous structure. In addition, Wilk disclosed that forming a layer of Al2O3 on silicon does not result in a SiO2 interfacial layer. However, the dielectric constant of Al2O3 is only 9, where thin layers may have a dielectric constant of about 8 to about 10. Though the dielectric constant of Al2O3 is in an improvement over SiO2, a higher dielectric constant for a gate dielectric is desirable. Other dielectrics and their properties discussed by Wilk include



















Dielectric
Band gap




Material
Constant (κ)
Eg (eV)
Crystal Structure(s)





















SiO2
3.9
8.9
Amorphous



Si3N4
7
5.1
Amorphous



Al2O3
9
8.7
Amorphous



Y2O3
15
5.6
Cubic



La2O3
30
4.3
Hexagonal, Cubic



Ta2O5
26
4.5
Orthorhombic



TiO2
80
3.5
Tetrag. (rutile, anatase)



HfO2
25
5.7
Mono., Tetrag., Cubic



ZrO2
25
7.8
Mono., Tetrag., Cubic










One of the advantages using SiO2 as a gate dielectric has been that the formation of the SiO2 layer results in an amorphous gate dielectric. Having an amorphous structure for a gate dielectric is advantageous because grain boundaries in polycrystalline gate dielectrics provide high leakage paths. Additionally, grain size and orientation changes throughout a polycrystalline gate dielectric can cause variations in the film's dielectric constant. The abovementioned material properties including crystal structure are for the materials in a bulk form. The materials having the advantage of a high dielectric constants relative to SiO2 also have the disadvantage of a crystalline form, at least in a bulk configuration. The best candidates for replacing SiO2 as a gate dielectric are those with high dielectric constant, which can be fabricated as a thin layer with an amorphous form.


In an embodiment, a dielectric layer includes a nanolaminate of HfO2/ZrO2. Various embodiments include structures for transistors, memory devices, and electronic systems with gate dielectrics containing nanolaminates of HfO2/ZrO2. Such gate dielectrics provide a significantly thinner equivalent oxide thickness compared with a silicon oxide gate having the same physical thickness. Alternatively, such gate dielectrics provide a significantly thicker physical thickness than a silicon oxide gate dielectric having the same equivalent oxide thickness.


In an embodiment according to the teachings of the present invention, a gate dielectric includes thin layers of HfO2 and ZrO2 forming a nanolaminate. The term “nanolaminate” means a composite film of ultra thin layers of two or more materials in a layered stack, where the layers are alternating layers of materials of the composite film. Typically, nanolaminates have thicknesses of an order of magnitude in the nanometer range. Each individual material layer of the nanolaminate can have thicknesses as low as a monolayer of the material. A nanolaminate of HfO2 and ZrO2 includes at least one thin layer of HfO2, and one thin layer of ZrO2, and is typically written as a nanolaminate of HfO2/ZrO2. In one embodiment, nanolaminates of HfO2/ZrO2 are grown using atomic layer deposition (ALD), also known as atomic layer epitaxy (ALE).


ALD was developed in the early 1970's as a modification of chemical vapor deposition (CVD) and is also called “alternatively pulsed-CVD.” In ALD, gaseous precursors are introduced one at a time to the substrate surface mounted within a reaction chamber (or reactor). This introduction of the gaseous precursors takes the form of pulses of each gaseous precursor. Between the pulses, the reaction chamber is purged with a gas, which in many cases is an inert gas, or evacuated.


In a chemisorption-saturated ALD (CS-ALD) process, during the first pulsing phase, reaction with the substrate occurs with the precursor saturatively chemisorbed at the substrate surface. Subsequent pulsing with a purging gas removes precursor excess from the reaction chamber.


The second pulsing phase introduces another precursor on the substrate where the growth reaction of the desired film takes place. Subsequent to the film growth reaction, reaction byproducts and precursor excess are purged from the reaction chamber. With favourable precursor chemistry where the precursors adsorb and react with each other on the substrate aggressively, one ALD cycle can be preformed in less than one second in properly designed flow type reaction chambers. Typically, precursor pulse times range from about 0.5 sec to about 2 to 3 seconds.


In ALD, the saturation of all the reaction and purging phases makes the growth self-limiting. This self-limiting growth results in large area uniformity and conformality, which has important applications for such cases as planar substrates, deep trenches, and in the processing of porous silicon and high surface area silica and alumina powders. Significantly, ALD provides for controlling film thickness in a straightforward, simple manner by controlling the number of growth cycles.


ALD was originally developed to manufacture luminescent and dielectric films needed in electroluminescent displays. Significant efforts have been made to apply ALD to the growth of doped zinc sulfide and alkaline earth metal sulfide films. Additionally, ALD has been studied for the growth of different epitaxial II-V and II-VI films, nonepitaxial crystalline or amorphous oxide and nitride films and multilayer structures of these. There also has been considerable interest towards the ALD growth of silicon and germanium films, but due to the difficult precursor chemistry, this has not been very successful.


The precursors used in an ALD process may be gaseous, liquid or solid. However, liquid or solid precursors must be volatile. The vapor pressure must be high enough for effective mass transportation. Also, solid and some liquid precursors need to be heated inside the reaction chamber and introduced through heated tubes to the substrates. The necessary vapor pressure must be reached at a temperature below the substrate temperature to avoid the condensation of the precursors on the substrate. Due to the self-limiting growth mechanisms of ALD, relatively low vapor pressure solid precursors can be used though evaporation rates may somewhat vary during the process because of changes in their surface area.


There are several other requirements for precursors used in ALD. The precursors must be thermally stable at the substrate temperature because their decomposition would destroy the surface control and accordingly the advantages of the ALD method which relies on the reactant of the precursor at the substrate surface. Of course, a slight decomposition, if slow compared to the ALD growth, can be tolerated.


The precursors have to chemisorb on or react with the surface, though the interaction between the precursor and the surface as well as the mechanism for the adsorption is different for different precursors. The molecules at the substrate surface must react aggressively with the second precursor to form the desired solid film. Additionally, precursors should not react with the film to cause etching, and precursors should not dissolve in the film. Using highly reactive precursors in ALD contrasts with the selection of precursors for conventional CVD.


The by-products in the reaction must be gaseous in order to allow their easy removal from the reaction chamber. Further, the by-products should not react or adsorb on the surface.


In a reaction sequence ALD (RS-ALD) process, the self-limiting process sequence involves sequential surface chemical reactions. RS-ALD relies on chemistry between a reactive surface and a reactive molecular precursor. In an RS-ALD process, molecular precursors are pulsed into the ALD reaction chamber separately. The metal precursor reaction at the substrate is typically followed by an inert gas pulse to remove excess precursor and by-products from the reaction chamber prior to pulsing the next precursor of the fabrication sequence.


By RS-ALD, films can be layered in equal metered sequences that are all identical in chemical kinetics, deposition per cycle, composition, and thickness. RS-ALD sequences generally deposit less than a full layer per cycle. Typically, a deposition or growth rate of about 0.25 to about 2.00 Å per RS-ALD cycle can be realized.


The advantages of RS-ALD include continuity at an interface, conformality over a substrate, use of low temperature and mildly oxidizing processes, growth thickness dependent solely on the number of cycles performed, and ability to engineer multilayer laminate films with resolution of one to two monolayers. RS-ALD allows for deposition control on the order on monolayers and the ability to deposit monolayers of amorphous films.


RS-ALD processes provide for the formation of nanolaminates. These nanolaminates can be engineered in various forms. In one form, the transition between material layers of the nanolaminate can be made abrupt. In another form, the transition between material layers of the nanolaminate can be constructed with a graded composition. The graded composition can be formed by RS-ALD due its control of the deposition thickness per cycle.


In an embodiment, a layer of HfO2 is formed on a substrate mounted in a reaction chamber using ALD in a repetitive sequence including pulsing a hafnium containing precursor into the reaction chamber followed by pulsing a purging gas, and then pulsing a first oxygen containing precursor into the chamber. In one embodiment using ALD, a layer of HfO2 is formed using HfI4 as a hafnium containing precursor, water vapor as a first oxygen containing precursor, and nitrogen as a purging gas and carrier gas. After forming a HfO2 layer, a ZrO2 layer is formed on the HfO2 layer.


In one embodiment, the layer of ZrO2 is formed by ALD. In particular, a repetitive sequence includes using ZrI4 as a zirconium containing precursor along with a vapor solution of HO2—H2O2 as a second oxygen containing precursor, and nitrogen as a purging gas and carrier gas. In another embodiment, the ZrO2 layer is formed by depositing a layer of zirconium on the HfO2 layer by thermal evaporation, and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O2) mixed plasma to form a HfO2/ZrO2 composite layer. In another embodiment, the ZrO2 layer is formed by pulsed-laser deposition. In yet another embodiment, the ZrO2 layer is formed by jet-vapor deposition.


