Oxide etch selectivity systems and methods

Information

  • Patent Grant
  • 9349605
  • Patent Number
    9,349,605
  • Date Filed
    Friday, August 7, 2015
    8 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
Embodiments of the present technology may include a method of etching a substrate. The method may include striking a plasma discharge in a plasma region. The method may also include flowing a fluorine-containing precursor into the plasma region to form a plasma effluent. The plasma effluent may flow into a mixing region. The method may further include introducing a hydrogen-and-oxygen-containing compound into the mixing region without first passing the hydrogen-and-oxygen-containing compound into the plasma region. Additionally, the method may include reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products. The reaction products may flow through a plurality of openings in a partition to a substrate processing region. The method may also include etching the substrate with the reaction products in the substrate processing region.
Description
TECHNICAL FIELD

The present technology relates to semiconductor systems, processes, and equipment. More specifically, the present technology relates to systems and methods for etching semiconductor materials.


BACKGROUND

Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.


Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures than wet etches. However, even though an etch process may be selective to a first material over a second material, some undesired etching of the second material may still occur.


Thus, there is a need for improved systems and methods that can be used to produce high quality devices and structures. These and other needs are addressed by the present technology.


BRIEF SUMMARY

Embodiments of the present technology includes methods and systems for selective etching. High etch selectivities of silicon oxide over materials including polysilicon and silicon nitride are achieved. An additional partition defining a plurality of openings may affect the flow of compounds and enhance or suppress certain reactions. In some cases, the additional partition may increase the residence time and/or the mixing of plasma products with a hydrogen-and-oxygen-containing compound. The plasma products and the hydrogen-and-oxygen-containing compound may react to reduce the concentration of compounds that may etch materials that are not targeted for etch. Additionally, the partition may aid the formation of other compounds that may etch silicon oxide or other materials targeted for etch. The partition may then increase the etch selectivity compared to a process or system without the partition.


Embodiments of the present technology may include a method of etching a substrate. The method may include striking a plasma discharge in a plasma region. The method may also include flowing a fluorine-containing precursor into the plasma region to form a plasma effluent. The plasma effluent may flow into a mixing region. The method may further include introducing a hydrogen-and-oxygen-containing compound into the mixing region without first passing the hydrogen-and-oxygen-containing compound into the plasma region. Additionally, the method may include reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products. The reaction products may flow through a plurality of openings in a partition to a substrate processing region. The method may also include etching the substrate with the reaction products in the substrate processing region.


Embodiments may include a substrate processing system. The system may include a first gas inlet, a pedestal configured to support a substrate, a showerhead, a partition, a second gas inlet, and a power supply. The showerhead may be an electrically conductive plate defining a plurality of openings. The showerhead may also be positioned between the first gas inlet and the pedestal. The partition may define a second plurality of openings and may be positioned between the pedestal and the showerhead. The second gas inlet may be positioned at the showerhead or between the showerhead and the partition. A plasma region may be defined between the first gas inlet and the showerhead. A substantially plasma-free region may be defined between the showerhead and the partition. A substrate processing region may be defined between the partition and the pedestal. The power supply may be configured to strike a plasma discharge in the plasma region.


Embodiments may also include a method of etching a substrate. The method may include striking a first plasma discharge in a first plasma region. The method may also include striking a second plasma discharge in a second plasma region. The method may further include flowing a fluorine-containing precursor into the first plasma region to form a plasma effluent. The plasma effluent may flow into the second plasma region. In the second plasma region, a hydrogen-and-oxygen-containing compound and the plasma effluent may react to form reaction products. The hydrogen-and-oxygen-containing compound may not be excited by the first plasma prior to entering the second plasma region. The method may additionally include flowing the reaction products through a plurality of openings in a partition to a substrate processing region. The method may also include etching the substrate with the reaction products in the substrate processing region.





BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the embodiments may be realized by reference to the remaining portions of the specification and the drawings.



FIG. 1 shows a block flow diagram of a method of etching according to embodiments.



FIG. 2 shows a simplified diagram of a substrate processing system according to embodiments.



FIG. 3 shows a block flow diagram of a method of etching according to embodiments.



FIG. 4 shows a simplified diagram of a substrate processing system according to embodiments.



FIG. 5 shows etch selectivities for different processes according to embodiments.



FIG. 6 shows a schematic cross-sectional view of a substrate processing chamber according to embodiments.



FIG. 7 shows a schematic cross-sectional view of a portion of a substrate processing chamber according to embodiments.



FIG. 8 shows a bottom view of a showerhead according to embodiments.



FIG. 9 shows a top view of an exemplary substrate processing system according to embodiments.





DETAILED DESCRIPTION

Conventional methods and systems of etching materials may have lower than desired etch selectivities as characteristic dimensions of semiconductor structures decreases. In some processes, a lower quality oxide must be etched more quickly than a higher quality oxide. The oxide etch rate may be lowered in order to increase selectivity between oxide types. In this lower oxide etch regime, etch selectivity between oxide and silicon or silicon nitride may decrease. The undesired etch of silicon or silicon nitride may have detrimental impacts on device performance, particularly with smaller and smaller semiconductor devices.


Embodiments of the present technology increase, over conventional methods and systems, the etch selectivity of oxide to silicon, silicon nitride, or other materials. An additional partition in the process alters the flow and reactions of precursors and compounds in the etch process. The partition may be positioned downstream of a plasma region and downstream of the introduction of a hydrogen-and-oxygen-containing compound. The partition may reduce the concentration of species that may etch silicon and silicon nitride (e.g., fluorine radicals), while increasing the formation of species that etch silicon oxide (e.g., HF2). Hence, etch selectivities of oxide to polysilicon, silicon nitride, and/or other materials may increase over methods and systems without the partition.