In one embodiment, precursor gases, in particular HfI4, are used to form the HfO2 layer for the HfO2/ZrO2 nanolaminate films used as a gate dielectric on a transistor body. Alternately, solid or liquid precursors can be used in an appropriately designed reaction chamber. ALD formation of other materials is disclosed in co-pending, commonly assigned U.S. patent application: entitled “Atomic Layer Deposition and Conversion,” Ser. No. 10/137,058, and “Methods for Atomic-Layer Deposition of Aluminum Oxides in Integrated Circuits,” Ser. No. 10/137,168, now U.S. Pat. No. 7,160,577.



FIG. 2A shows an embodiment of an atomic layer deposition system for processing layers of HfO2 and nanolaminates of HfO2/ZrO2 according to the teachings of the present invention. The elements depicted are those elements necessary for discussion of the present invention such that those skilled in the art may practice the present invention without undue experimentation. A further discussion of the ALD reaction chamber can be found in, commonly assigned U.S. patent application: entitled “Methods, Systems, and Apparatus for Uniform Chemical-Vapor Depositions,” Ser. No. 09/797,324, now U.S. Pat. No. 6,852,167, incorporated herein by reference.


In FIG. 2A, a substrate 210 is located inside a reaction chamber 220 of ALD system 200. Also located within the reaction chamber 220 is a heating element 230 which is thermally coupled to substrate 210 to control the substrate temperature. A gas-distribution fixture 240 introduces precursor gases to the substrate 210. Each precursor gas originates from individual gas sources 251-254 whose flow is controlled by mass-flow controllers 256-259, respectively. The gas sources 251-254 provide a precursor gas either by storing the precursor as a gas or by providing a location and apparatus for evaporating a solid or liquid material to form the selected precursor gas.


Also included in the ALD system are purging gas sources 261, 262, each of which is coupled to mass-flow controllers 266, 267, respectively. The gas sources 251-254 and the purging gas sources 261-262 are coupled by their associated mass-flow controllers to a common gas line or conduit 270 which is coupled to the gas-distribution fixture 240 inside the reaction chamber 220. Gas conduit 270 is also coupled to vacuum pump, or exhaust pump, 281 by mass-flow controller 286 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the gas conduit.


Vacuum pump, or exhaust pump, 282 is coupled by mass-flow controller 287 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the reaction chamber 220. For convenience, control displays, mounting apparatus, temperature sensing devices, substrate maneuvering apparatus, and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 2A.



FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing layers of HfO2 and nanolaminates of HfO2/ZrO2, according to the teachings of the present invention. Gas-distribution fixture 240 includes a gas-distribution member 242, and a gas inlet 244. Gas inlet 244 couples the gas-distribution member 242 to the gas conduit 270 of FIG. 2A. Gas-distribution member 242 includes gas-distribution holes, or orifices, 246 and gas-distribution channels 248. In the exemplary embodiment, holes 246 are substantially circular with a common diameter in the range of 15-20 microns, gas-distribution channels 248 have a common width in the range of 20-45 microns. The surface 249 of the gas distribution member having gas-distribution holes 246 is substantially planar and parallel to the substrate 210 of FIG. 2A. However, other embodiments use other surface forms as well as shapes and sizes of holes and channels. The distribution and size of holes may also affect deposition thickness and thus might be used to assist thickness control. Holes 246 are coupled through gas-distribution channels 248 to gas inlet 244. Though the ALD system 200 is well suited for practicing the present invention, other ALD systems commercially available can be used.


The use, construction and fundamental operation of reaction chambers for deposition of films are understood by those of ordinary skill in the art of semiconductor fabrication. The present invention may be practiced on a variety of such reaction chambers without undue experimentation. Furthermore, one of ordinary skill in the art will comprehend the necessary detection, measurement, and control techniques in the art of semiconductor fabrication upon reading the disclosure.



FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. This embodiment of a method for forming a HfO2/ZrO2 nanolaminate includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 305, and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO2/ZrO2 composite, at block 310. By strictly controlling the processing of the HfO2 layer and the ZrO2 layer, the HfO2/ZrO2 composite formed is a HfO2/ZrO2 nanolaminate. In one embodiment, the HfO2/ZrO2 nanolaminate is composed of one HfO2 layer and one layer ZrO2 layer. In another embodiment, the HfO2/ZrO2 nanolaminate includes multiple layers of the HfO2/ZrO2 composite, where the initial layer disposed on a substrate is a HfO2 layer. After this initial HfO2 layer, there are alternating layers of HfO2 and ZrO2, with the terminating layer being a ZrO2 layer in one embodiment and HfO2 layer in another embodiment.


Forming the HfO2 layer on a substrate by atomic layer deposition involves using a deposition sequence including pulsing the HfI4 precursor into the reaction chamber, followed by pulsing a purging gas, pulsing a first oxygen containing precursor, and pulsing the purging gas. In one embodiment, the first oxygen precursor is water vapor. Each precursor is pulsed for a short time ranging from 0.5 seconds to two or three seconds. A purging gas such as nitrogen is pulsed for a longer period such as five to fifteen seconds to insure that all excess precursor gases and by-products are removed from the reaction chamber. Pulsing times are selected to enable the controlled growth of the HfO2 layer on a one to two monolayer basis. For a fixed ALD sequence or cycle, including fixed pulsing times and substrate temperatures, the HfO2 layer growth rate is at a relatively fixed rate, where a desired thickness of the HfO2 layer is obtained by performing the ALD sequence for a predetermined number of cycles.



FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO2/ZrO2 by atomic layer deposition, according to the teachings of the present invention. In this embodiment, a method for forming a dielectric film includes forming a layer of HfO2 on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, and forming a layer of ZrO2 on the HfO2 layer by atomic layer deposition to form a HfO2/ZrO2 composite. Using the ALD process provides for the formation of the HfO2/ZrO2 composite as a nanolaminate. An embodiment of this method can be implemented with the atomic layer deposition system of FIGS. 2A,B.


At block 405, a substrate is prepared. The substrate used for forming a transistor is typically a silicon or silicon containing material. In other embodiments, germanium, gallium arsenide, silicon-on-sapphire substrates, or other suitable substrates may be used. This preparation process includes cleaning of the substrate 210 and forming layers and regions of the substrate, such as drains and sources of a metal oxide semiconductor (MOS) transistor, prior to forming a gate dielectric. The sequencing of the formation of the regions of the transistor being processed follows typical sequencing that is generally performed in the fabrication of a MOS transistor as is well known to those skilled in the art. Included in the processing prior to forming a gate dielectric is the masking of substrate regions to be protected during the gate dielectric formation, as is typically performed in MOS fabrication. In this embodiment, the unmasked region includes a body region of a transistor, however one skilled in the art will recognize that other semiconductor device structures may utilize this process. Additionally, the substrate 210 in its ready for processing form is conveyed into a position in reaction chamber 220 for ALD processing.


At block 410, a precursor containing hafnium is pulsed into reaction chamber 220. In particular, HfI4 is used as a source material. The HfI4 is pulsed into reaction chamber 220 through the gas-distribution fixture 240 onto substrate 210. The flow of the HfI4 is controlled by mass-flow controller 256 from gas source 251. In one embodiment, the substrate temperature is maintained between about 225° C. and about 500° C. In another embodiment, the substrate temperature is maintained between about 250° C. and about 325° C. The lower temperature allows for forming a dielectric film suited for use as a gate dielectric, since an amorphous layer tends to more readily form at lower processing temperatures. The HfI4 reacts with the surface of the substrate 210 in the desired region defined by the unmasked areas of the substrate 210.


At block 415, a first purging gas is pulsed into the reaction chamber 220. In particular, pure nitrogen with a purity greater than 99.99% is used as a purging gas for HfI4. The nitrogen flow is controlled by mass-flow controller 266 from the purging gas source 261 into the gas conduit 270. Using the pure nitrogen purge avoids overlap of the precursor pulses and possible gas phase reactions. A nitrogen gas can also be used as a carrier gas for the precursors. Following the purge, a first oxygen containing precursor is pulsed into the reaction chamber 220, at block 420. For the hafnium sequence using HfI4 as the precursor, water vapor is selected as the precursor acting as an oxidizing reactant to form a HfO2 on the substrate 210. Alternately, a vapor solution of H2O—H2O2 can be used as the oxygen containing precursor. The water vapor is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 252 by mass-flow controller 257. The water vapor aggressively reacts at the surface of substrate 210.


Following the pulsing of oxidizing reactant water vapor, the first purging gas is injected into the reaction chamber 220, at block 425. In the HfI4 water vapor sequence, pure nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287, and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286.


During the HfI4/water vapor sequence, the substrate is held between about 250° C. and about 325° C. by the heating element 230. In other embodiments the substrate is held between about 225° C. and 500° C. The HfI4 pulse time ranges from about 1.0 sec to about 2.0 sec. After the HfI4 pulse, the hafnium sequence continues with a purge pulse followed by a water vapor pulse followed by a purge pulse. In one embodiment, performing a purge pulse followed by a water vapor pulse followed by a purge pulse takes about 2 seconds. In another embodiment, each pulse in the hafnium sequence has a 2 second pulse period. In another embodiment, the pulse periods for the precursors are 2 seconds, while the purge gas pulse period ranges from five second to twenty seconds.