FIG. 1 shows a method 100 of etching a substrate according to embodiments. The method may include striking a plasma discharge in a plasma region (block 102). The plasma discharge may be a capacitively coupled plasma or an inductively coupled plasma. Method 100 may also include flowing a fluorine-containing precursor into the plasma region to form a plasma effluent (block 104). The fluorine-containing precursor may include a precursor selected from the group consisting of atomic fluorine, diatomic fluorine, nitrogen trifluoride, carbon tetrafluoride, hydrogen fluoride, and xenon difluoride. Other gases may be flowed into the plasma region along with the fluorine-containing precursor. Other gases may include, for example, an inert gas, a noble gas, helium, and/or argon. Other sources of oxygen may be used to augment or replace the nitrogen trifluoride. In general, an oxygen-containing precursor is flowed into the plasma region and the fluorine-containing precursor comprises at least one precursor selected from the group consisting of molecular oxygen (O2), ozone (O3), dinitrogen oxide (N2O), hyponitrite (N2O2) or nitrogen dioxide (NO2) in embodiments. The plasma effluent may include atoms, molecules, radicals, and/or ions of the molecules in the gas present before being excited by the plasma discharge.


In addition, method 100 may include flowing the plasma effluent into a mixing region (block 106). The plasma effluent may flow through a plurality of openings in a showerhead. The mixing region may be substantially plasma-free. “Plasma-free” does not necessarily mean the region is devoid of plasma. Ionized species and free electrons created within the plasma region may travel through the openings in the showerhead at exceedingly small concentrations. The borders of the plasma in the chamber plasma region may encroach to some small degree upon the regions downstream of the showerhead through the openings in the showerhead. Furthermore, a low intensity plasma may be created in a region downstream of the showerhead without eliminating desirable features of the etch processes described herein. All causes for a plasma having much lower intensity ion density than the chamber plasma region during the creation of the excited plasma effluents do not deviate from the scope of “plasma-free” as used herein.


In some embodiments, method 100 may further include introducing a hydrogen-and-oxygen-containing compound into the mixing region (block 108) without first passing the hydrogen-and-oxygen-containing compound into the plasma region. The hydrogen-and-oxygen-containing compound may not be excited or ionized by any plasma outside the mixing region prior to entering the mixing region. If the hydrogen-and-oxygen-containing compound were introduced in the same gas inlet as the fluorine-containing precursor, the hydrogen-and-oxygen-containing compound may disassociate, ionize, or undergo other reactions or excitations, which may affect etch reactions and increase process complexity. Instead, the hydrogen-and-oxygen-containing compound may be introduced downstream of the plasma in order to deliver the compound without dissociating and without unnecessarily increasing process complexity. The hydrogen-and-oxygen-containing compound may include water vapor or an alcohol. The alcohol may include one or more of methanol, ethanol, and isopropyl alcohol in embodiments. The hydrogen-and-oxygen-containing compound may include an O—H bond.


Additionally, method 100 may include reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products (block 110). A reaction in the mixing region may include fluorine radical and water reactants. The fluorine radical and water may react to form products, including HF2 and OH. The reaction products may include combinations of hydrogen, fluorine, and/or oxygen atoms.


The method may further include flowing reaction products through a plurality of openings in a partition to a substrate processing region (block 112). The substrate processing region may be substantially or entirely plasma-free. Each opening of a portion of the plurality of openings in the partition may or may not be concentrically aligned with the nearest opening of the plurality of openings in the showerhead. The portion of the plurality of openings that may or may not be concentrically aligned may or may not be the entirety of the openings in the partition. Without intending to be bound to any particular theory, it is believed that the partition enhances mixing between the plasma effluent and the hydrogen-and-oxygen-containing compound. Specifically, the partition may increase reactions between F radicals and water and therefore may reduce F radicals that may etch polysilicon, silicon nitride, or other materials.


Method 100 may also include etching the substrate with the reaction products in the substrate processing region (block 114). The substrate may include a semiconductor wafer with patterned layers on top of the wafer. The substrate may include an exposed silicon oxide portion and a second exposed portion. The second exposed portion may have a compositional atomic ratio other than 1 silicon atom to 2 oxygen atoms. The silicon oxide may etch by a mechanism including the following reactions:

—Si—O+H+→—Si—OH  (1)
—Si—OH+HF2→—Si—F+OH+HF  (2).

Reaction (1) shows how the surface of silicon oxide may be protonated by a hydrogen ion, which may have been formed in the mixing region. Reaction (2) shows how the protonated surface may be attacked by HF2 to form fluorinated silicon. After silicon reacts with three more fluorine atoms, SiF4 is formed and desorbs from the surface. The additional three fluorine atoms may come from fluorine radicals and/or HF2.


In embodiments, the second exposed portion may include polysilicon or silicon nitride. The first exposed portion may etch at an etch rate over 500 times faster than the polysilicon etches. In some cases, the etch rate may be over 600 times, 700 times, 800 times, 900 times, 1,000 times faster. In addition, the first exposed portion may etch at an etch rate at over 200 times faster than the silicon nitride etches. For example, the etch rate for silicon oxide over silicon nitride may be over 250 times faster, 300 times faster, 350 times faster, or 400 times faster. In some embodiments, the substrate may include two types of silicon oxide. One type of silicon oxide may etch faster, but less than 2 times faster, than the other type of silicon oxide. Process temperatures may be from 0° C. to 100° C., including from 8° C. to 15° C. Process pressures may be from 0.5 torr to 12 torr.


Embodiments may include a substrate processing system 200, shown in FIG. 2. The system may include a first gas inlet 202, a pedestal 204 configured to support a substrate 206, a showerhead 208, a partition 210, a second gas inlet 212, and a power supply 214. First gas inlet 202 may be configured to receive gas from first gas source 203. Partition 210 may be disposed from 1,000 to 4,000 mils away from showerhead 208, including, for example, from 1,000 to 1,500 mils, from 1,500 to 2,000 mils, from 2,000 to 2,500 mils, from 2,500 to 3,000 mils, from 3,000 to 3,500 mils, or from 3,500 to 4,000 mils. Pedestal 204 may be disposed 1,000 to 4,000 mils from the surface of showerhead 208 facing the partition 210. For instance, pedestal 204 may be between 1,000 and 1,500 mils, 1,500 and 2,000 mils, 2,000 and 2,500 mils, 2,500 and 3,000 mils, 3,000 and 3,500 mils, or 3,500 and 4,000 mils from the surface of showerhead 208 opposite the partition. Partition 210 may be circular. Partition 210 may be called a flow distribution plate or a distribution plate. Partition 210 may be positioned at any distance between showerhead 208 and pedestal 204. In embodiments, partition 210 is about 2,800 mil from showerhead 208, and pedestal 204 may be positioned from 2,800 to 4,000 mil from showerhead 208.


Showerhead 208 may be an electrically conductive plate defining a plurality of openings, including opening 216. Each opening of the plurality of openings in showerhead 208 may be cylindrical. In some embodiments, opening 216 may include a cylindrical portion and a tapered portion or portions. The tapered portion may taper away from or toward the pedestal. Opening 216 may include a cylindrical portion bounded by two tapered portions. Showerhead 208 may also be positioned between first gas inlet 212 and pedestal 204. Partition 210 may define a second plurality of openings and may be positioned between pedestal 204 and showerhead 208. Each opening of the plurality of openings in partition 210 may be cylindrical. Opening 218 is an example of one opening in partition 210. The diameter of each opening in the plurality of openings in showerhead 208 may be equal to the diameter of each opening in the plurality of openings in partition 210. In embodiments, the plurality of openings in at least one of showerhead 208 and partition 210 may have a non-uniform distribution of hole sizes. Showerhead 208 may be circular and may have the same diameter as partition 210. Showerhead 208 may have a diameter within 10%, 20%, 30%, 40%, or 50% of the diameter of partition 210.


Second gas inlet 212 may be positioned at showerhead 208 or between showerhead 208 and partition 210. Second gas inlet 212 may deliver gas from a second gas source 220 to apertures 222 in showerhead 208. Apertures 222 may direct gas toward partition 210 and not direct gas to mix with plasma effluent in opening 216. In this manner, showerhead 208 may be a dual channel showerhead. No gas inlet may be positioned at the same level as partition 210. A plasma region 224 may be defined between first gas inlet 202 and showerhead 208.


A substantially plasma-free region 226 may be defined between showerhead 208 and partition 210. A substrate processing region 228 may be defined between partition 210 and pedestal 204. A plurality of gas outlets, including gas outlet 230, may be positioned between partition 210 and pedestal 204. The plurality of gas outlets may lead to a pump 232. The plurality of gas outlets may be arranged at a radius about a center point. The center point may be located on a line through the center of showerhead 208 and the center of partition 210. The plurality of gas outlets may be distributed uniformly along the circumference of a circle having the radius about the center point. No gas inlet may deliver gas directly into the substrate processing region.


In some embodiments, no gas outlets may be positioned between partition 210 and pedestal 204. The lack of gas outlets in substrate processing region 228 may be a result of the system not have gas outlets at this location or a pump liner fit over gas outlets to prevent gas flow through the outlets. The only gas outlet may be on the side of pedestal 204 opposite partition 210. Forcing gas to exit under the pedestal rather than radially out the plurality of gas outlets may improve etch uniformity.


Power supply 214 may be configured to strike a plasma discharge in plasma region 224. Power supply 214 may be an RF power supply. Power supply 214 for a capacitively coupled plasma may operate from 0 W to 2000 W, including, for example, 25 W to 500 W.


In some embodiments, an ion suppressor may be positioned between the showerhead and the first gas inlet. The ion suppressor may include a third plurality of openings. The ion suppressor may be circular and may have the same diameter as the showerhead. The ion suppressor may have a diameter within 10%, 20%, 30%, 40%, or 50% of the diameter of the showerhead. The third plurality of openings may have a non-uniform distribution of opening diameters. Possible examples of an ion suppressor are described in more detail below. Any two or three of the ion suppressor, the showerhead, and the partition may have an identical pattern or distribution of plurality of openings. In embodiments, any two of or three of the ion suppressor, the showerhead, and the partition may have a different pattern or distribution of plurality of openings.


As shown in FIG. 3, embodiments may also include a method 300 of etching a substrate. Method 300 may include striking a first plasma discharge in a first plasma region (block 302). The first plasma discharge may be a remote plasma. The remote plasma source may have a power between 0 kW and 10 kW.


Method 300 may also include striking a second plasma discharge in a second plasma region (block 304). The second plasma discharge may be in the same chamber as the substrate. The second plasma may be a capacitively coupled plasma or an inductively coupled plasma. The power source for the second plasma discharge may operate from 0 W to 500 W. Method 300 may further include flowing a fluorine-containing precursor into the first plasma region to form a plasma effluent (block 306). Method 300 may include flowing the plasma effluent into the second plasma region (block 308). In the second plasma region, a hydrogen-and-oxygen-containing compound and the plasma effluent may react to form reaction products (block 310). The hydrogen-and-oxygen-containing compound may not be excited by the first plasma prior to entering the second plasma region. Method 300 may additionally include flowing the reaction products through a plurality of openings in a partition to a substrate processing region (block 312). Method 300 may also include etching the substrate with the reaction products in the substrate processing region (block 314).


The plasma effluent may not flow through a plurality of openings in an electrically grounded showerhead and/or ion suppressor before the plasma effluent enters the second plasma region and after entering an etch chamber. The second plasma discharge may not be formed by an electrical connection to a showerhead or ion suppressor. The second plasma region may not include or be bounded by a showerhead or an ion suppressor described herein. Without intending to be bound by any particular theory, it is believed that the remote plasma unit in combination with a second plasma discharge provides adequate mixing and reaction of the plasma effluent and the hydrogen-and-oxygen-containing compound to increase etch selectivity of the oxide over other materials.