At block 430, a determination is made as to whether a desired thickness of the HfO2 layer has been formed. The thickness of a HfO2 film after one cycle is determined by a fixed growth rate for the pulsing periods and precursors used in the hafnium sequence, set at a value such as N nm/cycle. For a desired HfO2 film thickness, t, in an application such as forming a gate dielectric of a MOS transistor, the ALD process should be repeated for t/N cycles. The desired thickness should be attained after t/N cycles. If less than t/N cycles have been completed, the process starts over at block 410 with the pulsing of the precursor containing hafnium, which in the embodiment discussed above is a HfI4 gas. If t/N cycles have completed, no further ALD processing of HfO2 is required and the HfO2 layer is ready to be formed as a composite with a ZrO2 layer.


At block 435, a precursor containing zirconium is pulsed into the reaction chamber 220. In one embodiment, ZrI4 is used as the zirconium containing precursor. In another embodiment, ZrCl4 is used as the zirconium containing precursor. The ZrI4 is evaporated from a containment area held at about 250° C. in gas source 253. It is pulsed to the surface of the substrate 210 through gas-distribution fixture 240 from gas source 253 by mass-flow controller 258. The ZrI4 is introduced onto the HfO2 layer that was formed during the HfI4/water vapor sequence.


At block 440, a second purging gas is introduced into the system. For a ZrI4 precursor, nitrogen gas is used as a purging and carrier gas. The nitrogen flow is controlled by mass-flow controller 267 from the purging gas source 262 into the gas conduit 270 and subsequently into the reaction chamber 220. Following the nitrogen purge, at block 445, a second oxygen containing precursor is pulsed into the reaction chamber 220. For the zirconium sequence using ZrI4 as the precursor, a vapor solution of H2O—H2O2 is selected as the precursor acting as an oxidizing reactant to interact with the zirconium deposited on the HfO2 layer on the substrate 210. The H2O—H2O2 vapor solution is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 254, held at about room temperature, by mass-flow controller 259. The H2O—H2O2 vapor solution aggressively reacts at the surface of substrate 210 to form a ZrO2 layer.


Following the pulsing of the H2O—H2O2 vapor solution acting as an oxidizing reactant, the nitrogen purging gas is injected into the reaction chamber 200, at block 450. In the ZrI4/H2O—H2O2 vapor solution sequence, nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas. In another embodiment, argon gas is used as the purging gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287, and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286.


During the ZrI4/H2O—H2O2 vapor solution sequence, the substrate is held between about 250° C. and about 325° C. by the heating element 230. In other embodiments, the substrate is held between about 275° C. and about 500° C. In one embodiment, the process pressure is maintained at about 250 Pa during the zirconium sequence. Pulse times for the ZrI4 and the H2O—H2O2 vapor solution were about 2 sec for both precursors, with purging pulse times of about 2 secs.


At 455, similar to the HfO2 layer formation, a determination is made as to whether the ZrO2 layer has the desired thickness by determining if a desired number of zirconium cycles have been performed. If the number of zirconium cycles performed is less than the number needed to form the desired thickness, the zirconium containing precursor is pulsed into the reaction chamber, at block 435, and the process continues. If the desired number of zirconium cycles has been performed, this completes not only the ZrI4/H2O—H2O2 vapor solution sequence, but it also completes a hafnium sequence/zirconium sequence cycle forming a HfO2/ZrO2 nanolaminate.


Upon completing the formation of the HfO2/ZrO2 nanolaminate, the nanolaminate can be annealed. The annealing can be performed at a temperature between about 300° C. and about 800° C. in an inert or nitrogen atmosphere.


At block 460, after forming the HfO2/ZrO2 nanolaminate, processing the device containing the HfO2/ZrO2 nanolaminate is completed. In one embodiment, completing the device includes completing the formation of a transistor. Alternately, completing the process includes completing the construction of a memory device having a array with access transistors formed with gate dielectrics containing HfO2/ZrO2 nanolaminates. Further, in another embodiment, completing the process includes the formation of an electronic system including an information handling device that uses electronic devices with transistors formed with gate dielectrics containing HfO2/ZrO2 nanolaminates. Typically, information handling devices such as computers include many memory devices, having many access transistors.


In one embodiment, a HfO2/ZrO2 nanolaminate includes one HfO2 layer and one HfO2/ZrO2 layer. The completed HfO2/ZrO2 nanolaminate has a thickness in which the thickness of the HfO2 layer is about one-half the thickness of the completed HfO2ZrO2 nanolaminate. In another embodiment, a completed HfO2/ZrO2 nanolaminate includes multiple alternating layers of HfO2 and ZrO2, which requires that at block 455, once a given ZrO2 layer has been formed with a desired thickness, a hafnium sequence is then started at block 410. This process, proceeding from completing the zirconium sequence at block 455 to starting the hafnium sequence at block 410, continues until the desired number of alternating layers of HfO2 and ZrO2 have been formed. The HfO2/ZrO2 nanolaminate formation begins with forming a HfO2 layer, but may end with forming ZrO2 layer or a HfO2 layer. ALD provides for the engineering of a HfO2/ZrO2 nanolaminate. For example, nanolaminates can be formed with n number of HfO2/ZrO2 composite layers where the HfO2 layer is formed with x number of hafnium cycles and y number of zirconium cycles. Alternately, nanolaminates can be formed with n number of HfO2/ZrO2 composite layers where the first composite layer has a HfO2 layer formed with x1 number of hafnium cycles and y1 number of zirconium cycles, a second composite layer has a HfO2 layer formed with x2 number of hafnium cycles and y2 number of zirconium cycles, extended to the nth composite layer having a HfO2 layer formed with xn number of hafnium cycles and yn number of zirconium cycles. Such tailoring of the HfO2/ZrO2 nanolaminate provides for forming dielectric films with a designed physical thickness, t, and equivalent oxide thickness, teq.


In the hafnium sequence and in the zirconium sequence, pulsing each precursor into the reaction chamber is controlled for a predetermined period, the predetermined period being individually controlled for each precursor pulsed into the reaction chamber. Additionally, the substrate is maintained at a selected temperature for forming each layer, where the selected temperature set independently for forming each layer.


In a recent article by O. Sneh et al., Thin Solid Films, vol. 402, pp. 248-261 (2002), atomic layer deposition of thin films was discussed. The article noted that the growth rate for HfO2 is, typically, about 0.8 Å/cycle. Similarly, in a recent article by K. Kukli et al., Journal of the Electrochemical Society, vol. 148, no. 12. pp. F227-F232 (2001), dealing with ZrO2 formed by ALD using ZrI4, it was noted that at about a growth temperature of about 300° C., ZrO2 growth rate was about 0.075 nm/cycle. Thus, in the embodiments for forming HfO2/ZrO2 nanolaminates using ALD for all composite layers, each material layer can be grown at about 0.75-0.80 Å/cycle.



FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention. In one embodiment, a nanolaminate of HfO2/ZrO2 is formed by a method that includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 505, forming a layer of zirconium on the layer of hafnium oxide by thermal evaporation, at block 510, and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O2) mixed plasma to form a HfO2/ZrO2 composite, at block 515. The HfO2/ZrO2 composite is a nanolaminate, whose thickness can be controlled by precisely controlling the ALD formation of HfO2, and thermal deposition of zirconium. In one embodiment, the thermal evaporation of zirconium is performed using electron beam evaporation.



FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO2 to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. In the embodiment of FIG. 6, a substrate 610 is located inside a deposition chamber 660. The substrate in this embodiment is masked by a first masking structure 670 and a second masking structure 671. In this embodiment, the unmasked region 633 includes a body region of a transistor on which a layer of HfO2 is formed. However one skilled in the art will recognize that other semiconductor device structures may utilize this process. Also located within the deposition chamber 660 is an electron gun 663 and a target 661. The electron gun 663 provides an electron beam 664 directed at target 661 containing a source material for forming ZrO2 on the unmasked region HfO2 layer 633 of the substrate 610. The electron gun 663 includes a rate monitor for controlling the rate of evaporation of the material in the target 661 at which the electron beam 664 is directed. For convenience, control displays and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 6.


During the evaporation process, the electron gun 663 generates an electron beam 664 that hits target 661. In one embodiment, target 661 contains a zirconium metal source, which is evaporated due to the impact of the electron beam 664. The evaporated material 668 is then distributed throughout the chamber 660. A layer of zirconium is grown forming a film 640 on the surface of the HfO2 layer 633 on substrate 610, which is maintained at a temperature between 150° C. and 200° C. The growth rate can vary with a typical rate of 0.1 Å/s. After depositing a zirconium layer on the HfO2 layer 633, the zirconium layer is oxidized.