A system used to implement method 300 may include system 400 in FIG. 4. Overall, system 400 in FIG. 4 is similar to system 200 in FIG. 2 with the addition of a Remote Plasma Source (RPS) Unit 402 and the omission of a showerhead. In system 400, first gas source 404 delivers gas to RPS Unit 402. RPS Unit 402 is configured to strike a plasma discharge and may generate plasma effluents. Plasma effluents may flow down gas inlet 406. Gas inlet 406 may be substantially plasma-free.


Plasma effluents may flow into a second plasma region 408. Second plasma region 408 may be between gas inlet 406 and a partition 410. The second plasma region may include a plasma discharge, which may be sustained with power from power supply 412. Power supply 412 may be an RF power supply capacitively coupled between the chamber and partition 410. A second gas inlet 414 may deliver gas from a second gas source 416. Second gas source 416 may include water or another hydrogen-and-oxygen-containing compound. The reaction products formed in the second plasma region may flow through a plurality of openings in partition 410, such as opening 418. The reaction products may then be in a substrate processing region 420, defined as between partition 410 and pedestal 422. Substrate processing region 420 may be substantially plasma-free. Even so, the gas in substrate processing region 420 may etch a portion of substrate 424.


As with system 200, system 400 may include a gas outlet 426 leading to pump 428. Gas outlet 426 may be in a similar position and configuration as gas outlet 230 in FIG. 2. Additionally, system 400 may exclude gas outlet 426 and other similar gas outlets in substrate processing region 420.


Generally speaking, the methods presented herein may be used to selectively etch silicon oxide relative to a wide variety of materials and not just polysilicon and silicon nitride. The methods may be used to selectively etch exposed silicon oxide faster than titanium, titanium nitride, titanium oxide, titanium silicide, hafnium, hafnium oxide, hafnium silicide, tantalum, tantalum oxide, tantalum nitride, tantalum silicide, cobalt, cobalt oxide, cobalt silicide, tungsten, tungsten oxide, tungsten silicide, silicon carbide, silicon nitride, silicon oxynitride, silicon carbon nitride, C—H films, C—H—N films, silicon germanium, germanium, nickel, nickel oxide, or nickel silicide.


The second exposed portion may include at least one element from the group consisting of nitrogen, hafnium, titanium, cobalt, carbon, tantalum, tungsten, and germanium according to embodiments. The second exposed portion may consist essentially of or consist of a composition selected from the group of silicon, tantalum, tantalum and oxygen, tantalum and silicon, tantalum and nitrogen, cobalt, cobalt and oxygen, cobalt and silicon, tungsten, tungsten and oxygen, tungsten and silicon, nickel, nickel and oxygen, nickel and silicon, silicon and nitrogen, silicon and oxygen and nitrogen, silicon and carbon and nitrogen, silicon and carbon, carbon, carbon and hydrogen, carbon and hydrogen and nitrogen, silicon and germanium, germanium, hafnium, hafnium and oxygen, hafnium and silicon, titanium, titanium and oxygen, titanium and nitrogen, or titanium and silicon in embodiments.


EXAMPLE

Etch methods with a distribution plate were tested for etch selectivity against other processes without a distribution plate. Results for the various methods are shown in FIG. 5. The results for the first column is the control recipe for etching oxide. The bars indicate that the etch selectivity of oxide to polysilicon is greater than 200 and the etch selectivity of oxide to low pressure silicon nitride (“LP SiN”) is about 100. The second column of FIG. 5 shows results for an etch process termed uSMD, which includes a different ion suppressor, where the ion suppressor has a different distribution of openings and/or diameters of the openings. SMD stands for selectivity modulation device, which is an ion suppressor. The third column shows the showerhead with the uSMD distribution of openings and a recipe including helium. The results show a slight increase in etch selectivity of oxide to polysilicon and about the same etch selectivity of oxide to low pressure silicon nitride. However, as a result of the slow etch rate of polysilicon and/or experimental precision, the difference in the selectivity between the third column and the first two columns does not translate to a difference when used in typical manufacturing processes. The first three columns show that a different ion suppressor configuration and a different recipe have little effect on etch selectivities.


The fourth column shows etch selectivity results for a chamber with an additional flow distribution plate with the recipe of the third column. The etch selectivity of oxide to polysilicon has increased to about and above 800, and the etch selectivity of oxide to low pressure silicon nitride has increased to close to 300. The fifth column includes the conditions of the fourth column and a pump liner skirt to cover gas outlets on the chamber wall between the pedestal and the flow distribution plate. The etch selectivity under the conditions of the fifth column are similar to that of the fourth column, indicating that pump liner skirt does not affect etch selectivity.


Also shown on FIG. 5 are the etch selectivities of the oxide to a higher quality oxide. Neither the oxide nor the higher quality oxide is a thermal oxide. The higher quality oxide may have a higher density and different surface conditions than the oxide. A higher anneal temperature for the higher quality oxide may make the higher quality oxide more difficult to etch. The etch selectivity between the two oxides is about the same regardless of chamber configuration and recipe. FIG. 5 also shows the etch selectivity between oxide and plasma enhanced silicon nitride (“PE SiN”), which is also about the same across different process conditions. Plasma enhanced silicon nitride may have a higher hydrogen content than low pressure silicon nitride, and as a result the etch mechanism may be similar to oxide instead of polysilicon or low pressure silicon nitride. Hence, the selectivity of the etch to plasma enhanced silicon nitride may not increase much. These results show that the addition of the flow distribution plate does not have a negative impact on other etch selectivities.


Exemplary Processing Systems



FIG. 6 shows a cross-sectional view of an exemplary substrate processing chamber 1001 with a partitioned plasma generation region within the processing chamber. During film etching, a process gas may be flowed into chamber plasma region 1015 through a gas inlet assembly 1005. A remote plasma system (RPS) 1002 may optionally be included in the system, and may process a first gas which then travels through gas inlet assembly 1005. The process gas may be excited within RPS 1002 prior to entering chamber plasma region 1015. Accordingly, the fluorine-containing precursor as discussed above, for example, may pass through RPS 1002 or bypass the RPS unit in embodiments.


A cooling plate 1003, faceplate 1017, ion suppressor 1023, showerhead 1025, and a substrate support 1065 (also known as a pedestal), having a substrate 1055 disposed thereon, are shown and may each be included according to embodiments. Pedestal 1065 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow the substrate 1055 temperature to be cooled or heated to maintain relatively low temperatures, such as between −20° C. to 200° C. Pedestal 1065 may also be resistively heated to relatively high temperatures, such as between 100° C. and 1100° C., using an embedded heater element.


Exemplary configurations may include having the gas inlet assembly 1005 open into a gas supply region 1058 partitioned from the chamber plasma region 1015 by faceplate 1017 so that the gases/species flow through the holes in the faceplate 1017 into the chamber plasma region 1015. Structural and operational features may be selected to prevent significant backflow of plasma from the chamber plasma region 1015 back into the supply region 1058, gas inlet assembly 1005, and fluid supply system 1010. The structural features may include the selection of dimensions and cross-sectional geometries of the apertures in faceplate 1017 to deactivate back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 1058 and chamber plasma region 1015 that maintains a unidirectional flow of plasma through the showerhead 1025. The faceplate 1017, or a conductive top portion of the chamber, and showerhead 1025 are shown with an insulating ring 1020 located between the features, which allows an AC potential to be applied to the faceplate 1017 relative to showerhead 1025 and/or ion suppressor 1023. The insulating ring 1020 may be positioned between the faceplate 1017 and the showerhead 1025 and/or ion suppressor 1023 enabling a capacitively coupled plasma (CCP) to be formed in the chamber plasma region.


The plurality of holes in the ion suppressor 1023 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 1023. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 1023 is reduced. The holes in the ion suppressor 1023 may include a tapered portion that faces chamber plasma region 1015, and a cylindrical portion that faces the showerhead 1025. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 1025. An adjustable electrical bias may also be applied to the ion suppressor 1023 as an additional means to control the flow of ionic species through the suppressor. The ion suppression element 1023 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate. Uncharged neutral and radical species may still pass through the openings in the ion suppressor to react with the substrate.


Plasma power can be of a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma may be provided by RF power delivered to faceplate 1017 relative to ion suppressor 1023 and/or showerhead 1025. The RF power may be between about 10 watts and about 5000 watts, between about 100 watts and about 2000 watts, between about 200 watts and about 1500 watts, or between about 200 watts and about 1000 watts in embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.


Gas may flow from showerhead 1025 to a mixing region 1070. Mixing region 1070 may be bounded on one side by a flow distribution plate 1072. Flow distribution plate may be any partition described herein, and any partition herein may be flow distribution late 1072. Flow distribution plate 1072 may have a plurality of openings, such as opening 1074. Opening 1074 may include a tapered portion that faces substrate processing region 1033, a tapered portion that faces showerhead 1025, and/or a cylindrical portion. The tapered portions may taper toward or away from the side they face.


A precursor, for example a fluorine-containing precursor and an oxygen-containing precursor, may be flowed into substrate processing region 1033 by embodiments of the showerhead described herein. Excited species derived from the process gas in chamber plasma region 1015 may travel through apertures in the ion suppressor 1023, and/or showerhead 1025 and react with an additional precursor flowing into substrate processing region 1033 from a separate portion of the showerhead. Alternatively, if all precursor species are being excited in chamber plasma region 1015, no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in substrate processing region 1033 during the remote plasma etch process. Excited derivatives of the precursors may combine in the region above the substrate and/or on the substrate to etch structures or remove species from the substrate.


The processing gases may be excited in chamber plasma region 1015 and may be passed through the showerhead 1025 to substrate processing region 1033 in the excited state. While a plasma may be generated in substrate processing region 1033, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gases in chamber plasma region 1015 to react with one another in substrate processing region 1033. As previously discussed, this may be to protect the structures patterned on substrate 1055.



FIG. 7 shows a detailed view of the features affecting the processing gas distribution through faceplate 1017. The gas distribution assemblies such as showerhead 1025 for use in the processing chamber section 1001 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in FIG. 6 as well as FIG. 8 herein. The dual channel showerhead may provide for etching processes that allow for separation of etchants outside of the processing region 1033 to provide limited interaction with chamber components and each other prior to being delivered into the processing region.


The showerhead 1025 may comprise an upper plate 1014 and a lower plate 1016. The plates may be coupled with one another to define a volume 1018 between the plates. The coupling of the plates may be so as to provide first fluid channels 1019 through the upper and lower plates, and second fluid channels 1021 through the lower plate 1016. The formed channels may be configured to provide fluid access from the volume 1018 through the lower plate 1016 via second fluid channels 1021 alone, and the first fluid channels 1019 may be fluidly isolated from the volume 1018 between the plates and the second fluid channels 1021. The volume 1018 may be fluidly accessible through a side of the gas distribution assembly 1025. Although the exemplary system of FIGS. 6-8 includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to substrate processing region 1033. For example, a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead described.


In the embodiment shown, showerhead 1025 may distribute via first fluid channels 1019 process gases which contain plasma effluents upon excitation by a plasma in chamber plasma region 1015. In embodiments, the process gas introduced into RPS 1002 and/or chamber plasma region 1015 may contain fluorine, e.g., NF3. The process gas may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as a radical-fluorine precursor referring to the atomic constituent of the process gas introduced. A hydrogen-and-oxygen-containing compound may flow through second fluid channels 1021.



FIG. 8 is a bottom view of a showerhead 1025 for use with a processing chamber in embodiments. Showerhead 1025 corresponds with the showerhead shown in FIG. 6. Through-holes 1031, which show a view of first fluid channels 1019, may have a plurality of shapes and configurations to control and affect the flow of precursors through the showerhead 1025. Small holes 1027, which show a view of second fluid channels 1021, may be distributed substantially evenly over the surface of the showerhead, even amongst the through-holes 1031, which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations.