The evaporation chamber 660 can be included as part of an overall processing system including ALD system 200 of FIG. 2. To avoid contamination of the surface of the HfO2 layer 633, evaporation chamber 660 can be connected to ALD system 200 using sealable connections to maintain the substrate, which is substrate 210 in FIG. 2 and substrate 610 of FIG. 6, in an appropriate environment between ALD processing of the HfO2 layer and Zr evaporation. Other means as are known to those skilled in the art can be employed for maintaining an appropriate environment between different processing procedures.



FIGS. 7A-7C show a low temperature oxidation process that is used in one embodiment to form a layer of ZrO2 on a layer of HfO2. FIG. 7A shows an embodiment of a zirconium layer 720 deposited on a HfO2 layer 710, according to the teachings of the present invention. The HfO2 layer 710 is formed on substrate 700 using an ALD process, as previously discussed, having an substrate interface 730. The Zr layer 720 is deposited on the HfO2 layer 710 by electron beam evaporation, as discussed above, forming an interface 740 with the HfO2 layer 710 and having an outer surface 750. The combined film with the Zr layer 720 deposited on the HfO2 layer 710 has a total thickness 752. The layers 710, 720 are deposited over a body region of a transistor, however the layers may be deposited on any surface within the scope of the invention.



FIG. 7B shows an embodiment of a partially oxidized zirconium layer 770 deposited on a HfO2 layer 710, according to the teachings of the present invention. In FIG. 7B, the layer 720 is in the process of being oxidized. In one embodiment, the oxidation process includes a krypton/oxygen mixed plasma oxidation process. The mixed plasma process generates atomic oxygen or oxygen radicals in contrast to molecular oxygen or O2 used in conventional thermal oxidation. The atomic oxygen is introduced to the layer from all exposed directions as indicated by arrows 760, creating an oxide portion 770. The atomic oxygen continues to react with the layer and creates an oxidation interface 742. As the reaction progresses, atomic oxygen diffuses through the oxide portion 770 and reacts at the oxidation interface 742 until the layer is completely converted to an oxide of the deposited material layer.



FIG. 7C shows an embodiment of a ZrO2 substantially completely oxidized and formed on a layer of HfO2 to form a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. FIG. 7C shows the resulting oxide layer 770 which spans a physical thickness 772 from the outer surface 750 to the interface 740. The overall thickness 752 of the HfO2/ZrO2 composite in FIG. 7C has increased from that of the Zr layer deposited on the HfO2 layer in FIG. 7A, due to the oxidation of the zirconium.


In an embodiment, the processing variables for the mixed plasma oxidation include a low ion bombardment energy of less than 7 eV, a high plasma density above 1012/cm3 and a low electron temperature below 1.3 eV. In another embodiment, the substrate temperature is approximately 400° C. In another embodiment, a mixed gas of 3% oxygen with the balance being krypton at a pressure of 1 Torr is used. In one embodiment, a microwave power density of 5 W/cm2 is used. The oxidation process provides a growth rate of 1.5 nm/min.


The low temperature mixed plasma oxidation process described above allows the deposited layer to be oxidized at a low temperature. The mixed plasma process in one embodiment is performed at approximately 400° C. in contrast to prior thermal oxidation processes that are performed at approximately 1000° C.



FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and chemical vapor deposition (CVD), according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 805, and forming a layer of zirconium oxide on the layer of hafnium oxide by chemical vapor deposition to form a HfO2/ZrO2 composite, at block 810. The HfO2 layer is formed by ALD as discussed in the embodiments above. In one embodiment, the ZrO2 layer is formed by rapid thermal CVD at about 500° C. Subsequently, a nitrogen anneal is performed between about 700° C. and about 800° C. for about 30 sec. A rapid thermal CVD system, as is known to those skilled in the art, is used to form the ZrO2 layer.



FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 905, and forming a layer of zirconium oxide on the layer of hafnium oxide by pulsed-laser deposition to form a HfO2/ZrO2 composite, at block 910. The HfO2 layer is formed by ALD as discussed in the embodiments above. A pulsed-laser deposition system is similar to the electron beam evaporation system 660 of FIG. 6 with the electron gun 663 replaced by a laser and focusing optics, though the laser and focusing optics need not be located in the evaporation reaction chamber. A beam from the laser is focused on a target, which causes an ablation of material from the target. The material removed from the target deposits on an unmasked HfO2 layer located on a substrate. Controlling the focusing of the beam from the laser on the source target provides for precision growth rate of the ZrO2 layer.


In one embodiment, a substrate temperature is maintained between about 200° C. to about 800° C. during pulsed-laser deposition. A beam from a laser source such as a excimer laser is focused on a rotating zirconium target source in a deposition chamber with an O2 pressure of about 0.2 Torr to form a ZrO2 layer on a HfO2 layer. Other laser sources and configurations can be used as is known by those skilled in the art.



FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 1005, and forming a layer of zirconium oxide on the layer of hafnium oxide by jet-vapor deposition to form a HfO2/ZrO2 composite, at block 1010. The HfO2 layer is formed by ALD as discussed in the embodiments above. The ZrO2 layer can be formed using jet-vapor deposition techniques as is known to those skilled in the art.


In one embodiment, the jet-vapor deposition zirconium and oxygen vapors are directed to the HfO2 layer out of source nozzles by supersonic Ar jets. Using jet-vapor deposition in a low pressure atmosphere allows for forming the ZrO2 layer at room temperature. In one embodiment, annealing is performed subsequent to forming the ZrO2 layer at a about 800° C. In one embodiment, the annealing is performed using a nitrogen rapid thermal annealing (RTA). The annealing can be performed after each ZrO2 layer is formed in the composite of alternating layers of the HfO2/ZrO2 nanolaminate and/or at the completion of the HfO2/ZrO2 nanolaminate.


In each of the various embodiments for forming ZrO2 layers, the HfO2/ZrO2 nanolaminates can be annealed in a temperature range from between 300° C. to 800° C. Typically the annealing is for a short time and in performed in a nitrogen atmosphere or in some other inert atmosphere.


Bulk layers of HfO2 and bulk layers of ZrO2 both have a dielectric constant of about 25. Consequently, a material film composed of bulk layers of HfO2 and ZrO2 will also have a dielectric constant of about 25. However, thin layers of a material, typically, have dielectric constants somewhat less than their bulk counterparts. The reduced value of the dielectric constants for ultra thin material films is due in part to the formation of an interfacial layer between the material film and the substrate. Some materials formed on silicon substrates form a SiO2 interfacial layer, while other materials form an silicide interfacial layer. The material silicide in many cases will have a dielectric greater than SiO2, but less than the bulk material dielectric constant. ZrO2 formed on silicon substrates may result in an interfacial region where silicon diffuses through a layer of ZrO2 to form a poly-silicon/ZrO2/silicon interfacial region, as reported by C. H. Lee et al., IEDM 2000, 27-30 (2000). Further, nanolaminates of ZrO2/HfO2 were reported to have SiO2 interfacial layer when formed by ALD using ZrCl4 and HfCl4 precursors. See H. Zhang et al., Journal of the Electrochemical Society, vol. 148, no. 4, pp. F63-F66 (2001). To eliminate the SiO2 interfacial layer, Zhang et al. grew ZrO2/HfO2 nanolaminates on nitrated Si substrates producing dielectric constants ranging from 9 to 14 with low leakage currents ranging from 2.2×10−6 to 1.2×10−8 A/cm3 at 1 MV/cm.


In the various embodiments according to the teachings of the present invention, HfO2/ZrO2 nanolaminates are formed by ALD of HfO2 on substrates using a HfI4 precursor. Subsequently, a layer of ZrO2 is formed on the HfO2 layer by various deposition techniques. These HfO2/ZrO2 nanolaminates form a stable interface with a silicon substrate. Using ALD, the size and effect of interfacial layer between the silicon substrate and the first HfO2 layer will depend on the reactivity of the HfO2 in forming an abrupt transition from silicon surface to HfO2 layer. Consequently, dielectric films containing HfO2/ZrO2 nanolaminates can have dielectric constants ranging from 9 or 10 to 25. Additionally, forming the HfO2 layer at relatively low temperatures provides a means for enabling the formation of HfO2/ZrO2 nanolaminates that are amorphous.


Another factor setting a lower limit for the scaling of a dielectric layer is the number of monolayers of the dielectric structure necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer on the dielectric layer or film. This requirement is necessary to avoid possible short circuit effects between the underlying silicon layer and the overlying conductive layer used. In one embodiment, for several HfO2 monolayers and several ZrO2 monolayers forming a nanolaminate, an expected lower limit for the physical thickness of a dielectric layer grown by forming HfO2/ZrO2 nanolaminates is anticipated to be in about the 2-4 nm range. Consequently, typical dielectric layers or films can be grown by forming HfO2/ZrO2 nanolaminates having physical thickness in the range of 4 to 10 nm. HfO2 used as the initial layer is expected to provide excellent overall results with respect to reliability, current leakage, and ultra-thin teq. Further, using ALD for processing all layers of a HfO2/ZrO2 nanolaminate, the transitions between such oxide layers can be engineered to be abrupt or graded. Thus, the number of layers used, the thickness of each layer, and the nature of the interface between each layer can be engineered to provide the desired electrical characteristics.


With HfO2 layers formed by ALD and ZrO2 layers formed according to one of the various embodiments described herein, HfO2/ZrO2 nanolaminates can have a wide range of thicknesses and dielectric constants. The physical thicknesses can range from about 2 nm to about 10 nm with typical thickness ranging from about 4 nm to about 10 nm. Such layers have an effective dielectric constant ranging from 9 or 10 to 25. The expected teq ranges for various effective dielectric constants are shown in the following:
















Physical Thickness
Physical Thickness
Physical Thickness



t = 0.5 nm (5 Å)
t = 1.0 nm (10 Å)
t = 5.0 nm (50 Å)


κ
teq (Å)
teq (Å)
teq (Å)


















9
2.17
4.33
21.67


17
1.15
2.29
11.47


21
.93
1.86
9.29


25
.78
1.56
7.8









As mentioned, the lower limit on the scaling of a layer containing HfO2/ZrO2 nanolaminates depends on the monolayers of the film necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer to the HfO2/ZrO2 nanolaminate film. From above, it is apparent that a film containing HfO2/ZrO2 nanolaminates can be attained with a teq ranging from 3 Å to 12 Å. Further, a dielectric film with completely formed band structures and monolayer formations can provide a teq significantly less than 2 or 3 Å.


The novel process described above provides significant advantages by performing atomic layer deposition of HfO2/ZrO2 in a hafnium sequence using HfI4 precursors followed by the formation of a ZrO2 layer on the HfO2 layer. Further, by independently controlling the various parameters for each sequence a gate dielectric with a selected dielectric constant can be formed. Additionally, the novel process can be implemented to form transistors, memory devices, and information handling devices. With careful preparation and engineering of the HfO2/ZrO2 nanolaminates limiting the size of interfacial regions, a teq down to 2.5 Å or lower is anticipated.


A transistor 100 as depicted in FIG. 1 can be formed by forming a source/drain region 120 and another source/drain region 130 in a silicon based substrate 110 where the two source/drain regions 120, 130 are separated by a body region 132. The body region 132 separated by the source/drain 120 and the source/drain 130 defines a channel having a channel length 134. A dielectric film is formed on the substrate 110 by forming a layer of hafnium oxide on substrate 110 in a reaction chamber by atomic layer deposition using a HfI4 precursor and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO2/ZrO2 composite. The resulting HfO2/ZrO2 composite is a nanolaminate. These HfO2/ZrO2 nanolaminates can be formed using any of the various embodiments previously discussed. These HfO2/ZrO2 nanolaminates are contained in a dielectric film defining the gate dielectric 140.


A gate is formed over the gate dielectric 140. Typically, forming the gate includes forming a polysilicon layer, though a metal gate can be formed in an alternative process. Forming the substrate, source/region regions, and the gate is performed using standard processes known to those skilled in the art. Additionally, the sequencing of the various elements of the process for forming a transistor is conducted with standard fabrication processes, also as known to those skilled in the art.


Embodiments of the method of forming HfO2/ZrO2 nanolaminates as a gate dielectric can be applied to other transistor structures having dielectric layers. For example, FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention. The transistor 1100 includes a silicon based substrate 1110 with two source/drain regions 1120, 1130 separated by a body region 1132. The body region 1132 between the two source/drain regions 1120, 1130 defines a channel region having a channel length 1134. Located above the body region 1132 is a stack 1155 including a gate dielectric 1140, a floating gate 1152, a floating gate dielectric 1142, and control gate 1150. The gate dielectric 1140 containing HfO2/ZrO2 nanolaminates is formed according to the teachings of the present invention as described above with the remaining elements of the transistor 1100 formed using processes known to those skilled in the art. Alternately, both the gate dielectric 1140 and the floating gate dielectric 1142 can be formed containing HfO2/ZrO2 nanolaminates, in accordance with the present invention as described above.


Transistors created by the methods described above may be implemented into memory devices and electronic systems including information handling devices. Information handling devices having a dielectric layer containing HfO2/ZrO2 nanolaminates can be constructed using various embodiments of the methods described above. Such information devices can include wireless systems, telecommunication systems, and computers. An embodiment of a computer having a dielectric layer containing HfO2/ZrO2 nanolaminates is shown in FIGS. 12-14 and described below. While specific types of memory devices and computing devices are shown below, it will be recognized by one skilled in the art that several types of memory devices and electronic systems including information handling devices utilize the invention.



FIG. 12 shows an embodiment of a personal computer 1200 incorporating devices, according to the teachings of the present invention. Personal computer 1200 includes a monitor 1201, keyboard input 1202 and a central processing unit 1204.



FIG. 13 illustrates a schematic view of an embodiment of a central processing unit 1204 incorporating devices, according to the teachings of the present invention. The central processing unit 1204 typically includes microprocessor 1306, memory bus circuit 1308 having a plurality of memory slots 1312(a-n), and other peripheral circuitry 1310. Peripheral circuitry 1310 permits various peripheral devices 1324 to interface processor-memory bus 1320 over input/output (I/O) bus 1322. The personal computer 1200 shown in FIGS. 12 and 13 also includes at least one transistor having a gate dielectric containing HfO2/ZrO2 nanolarninates in an embodiment according to the teachings of the present invention.


Microprocessor 1306 produces control and address signals to control the exchange of data between memory bus circuit 1308 and microprocessor 1306 and between memory bus circuit 1308 and peripheral circuitry 1310. This exchange of data is accomplished over high speed memory bus 1320 and over high speed I/O bus 1322.


Coupled to memory bus 1320 are a plurality of memory slots 1312(a-n) which receive memory devices well known to those skilled in the art. For example, single in-line memory modules (SIMMs) and dual in-line memory modules (DIMMs) may be used in the implementation of the present invention.


These memory devices can be produced in a variety of designs which provide different methods of reading from and writing to the dynamic memory cells of memory slots 1312. One such method is the page mode operation. Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed. Page mode DRAMs require access steps which limit the communication speed of memory circuit 1308.


An alternate type of device is the extended data output (EDO) memory which allows data stored at a memory array address to be available as output after the addressed column has been closed. This memory can increase some communication speeds by allowing shorter access signals without reducing the time in which memory output data is available on memory bus 1320. Other alternative types of devices include SDRAM, DDR SDRAM, SLDRAM and Direct RDRAM as well as others such as SRAM or Flash memories.



FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device 1400 according to the teachings of the present invention. DRAM device 1400 is compatible with memory slots 1312(a-n). The description of DRAM 1400 has been simplified for purposes of illustrating a DRAM memory device and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices may be used in the implementation of the present invention. The example of a DRAM memory device shown in FIG. 14 includes at least one transistor having a gate dielectric containing HfO2/ZrO2 nanolaminates in an embodiment according to the teachings of the present invention.


Control, address and data information provided over memory bus 1320 is further represented by individual inputs to DRAM 1400, as shown in FIG. 14. These individual representations are illustrated by data lines 1402, address lines 1404 and various discrete lines directed to control logic 1406.


As is well known in the art, DRAM 1400 includes memory array 1410 which in turn comprises rows and columns of addressable memory cells. Each memory cell in a row is coupled to a common word line. The word line is coupled to gates of individual transistors, where at least one transistor has a gate coupled to a gate dielectric containing HfO2/ZrO2 nanolaminates in accordance with the method and structure previously described above. Additionally, each memory cell in a column is coupled to a common bit line. Each cell in memory array 1410 includes a storage capacitor and an access transistor as is conventional in the art.


DRAM 1400 interfaces with, for example, microprocessor 1306 through address lines 1404 and data lines 1402. Alternatively, DRAM 1400 may interface with a DRAM controller, a micro-controller, a chip set or other electronic system. Microprocessor 1306 also provides a number of control signals to DRAM 1400, including but not limited to, row and column address strobe signals RAS and CAS, write enable signal WE, an output enable signal OE and other conventional control signals.


Row address buffer 1412 and row decoder 1414 receive and decode row addresses from row address signals provided on address lines 1404 by microprocessor 1306. Each unique row address corresponds to a row of cells in memory array 1410. Row decoder 1414 includes a word line driver, an address decoder tree, and circuitry which translates a given row address received from row address buffers 1412 and selectively activates the appropriate word line of memory array 1410 via the word line drivers.


Column address buffer 1416 and column decoder 1418 receive and decode column address signals provided on address lines 1404. Column decoder 1418 also determines when a column is defective and the address of a replacement column. Column decoder 1418 is coupled to sense amplifiers 1420. Sense amplifiers 1420 are coupled to complementary pairs of bit lines of memory array 1410.