The chamber plasma region 1015 or a region in an RPS may be referred to as a remote plasma region. In embodiments, the radical-fluorine precursor and the radical-oxygen precursor are created in the remote plasma region and travel into the substrate processing region to combine with the hydrogen-and-oxygen-containing precursor. In embodiments, the hydrogen-and-oxygen-containing precursor is excited only by the radical-fluorine precursor and the radical-oxygen precursor. Plasma power may essentially be applied only to the remote plasma region in embodiments to ensure that the radical-fluorine precursor and the radical-oxygen precursor provide the dominant excitation.


Embodiments of the dry etch systems may be incorporated into larger fabrication systems for producing integrated circuit chips. FIG. 9 shows one such processing system (mainframe) 1101 of deposition, etching, baking, and curing chambers in embodiments. In the figure, a pair of front opening unified pods (load lock chambers 1102) supply substrates of a variety of sizes that are received by robotic arms 1104 and placed into a low pressure holding area 1106 before being placed into one of the substrate processing chambers 1108a-f. A second robotic arm 1110 may be used to transport the substrate wafers from the holding area 1106 to the substrate processing chambers 1108a-f and back. Each substrate processing chamber 1108a-f, can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes.


Nitrogen trifluoride (or another fluorine-containing precursor) may be flowed into chamber plasma region 1020 at rates between about 1 sccm and about 40 sccm, between about 3 sccm and about 25 sccm or between about 5 sccm and about 10 sccm in embodiments. Oxygen (or another oxygen-containing precursor) may be flowed into chamber plasma region 1020 at rates between about 10 sccm and about 400 sccm, between about 30 sccm and about 250 sccm or between about 50 sccm and about 150 sccm in embodiments. Water vapor may be flowed into mixing region 1070 at rates between about 5 sccm and about 100 sccm, between about 10 sccm and about 50 sccm or between about 15 sccm and about 25 sccm according to embodiments. The flow rate ratio of the oxygen-containing precursor to the fluorine-containing precursor may be greater than 4, greater than 6 or greater than 10 according to embodiments. The flow rate ratio of the oxygen-containing precursor to the fluorine-containing precursor may be less than 40, less than 30 or less than 20 in embodiments. Upper limits may be combined with lower limits according to embodiments.


The showerhead may be referred to as a dual-channel showerhead as a result of the two distinct pathways into the substrate processing region. The fluorine-containing precursor and the oxygen-containing precursor may be flowed through the through-holes in the dual-zone showerhead and the water vapor may pass through separate zones in the dual-zone showerhead. The separate zones may open into the mixing region or the substrate processing region but not into the remote plasma region as described above.


Combined flow rates of water vapor and plasma effluents into the substrate processing region may account for 0.05% to about 20% by volume of the overall gas mixture; the remainder being carrier gases. The fluorine-containing precursor and the oxygen-containing precursor flowed into the remote plasma region but the plasma effluents has the same volumetric flow ratio, in embodiments. In the case of the fluorine-containing precursor, a purge or carrier gas may be first initiated into the remote plasma region before those of the fluorine-containing gas and the oxygen-containing precursor to stabilize the pressure within the remote plasma region.


As used herein “substrate” may be a support substrate with or without layers formed thereon. The patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. Exposed “silicon oxide” of the patterned substrate is predominantly SiO2 but may include concentrations of other elemental constituents such as, e.g., nitrogen, hydrogen, and carbon. In some embodiments, silicon oxide portions etched using the methods disclosed herein consist essentially of silicon and oxygen. Exposed “silicon nitride” of the patterned substrate is predominantly Si3N4 but may include concentrations of other elemental constituents such as, e.g., oxygen, hydrogen and carbon. In some embodiments, silicon nitride portions described herein consist essentially of silicon and nitrogen. Exposed “hafnium oxide” of the patterned substrate is predominantly hafnium and oxygen but may include small concentrations of elements other than hafnium and oxygen. In some embodiments, hafnium oxide portions described herein consist essentially of hafnium and oxygen. Exposed “tungsten” of the patterned substrate is predominantly tungsten but may include small concentrations of elements other than tungsten. In some embodiments, tungsten portions described herein consist essentially of tungsten. Analogous definitions apply to all materials described herein.


The term “precursor” is used to refer to any process gas which takes part in a reaction to either remove material from or deposit material onto a surface. “Plasma effluents” describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states. A “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface. “Radical-fluorine precursors” describe radical precursors which contain fluorine but may contain other elemental constituents. “Radical-oxygen precursors” describe radical precursors which contain oxygen but may contain other elemental constituents. The phrase “inert gas” refers to any gas which does not form chemical bonds when etching or being incorporated into a film. Exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.


In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.


Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Additionally, details of any specific embodiment may not always be present in variations of that embodiment or may be added to other embodiments.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a method” includes a plurality of such methods and reference to “the plasma effluent” includes reference to one or more plasma effluents and equivalents thereof known to those skilled in the art, and so forth. The invention has now been described in detail for the purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practice within the scope of the appended claims.

Claims
  • 1. A method of etching a substrate, the method comprising: striking a plasma discharge in a plasma region with a power from a power supply;flowing a fluorine-containing precursor into the plasma region to form a plasma effluent;flowing the plasma effluent through a first plurality of openings in a showerhead into a mixing region;introducing a hydrogen-and-oxygen-containing compound into the mixing region without first passing the hydrogen-and-oxygen-containing compound into the plasma region and without flowing the hydrogen-and-oxygen-containing compound through the first plurality of openings;reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products;flowing the reaction products through a second plurality of openings in a partition to a substrate processing region;etching the substrate with the reaction products in the substrate processing region.
  • 2. The method of claim 1, wherein: the substrate processing region and the mixing region are entirely plasma-free.
  • 3. The method of claim 1, wherein the hydrogen-and-oxygen-containing compound comprises water vapor or an alcohol.
  • 4. The method of claim 1, wherein: the substrate comprises a first exposed portion comprising silicon oxide and a second exposed portion,the second exposed portion comprises polysilicon, andthe first exposed portion etches at an etch rate over 500 times faster than the second exposed portion etches.
  • 5. The method of claim 1, wherein: the substrate comprises a first exposed portion comprising silicon oxide and a second exposed portion,the second exposed portion comprises silicon nitride, andthe first exposed portion etches at an etch rate over 200 times faster than the second exposed portion etches.
  • 6. The method of claim 1, wherein the reaction products comprise HF2−.
  • 7. The method of claim 1, wherein: each opening of a portion of the second plurality of openings is not concentrically aligned with an opening of the first plurality of openings nearest to the respective opening.
  • 8. The method of claim 1, wherein: each opening of a portion of the second plurality of openings is concentrically aligned with an opening of the first plurality of openings nearest to the respective opening.
  • 9. The method of claim 1, wherein the hydrogen-and-oxygen-containing compound is not excited by a plasma formed by a power applied to the showerhead relative to the partition.
  • 10. The method of claim 1, wherein striking the plasma discharge comprises applying the power from the power supply to a portion of a processing system relative to the showerhead.
  • 11. The method of claim 1, wherein the hydrogen-and-oxygen-containing compound is not excited by a capacitively coupled plasma or an inductively coupled plasma.
  • 12. The method of claim 1, wherein the hydrogen-and-oxygen-containing compound comprises an alcohol.
  • 13. A method of etching a substrate, the method comprising: striking a first plasma discharge in a first plasma region with a first power from a first power supply;striking a second plasma discharge in a second plasma region with a second power from a second power supply;flowing a fluorine-containing precursor into the first plasma region to form a plasma effluent;flowing the plasma effluent into the second plasma region;flowing a hydrogen-and-oxygen-containing compound to the second plasma region;reacting the hydrogen-and-oxygen-containing compound and the plasma effluent in the second plasma region to form reaction products, wherein the hydrogen-and-oxygen-containing compound is not excited by the first plasma discharge prior to entering the second plasma region;flowing the reaction products through a plurality of openings in a partition to a substrate processing region;etching the substrate with the reaction products in the substrate processing region,wherein the plasma effluent and the hydrogen-and-oxygen-containing compound do not flow through the same opening before entering the second plasma region.
  • 14. The method of claim 13, wherein the plasma effluent does not flow through a plurality of openings in an electrically grounded showerhead before the plasma effluent enters the second plasma region.
  • 15. The method of claim 13, wherein the first plasma discharge is a capacitively coupled plasma or an inductively coupled plasma.
  • 16. The method of claim 13, wherein striking the second plasma discharge comprises applying the second power from the second power supply to a portion of a processing system relative to the partition.
US Referenced Citations (1117)
Number Name Date Kind
2369620 Sullivan et al. Feb 1945 A
3451840 Hough Jun 1969 A
3937857 Brummett et al. Feb 1976 A
3969077 Hill Jul 1976 A
4006047 Brummett et al. Feb 1977 A
4209357 Gorin et al. Jun 1980 A
4214946 Forget et al. Jul 1980 A
4232060 Mallory, Jr. Nov 1980 A
4234628 DuRose Nov 1980 A
4265943 Goldstein et al. May 1981 A
4361441 Tylko Nov 1982 A
4364803 Nidola et al. Dec 1982 A
4368223 Kobayashi et al. Jan 1983 A
4374698 Sanders et al. Feb 1983 A
4397812 Mallory, Jr. Aug 1983 A
4468413 Bachmann Aug 1984 A
4565601 Kakehi et al. Jan 1986 A
4579618 Celestino et al. Apr 1986 A
4585920 Hoog et al. Apr 1986 A
4625678 Shioya et al. Dec 1986 A
4632857 Mallory, Jr. Dec 1986 A
4656052 Satou et al. Apr 1987 A
4690746 McInerney et al. Sep 1987 A
4715937 Moslehi et al. Dec 1987 A
4749440 Blackwood et al. Jun 1988 A
4753898 Parrillo et al. Jun 1988 A
4786360 Cote et al. Nov 1988 A
4793897 Dunfield et al. Dec 1988 A
4807016 Douglas Feb 1989 A