Sense amplifiers 1420 are coupled to data-in buffers 1422 and data-out buffers 1424. Data-in buffers 1422 and data-out buffers 1424 are coupled to data lines 1402. During a write operation, data lines 1402 provide data to data-in buffers 1422. Sense amplifier 1420 receives data from data-in buffers 1422 and stores the data in memory array 1410 as a charge on a capacitor of a cell at an address specified on address lines 1404.


During a read operation, DRAM 1400 transfers data to microprocessor 1306 from memory array 1410. Complementary bit lines for the accessed cell are equilibrated during a precharge operation to a reference voltage provided by an equilibration circuit and a reference voltage supply. The charge stored in the accessed cell is then shared with the associated bit lines. A sense amplifier of sense amplifiers 1420 detects and amplifies a difference in voltage between the complementary bit lines. The sense amplifier passes the amplified voltage to data-out buffers 1424.


Control logic 1406 is used to control the many available functions of DRAM 1400. In addition, various control circuits and signals not detailed herein initiate and synchronize DRAM 1400 operation as known to those skilled in the art. As stated above, the description of DRAM 1400 has been simplified for purposes of illustrating the present invention and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices, including but not limited to, SDRAMs, SLDRAMs, RDRAMs and other DRAMs and SRAMs, VRAMs and EEPROMs, may be used in the implementation of the present invention. The DRAM implementation described herein is illustrative only and not intended to be exclusive or limiting.


CONCLUSION

A gate dielectric containing HfO2/ZrO2 nanolaminates and a method of fabricating such a gate produces a reliable gate dielectric having an equivalent oxide thickness thinner than attainable using SiO2. Gate dielectrics containing HfO2/ZrO2 nanolaminates formed using the methods described herein are thermodynamically stable such that the gate dielectrics formed will have minimal reactions with a silicon substrate or other structures during processing.


Transistors, higher level ICs or devices, and systems are constructed utilizing the novel process for forming a gate dielectric having an ultra thin equivalent oxide thickness, teq. Gate dielectric layers or films containing HfO2/ZrO2 nanolaminates are formed having a high dielectric constant (κ), where the gate dielectrics are capable of a teq thinner than 10 Å, thinner than the expected limit for SiO2 gate dielectrics. At the same time, the physical thickness of the HfO2/ZrO2 nanolaminates is much larger than the SiO2 thickness associated with the teq limit of SiO2. Forming the larger thickness provides advantages in processing the gate dielectric. Further, HfO2/ZrO2 nanolaminates processed in relatively low temperatures can provide amorphous dielectric films having relatively low leakage current for use as dielectric layers in electronic devices and systems.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An electronic device comprising: a semiconductor substrate;a dielectric film disposed on the semiconductor substrate, the dielectric film containing a nanolaminate, the nanolaminate having an initial layer, the nanolaminate including: a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition.
  • 2. The electronic device of claim 1, wherein the dielectric film is configured essentially as the nanolaminate.
  • 3. The electronic device of claim 1, wherein the semiconductor substrate includes a non-silicon substrate.
  • 4. The electronic device of claim 1, wherein the dielectric film is structured essentially as the nanolaminate configured as a gate dielectric of a transistor.
  • 5. The electronic device of claim 1, wherein the dielectric film is structured essentially as the nanolaminate configured in a memory device.
  • 6. The electronic device of claim 1, wherein the electronic device has conductive connections to couple a signal from a device in an electronic system to a conductive layer disposed on and contacting the dielectric film.
  • 7. A transistor comprising: a body region between a first source/drain region and a second source/drain region on a silicon substrate;a dielectric film containing a nanolaminate on the body region between the first and second source/drain regions, the nanolaminate having an initial layer, the nanolaminate including: a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition; anda gate coupled to the dielectric film.
  • 8. The transistor of claim 7, wherein each layer of the nanolaminate is formed by atomic layer deposition.
  • 9. The transistor of claim 7, wherein the nanolaminate includes a final layer opposite the body region, the final layer being one of the plurality of hafnium oxide layers.
  • 10. The transistor of claim 7, wherein the dielectric film has a dielectric constant in the range from about 10 to about 25.
  • 11. The transistor of claim 7, wherein the gate is a control gate of the transistor.
  • 12. A transistor comprising: a body region between a first source/drain region and a second source/drain region on a semiconductor substrate;a dielectric film containing a nanolaminate disposed on the body region between the first source/drain region and second source/drain region, the nanolaminate having an initial layer, the nanolaminate including: a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition; anda floating gate coupled to the dielectric film; anda control gate separated from the floating gate by an insulator.
  • 13. The transistor of claim 12, wherein semiconductor substrate includes a silicon-on-sapphire substrate.
  • 14. The transistor of claim 12, wherein the dielectric film is substantially amorphous.
  • 15. The transistor of claim 12, wherein the dielectric film exhibits a dielectric constant in the range from about 9 to about 25.
  • 16. The transistor of claim 12, wherein the dielectric film exhibits an equivalent oxide thickness (teq) in the range from about 3 Angstroms to about 12 Angstroms.
  • 17. The transistor of claim 12, wherein the dielectric film exhibits an equivalent oxide thickness (teq) of less than 3 Angstroms.
  • 18. A memory comprising: a number of access transistors, at least one access transistor including a gate coupled to a dielectric film containing a nanolaminate, the dielectric film formed on a body region between a first source/drain region and a second source/drain region on a silicon substrate, the nanolaminate having an initial layer, the nanolaminate including: a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition;a number of word lines coupled to a number of the gates of the number of access transistors;a number of source lines coupled to a number of the first source/drain regions of the number of access transistors; anda number of bit lines coupled to a number of the second source/drain regions of the number of access transistors;the dielectric film containing the nanolaminate formed by a method including: forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor; andforming a layer of zirconium oxide on the layer of hafnium oxide.
  • 19. The memory of claim 18, wherein forming a layer of zirconium oxide includes forming a layer of zirconium oxide by atomic layer deposition.
  • 20. The memory of claim 19, wherein forming a layer of zirconium oxide by atomic layer deposition includes using a ZrI4 precursor.
  • 21. The memory of claim 18, wherein the nanolaminate is substantially amorphous.
  • 22. The memory of claim 18, wherein the nanolaminate has an equivalent oxide thickness (teq) less than 3 Angstroms.
  • 23. A memory comprising: a memory array having a number of access transistors, at least one access transistor including a gate coupled to a dielectric film, the dielectric film disposed on a body region between a first source/drain region and a second source/drain region on a semiconductor substrate, the dielectric film including a nanolaminate, the nanolaminate having an initial layer, the nanolaminate including: a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition.
  • 24. The memory of claim 23, wherein the dielectric film has a dielectric constant in the range from about 9 to about 25.
  • 25. The memory of claim 23, wherein the dielectric film has an equivalent oxide thickness (teq) in the range from about 3 Angstroms to about 12 Angstroms.
  • 26. An electronic system comprising: a processor;a memory, the memory including: a number of access transistors, at least one access transistor having a gate coupled to a dielectric film containing a nanolaminate, the dielectric film containing the nanolaminate formed on a body region between a first source/drain region and a second source/drain region on a silicon substrate, the nanolaminate having an initial layer, the nanolaminate including:a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition; anda number of word lines coupled to a number of the gates of the number of access transistors;a number of source lines coupled to a number of the first source/drain regions of the number of access transistors;a number of bit lines coupled to a number of the second source/drain regions of the number of access transistors; anda system bus that couples the processor to the memory;the dielectric film containing the nanolaminate formed by a method including: forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor; andforming a layer of zirconium oxide on the layer of hafnium oxide.
  • 27. The electronic system of claim 26, wherein forming a layer of zirconium oxide includes forming a layer of zirconium oxide by atomic layer deposition.
  • 28. The electronic system of claim 26, wherein the dielectric layer is substantially amorphous.
  • 29. An electronic system comprising: a processor; anda memory, the memory including: a number of access transistors, at least one access transistor having a gate coupled to a dielectric film containing a nanolaminate, the film disposed on a body region between a first source/drain region and a second source/drain region on a semiconductor substrate, the nanolaminate having an initial layer, the nanolaminate including:a plurality of layers of hafnium oxide, each layer of hafnium oxide essentially consisting of hafnium and oxygen, one of the layers of hafnium oxide being the initial layer;a plurality of layers of zirconium oxide, each layer of zirconium oxide essentially consisting of zirconium and oxygen, wherein between each of the layers of zirconium oxide one of the layers of the plurality of layers of hafnium oxide is disposed; anda transition layer between one of the layers of hafnium oxide and one of the layers of zirconium oxide, the transition layer having a graded composition; anda system bus that couples the processor to the memory.
  • 30. The electronic system of claim 29, wherein the electronic system includes an information handling device.
  • 31. The electronic system of claim 29, wherein the electronic system includes a wireless system.
  • 32. The electronic system of claim 29, wherein the dielectric film has a dielectric constant in the range from about 9 to about 25.
  • 33. The electronic system of claim 29, wherein the dielectric film exhibits an equivalent oxide thickness (teq) in the range from about 3 Angstroms to about 12 Angstroms.
RELATED APPLICATIONS

The present application is a Divisional of U.S. application Ser. No. 10/209,581, filed Jul. 30, 2002, now U.S. Pat. No. 6,921,702, which is incorporated herein by reference. This application is related to the following, commonly assigned applications, incorporated herein by reference: U.S. application Ser. No. 10/163,481, now U.S. Pat. No. 7,135,421, entitled: “Atomic Layer-Deposited Hafnium Aluminum Oxide Films;” U.S. application Ser. No. 10/137,499, now U.S. Pat. No. 7,045,430, entitled: “Atomic Layer-Deposited LaAlO3 Films for Gate Dielectrics;” U.S. application Ser. No. 10/137,058, entitled: “Atomic Layer Deposition and Conversion;” U.S. application Ser. No. 09/945,535, entitled: “Highly Reliable Amorphous High-K Gate Oxide ZrO2;” U.S. application Ser. No. 10/137,168, now U.S. Pat. No. 7,160,577, entitled: “Methods for Atomic-Layer Deposition of Aluminum Oxides in Integrated Circuits;” and U.S. Pat. No. 6,852,167, entitled: “Methods, Systems, and Apparatus for Uniform Chemical-Vapor Depositions.”

US Referenced Citations (342)
Number Name Date Kind
2501563 Colbert et al. Mar 1950 A
3381114 Nakanuma Apr 1968 A
4058430 Suntola et al. Nov 1977 A
4215156 Dalal et al. Jul 1980 A
4333808 Bhattacharyya et al. Jun 1982 A
4399424 Rigby Aug 1983 A
4413022 Suntola et al. Nov 1983 A
4590042 Drage May 1986 A
4608215 Gonczy et al. Aug 1986 A
4645622 Kock Feb 1987 A
4647947 Takeoka et al. Mar 1987 A
4767641 Kieser et al. Aug 1988 A
4920071 Thomas Apr 1990 A
4993358 Mahawili Feb 1991 A
5006192 Deguchi Apr 1991 A
5055319 Bunshah et al. Oct 1991 A
5302461 Anthony Apr 1994 A
5572052 Kashihara et al. Nov 1996 A
5587609 Murakami et al. Dec 1996 A
5595606 Fujikawa et al. Jan 1997 A
5625233 Cabral, Jr. et al. Apr 1997 A
5674563 Tarui et al. Oct 1997 A
5698022 Glassman et al. Dec 1997 A
5735960 Sandhu et al. Apr 1998 A
5765214 Sywyk Jun 1998 A
5795808 Park Aug 1998 A
5801105 Yano et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5822256 Bauer et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5840897 Kirlin et al. Nov 1998 A
5912797 Schneemeyer et al. Jun 1999 A
5916365 Sherman Jun 1999 A
5950925 Fukunaga et al. Sep 1999 A
5998264 Wu Dec 1999 A
6013553 Wallace et al. Jan 2000 A
6020024 Maiti et al. Feb 2000 A
6020243 Wallace et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6027961 Maiti et al. Feb 2000 A
6057271 Kenjiro et al. May 2000 A
6059885 Ohashi et al. May 2000 A
6060743 Sugiyama et al. May 2000 A
6093944 VanDover Jul 2000 A
6110529 Gardiner et al. Aug 2000 A
6146976 Stecher et al. Nov 2000 A
6161500 Kopacz et al. Dec 2000 A
6171900 Sun Jan 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6207589 Ma et al. Mar 2001 B1
6211035 Moise et al. Apr 2001 B1
6225168 Gardner et al. May 2001 B1
6281144 Cleary et al. Aug 2001 B1
6291866 Wallace et al. Sep 2001 B1
6294813 Forbes et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6300203 Buynoski et al. Oct 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6303481 Park Oct 2001 B2
6348386 Gilmer Feb 2002 B1
6352591 Yieh et al. Mar 2002 B1
6368941 Chen et al. Apr 2002 B1
6380579 Nam et al. Apr 2002 B1
6387712 Yano et al. May 2002 B1
6391769 Lee et al. May 2002 B1
6417537 Yang et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6423613 Geusic Jul 2002 B1
6432779 Hobbs et al. Aug 2002 B1
6441417 Zhang et al. Aug 2002 B1
6444039 Nguyen Sep 2002 B1
6444592 Ballantine et al. Sep 2002 B1
6445023 Vaartstra et al. Sep 2002 B1
6448192 Kaushik Sep 2002 B1
6451641 Halliyal et al. Sep 2002 B1
6451695 Sneh Sep 2002 B2
6455330 Yao et al. Sep 2002 B1
6458701 Chae et al. Oct 2002 B1
6465334 Buynoski et al. Oct 2002 B1
6482740 Soininen et al. Nov 2002 B2
6495436 Ahn et al. Dec 2002 B2
6495437 Yu Dec 2002 B1
6509280 Choi Jan 2003 B2
6514828 Ahn et al. Feb 2003 B2
6521911 Parsons et al. Feb 2003 B2
6527866 Matijasevic et al. Mar 2003 B1
6528858 Yu et al. Mar 2003 B1
6534420 Ahn et al. Mar 2003 B2
6537613 Senzaki et al. Mar 2003 B1
6541079 Bojarczuk, Jr. et al. Apr 2003 B1
6541353 Sandhu et al. Apr 2003 B1
6542229 Kalal et al. Apr 2003 B1
6544875 Wilk Apr 2003 B1
6551893 Zheng et al. Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6552388 Wilk et al. Apr 2003 B2
6559014 Jeon May 2003 B1
6559472 Sandhu et al. May 2003 B2
6562491 Jeon May 2003 B1
6586349 Jeon et al. Jul 2003 B1
6586792 Ahn et al. Jul 2003 B2
6590252 Kutsunai et al. Jul 2003 B2
6592942 Van Wijck Jul 2003 B1
6596636 Sandhu et al. Jul 2003 B2
6608378 Ahn et al. Aug 2003 B2
6613656 Li Sep 2003 B2
6613702 Sandhu et al. Sep 2003 B2
6617639 Wang et al. Sep 2003 B1
6627260 Derderian et al. Sep 2003 B2
6627503 Ma et al. Sep 2003 B2
6630713 Geusic Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6638859 Sneh et al. Oct 2003 B2
6645882 Halliyal et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6656764 Wang et al. Dec 2003 B1
6660660 Haukka et al. Dec 2003 B2
6661058 Ahn et al. Dec 2003 B2
6673701 Marsh et al. Jan 2004 B1
6674138 Halliyal et al. Jan 2004 B1
6683005 Sandhu et al. Jan 2004 B2
6683011 Smith et al. Jan 2004 B2
6696332 Visokay et al. Feb 2004 B2
6699747 Ruff et al. Mar 2004 B2
6709989 Ramdani et al. Mar 2004 B2
6713846 Senzaki Mar 2004 B1
6730575 Eldridge May 2004 B2
6740605 Shiraiwa et al. May 2004 B1
6746930 Yang et al. Jun 2004 B2
6750066 Cheung et al. Jun 2004 B1
6754108 Forbes Jun 2004 B2
6767582 Elers Jul 2004 B1
6767795 Ahn et al. Jul 2004 B2
6777353 Putkonen Aug 2004 B2
6778441 Forbes et al. Aug 2004 B2
6780704 Raaijmakers et al. Aug 2004 B1
6787370 Forbes et al. Sep 2004 B2
6787413 Ahn Sep 2004 B2
6790791 Ahn et al. Sep 2004 B2
6804136 Forbes Oct 2004 B2
6806211 Shinriki et al. Oct 2004 B2
6812100 Ahn et al. Nov 2004 B2
6821862 Cho Nov 2004 B2
6821873 Visokay et al. Nov 2004 B2
6831315 Raaijmakers et al. Dec 2004 B2
6844203 Ahn et al. Jan 2005 B2
6844604 Lee et al. Jan 2005 B2
6852167 Ahn Feb 2005 B2
6858444 Ahn et al. Feb 2005 B2
6884739 Ahn et al. Apr 2005 B2
6888739 Forbes May 2005 B2
6893984 Ahn et al. May 2005 B2
6900122 Ahn et al. May 2005 B2
6914800 Ahn et al. Jul 2005 B2
6930346 Ahn et al. Aug 2005 B2
6958302 Ahn et al. Oct 2005 B2
6984591 Buchanan et al. Jan 2006 B1
7012311 Ohmi et al. Mar 2006 B2
7169673 Ahn et al. Jan 2007 B2
7235501 Ahn et al. Jun 2007 B2
7365027 Ahn et al. Apr 2008 B2
7388246 Ahn et al. Jun 2008 B2
7390756 Ahn et al. Jun 2008 B2
7399666 Ahn et al. Jul 2008 B2
7402876 Ahn et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7410668 Ahn Aug 2008 B2
7410910 Ahn et al. Aug 2008 B2
7410917 Ahn et al. Aug 2008 B2
7411237 Ahn et al. Aug 2008 B2
7429515 Ahn et al. Sep 2008 B2
7439194 Ahn et al. Oct 2008 B2
7494939 Ahn et al. Feb 2009 B2
7498247 Ahn et al. Mar 2009 B2
7508025 Eldridge et al. Mar 2009 B2
7508648 Ahn et al. Mar 2009 B2
7510983 Ahn et al. Mar 2009 B2
7511326 Ahn et al. Mar 2009 B2
7531869 Ahn et al. May 2009 B2
20010002280 Sneh May 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010030352 Ruf et al. Oct 2001 A1
20010036106 Kato et al. Nov 2001 A1
20020000593 Nishiyama et al. Jan 2002 A1
20020001971 Cho Jan 2002 A1
20020020429 Selbrede Feb 2002 A1
20020024080 Derderian et al. Feb 2002 A1
20020025628 Derderian et al. Feb 2002 A1
20020028541 Lee et al. Mar 2002 A1
20020046705 Sandhu et al. Apr 2002 A1
20020048910 Taylor et al. Apr 2002 A1
20020068466 Lee et al. Jun 2002 A1
20020086507 Park et al. Jul 2002 A1
20020086555 Ahn et al. Jul 2002 A1
20020089023 Yu et al. Jul 2002 A1
20020089063 Ahn et al. Jul 2002 A1
20020090806 Ahn et al. Jul 2002 A1
20020094632 Agarwal et al. Jul 2002 A1
20020100418 Sandhu et al. Aug 2002 A1
20020102818 Sandhu et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020111001 Ahn Aug 2002 A1
20020122885 Ahn Sep 2002 A1
20020130338 Ahn et al. Sep 2002 A1
20020135048 Ahn et al. Sep 2002 A1
20020142536 Zhang et al. Oct 2002 A1
20020146916 Irino et al. Oct 2002 A1
20020155688 Ahn et al. Oct 2002 A1
20020155689 Ahn et al. Oct 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020167089 Ahn et al. Nov 2002 A1
20020177293 Wilk et al. Nov 2002 A1
20020190294 Iizuka et al. Dec 2002 A1
20020192974 Ahn et al. Dec 2002 A1
20020192975 Ahn Dec 2002 A1
20020192979 Ahn Dec 2002 A1
20020195056 Sandhu et al. Dec 2002 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030003702 Ahn Jan 2003 A1
20030003730 Li Jan 2003 A1
20030008243 Ahn et al. Jan 2003 A1
20030017717 Ahn et al. Jan 2003 A1
20030020169 Ahn et al. Jan 2003 A1
20030020180 Ahn et al. Jan 2003 A1
20030040196 Lim et al. Feb 2003 A1
20030043637 Forbes et al. Mar 2003 A1
20030045078 Ahn et al. Mar 2003 A1
20030045082 Eldridge et al. Mar 2003 A1
20030048666 Eldridge et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030104666 Bojarczuk, Jr. et al. Jun 2003 A1
20030119246 Ahn Jun 2003 A1
20030119291 Ahn et al. Jun 2003 A1
20030132491 Ahn Jul 2003 A1
20030141560 Sun Jul 2003 A1
20030157764 Ahn et al. Aug 2003 A1
20030170389 Sandhu Sep 2003 A1
20030170403 Doan et al. Sep 2003 A1
20030175411 Kodas et al. Sep 2003 A1
20030176049 Hegde et al. Sep 2003 A1
20030181039 Sandhu et al. Sep 2003 A1
20030183156 Dando et al. Oct 2003 A1
20030193061 Osten Oct 2003 A1
20030207032 Ahn et al. Nov 2003 A1
20030207540 Ahn et al. Nov 2003 A1
20030207564 Ahn et al. Nov 2003 A1
20030207593 Derderian et al. Nov 2003 A1
20030213987 Basceri Nov 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030228747 Ahn et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030235064 Batra et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040004244 Ahn et al. Jan 2004 A1
20040004245 Forbes et al. Jan 2004 A1
20040004247 Forbes et al. Jan 2004 A1
20040004859 Forbes et al. Jan 2004 A1
20040009679 Yeo et al. Jan 2004 A1
20040012043 Gealy et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040033701 Ahn et al. Feb 2004 A1
20040038525 Meng et al. Feb 2004 A1
20040038554 Ahn Feb 2004 A1
20040040494 Vaartstra et al. Mar 2004 A1
20040043541 Ahn Mar 2004 A1
20040043569 Ahn Mar 2004 A1
20040043635 Vaartstra Mar 2004 A1
20040097022 Werkhoven et al. May 2004 A1
20040110348 Ahn et al. Jun 2004 A1
20040110391 Ahn et al. Jun 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040159863 Eldridge et al. Aug 2004 A1
20040164357 Ahn et al. Aug 2004 A1
20040175882 Ahn et al. Sep 2004 A1
20040183108 Ahn Sep 2004 A1
20040185654 Ahn Sep 2004 A1
20040214399 Ahn et al. Oct 2004 A1
20040222476 Ahn et al. Nov 2004 A1
20040233010 Akram et al. Nov 2004 A1
20040262700 Ahn et al. Dec 2004 A1
20050009370 Ahn Jan 2005 A1
20050020017 Ahn et al. Jan 2005 A1
20050023574 Forbes et al. Feb 2005 A1
20050023584 Derderian et al. Feb 2005 A1
20050023594 Ahn et al. Feb 2005 A1
20050023595 Forbes et al. Feb 2005 A1
20050023602 Forbes et al. Feb 2005 A1
20050023603 Eldridge et al. Feb 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050023625 Ahn et al. Feb 2005 A1
20050023626 Ahn et al. Feb 2005 A1
20050023627 Ahn et al. Feb 2005 A1
20050026349 Forbes et al. Feb 2005 A1
20050026374 Ahn et al. Feb 2005 A1
20050026458 Basceri et al. Feb 2005 A1
20050029547 Ahn et al. Feb 2005 A1
20050029604 Ahn et al. Feb 2005 A1
20050029605 Ahn et al. Feb 2005 A1
20050032292 Ahn et al. Feb 2005 A1
20050034662 Ahn Feb 2005 A1
20050037563 Ahn Feb 2005 A1
20050054165 Ahn et al. Mar 2005 A1
20050077519 Ahn et al. Apr 2005 A1
20050087134 Ahn Apr 2005 A1
20050124174 Ahn et al. Jun 2005 A1
20050138262 Forbes Jun 2005 A1
20050140462 Akram et al. Jun 2005 A1
20050145957 Ahn et al. Jul 2005 A1
20050158973 Ahn et al. Jul 2005 A1
20050164521 Ahn et al. Jul 2005 A1
20050173755 Forbes Aug 2005 A1
20050212119 Shero et al. Sep 2005 A1
20050227442 Ahn et al. Oct 2005 A1
20060183272 Ahn et al. Aug 2006 A1
20060223337 Ahn et al. Oct 2006 A1
20060246741 Ahn et al. Nov 2006 A1
20060252211 Ahn et al. Nov 2006 A1
20070018214 Ahn Jan 2007 A1
20070049051 Ahn et al. Mar 2007 A1
20070049054 Ahn et al. Mar 2007 A1
20070134931 Ahn et al. Jun 2007 A1
20080029790 Ahn et al. Feb 2008 A1
20080032424 Ahn et al. Feb 2008 A1
20080032465 Ahn et al. Feb 2008 A1
20080048225 Ahn et al. Feb 2008 A1
20080087890 Ahn et al. Apr 2008 A1
20080121962 Forbes et al. May 2008 A1
20080124907 Forbes et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080191350 Ahn et al. Aug 2008 A1
20080191351 Ahn et al. Aug 2008 A1
20080193791 Ahn et al. Aug 2008 A1
20080194094 Ahn et al. Aug 2008 A1
20080217676 Ahn et al. Sep 2008 A1
20080274625 Ahn et al. Nov 2008 A1
20080283940 Ahn et al. Nov 2008 A1
20090032910 Ahn et al. Feb 2009 A1
20090134499 Ahn et al. May 2009 A1
Foreign Referenced Citations (10)
Number Date Country
0540993 May 1993 EP
1096042 May 2001 EP
1124262 Aug 2001 EP
1124262 Aug 2001 EP
62-199019 Sep 1987 JP
5090169 Apr 1993 JP
2001-332546 Nov 2001 JP
WO-0197257 Dec 2001 WO
WO-0231875 Apr 2002 WO
WO-0243115 May 2002 WO
Related Publications (1)
Number Date Country
20050277256 A1 Dec 2005 US
Divisions (1)
Number Date Country
Parent 10209581 Jul 2002 US
Child 11178914 US