4810520 Wu Mar 1989 A
4816638 Ukai et al. Mar 1989 A
4820377 Davis et al. Apr 1989 A
4828649 Davis May 1989 A
4838990 Jucha et al. Jun 1989 A
4851370 Doklan et al. Jul 1989 A
4857140 Loewenstein Aug 1989 A
4865685 Palmour Sep 1989 A
4868071 Walsh et al. Sep 1989 A
4872947 Wang et al. Oct 1989 A
4878994 Jucha et al. Nov 1989 A
4886570 Davis et al. Dec 1989 A
4892753 Wang et al. Jan 1990 A
4894352 Lane et al. Jan 1990 A
4904341 Blaugher et al. Feb 1990 A
4904621 Loewenstein et al. Feb 1990 A
4913929 Moslehi et al. Apr 1990 A
4946903 Gardella et al. Aug 1990 A
4951601 Maydan et al. Aug 1990 A
4960488 Law et al. Oct 1990 A
4980018 Mu et al. Dec 1990 A
4981551 Palmour Jan 1991 A
4985372 Narita Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4992136 Tachi et al. Feb 1991 A
4994404 Sheng et al. Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013691 Lory et al. May 1991 A
5028565 Chang Jul 1991 A
5030319 Nishino et al. Jul 1991 A
5061838 Lane et al. Oct 1991 A
5083030 Stavov Jan 1992 A
5089441 Moslehi Feb 1992 A
5089442 Olmer Feb 1992 A
5147692 Bengston Sep 1992 A
5156881 Okano et al. Oct 1992 A
5180435 Markunas et al. Jan 1993 A
5186718 Tepman et al. Feb 1993 A
5188706 Hori et al. Feb 1993 A
5198034 deBoer et al. Mar 1993 A
5203911 Sricharoenchaikit et al. Apr 1993 A
5215787 Homma Jun 1993 A
5228501 Tepman et al. Jul 1993 A
5231690 Soma et al. Jul 1993 A
5235139 Bengston et al. Aug 1993 A
5238499 van de Ven et al. Aug 1993 A
5240497 Shacham et al. Aug 1993 A
5248371 Maher et al. Sep 1993 A
5248527 Uchida et al. Sep 1993 A
5252178 Moslehi Oct 1993 A
5266157 Kadomura Nov 1993 A
5270125 America et al. Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5275977 Otsubo et al. Jan 1994 A
5279669 Lee Jan 1994 A
5279865 Chebi et al. Jan 1994 A
5288518 Homma Feb 1994 A
5290382 Zarowin et al. Mar 1994 A
5300463 Cathey et al. Apr 1994 A
5302233 Kim et al. Apr 1994 A
5306530 Strongin et al. Apr 1994 A
5314724 Tsukune et al. May 1994 A
5319247 Matsuura Jun 1994 A
5326427 Jerbic Jul 1994 A
5328558 Kawamura et al. Jul 1994 A
5328810 Lowrey et al. Jul 1994 A
5334552 Homma Aug 1994 A
5345999 Hosokawa Sep 1994 A
5352636 Beinglass Oct 1994 A
5356478 Chen et al. Oct 1994 A
5362526 Wang et al. Nov 1994 A
5368897 Kurihara et al. Nov 1994 A
5380560 Kaja et al. Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5384284 Doan et al. Jan 1995 A
5385763 Okano et al. Jan 1995 A
5399237 Keswick et al. Mar 1995 A
5399529 Homma Mar 1995 A
5403434 Moslehi Apr 1995 A
5413670 Langan et al. May 1995 A
5413967 Matsuda et al. May 1995 A
5415890 Kloiber et al. May 1995 A
5416048 Blalock et al. May 1995 A
5420075 Homma et al. May 1995 A
5429995 Nishiyama et al. Jul 1995 A
5439553 Grant et al. Aug 1995 A
5451259 Krogh Sep 1995 A
5468342 Nulty et al. Nov 1995 A
5474589 Ohga et al. Dec 1995 A
5478403 Shinagawa et al. Dec 1995 A
5478462 Walsh Dec 1995 A
5483920 Pryor Jan 1996 A
5500249 Telford et al. Mar 1996 A
5505816 Barnes et al. Apr 1996 A
5510216 Calabrese et al. Apr 1996 A
5516367 Lei et al. May 1996 A
5518962 Murao May 1996 A
5531835 Fodor et al. Jul 1996 A
5534070 Okamura et al. Jul 1996 A
5536360 Nguyen et al. Jul 1996 A
5549780 Koinuma et al. Aug 1996 A
5558717 Zhao et al. Sep 1996 A
5560779 Knowles et al. Oct 1996 A
5563105 Dobuzinsky et al. Oct 1996 A
5567243 Foster et al. Oct 1996 A
5571576 Qian et al. Nov 1996 A
5578130 Hayashi et al. Nov 1996 A
5578161 Auda Nov 1996 A
5580421 Hiatt et al. Dec 1996 A
5591269 Arami et al. Jan 1997 A
5599740 Jang et al. Feb 1997 A
5616518 Foo et al. Apr 1997 A
5624582 Cain Apr 1997 A
5626922 Miyanaga et al. May 1997 A
5628829 Foster et al. May 1997 A
5635086 Warren et al. Jun 1997 A
5645645 Zhang et al. Jul 1997 A
5648125 Cane Jul 1997 A
5648175 Russell et al. Jul 1997 A
5656093 Burkhart et al. Aug 1997 A
5661093 Ravi et al. Aug 1997 A
5674787 Zhao et al. Oct 1997 A
5676758 Hasegawa et al. Oct 1997 A
5679606 Wang et al. Oct 1997 A
5685946 Fathauer et al. Nov 1997 A
5688331 Aruga et al. Nov 1997 A
5695810 Dubin et al. Dec 1997 A
5712185 Tsai et al. Jan 1998 A
5716500 Bardos et al. Feb 1998 A
5716506 Maclay et al. Feb 1998 A
5719085 Moon et al. Feb 1998 A
5733816 Iyer et al. Mar 1998 A
5747373 Yu May 1998 A
5753886 Iwamura et al. May 1998 A
5755859 Brusic et al. May 1998 A
5756400 Ye et al. May 1998 A
5756402 Jimbo et al. May 1998 A
5772770 Suda et al. Jun 1998 A
5781693 Ballance et al. Jul 1998 A
5786276 Brooks et al. Jul 1998 A
5789300 Fulford Aug 1998 A
5800686 Littau et al. Sep 1998 A
5804259 Robles Sep 1998 A
5812403 Fong et al. Sep 1998 A
5814365 Mahawili Sep 1998 A
5820723 Benjamin et al. Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5830805 Shacham-Diamand et al. Nov 1998 A
5843538 Ehrsam et al. Dec 1998 A
5843847 Pu et al. Dec 1998 A
5844195 Fairbairn et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5846375 Gilchrist et al. Dec 1998 A
5846598 Semkow et al. Dec 1998 A
5849639 Molloy et al. Dec 1998 A
5850105 Dawson et al. Dec 1998 A
5855681 Maydan et al. Jan 1999 A
5856240 Sinha et al. Jan 1999 A
5858876 Chew Jan 1999 A
5866483 Shiau et al. Feb 1999 A
5872052 Iyer Feb 1999 A
5872058 Van Cleemput et al. Feb 1999 A
5882424 Taylor et al. Mar 1999 A
5882786 Nassau et al. Mar 1999 A
5883012 Chiou et al. Mar 1999 A
5885404 Kim et al. Mar 1999 A
5885749 Huggins et al. Mar 1999 A
5888906 Sandhu et al. Mar 1999 A
5891349 Tobe et al. Apr 1999 A
5891513 Dubin et al. Apr 1999 A
5897751 Makowiecki Apr 1999 A
5899752 Hey et al. May 1999 A
5904827 Reynolds May 1999 A
5907790 Kellam May 1999 A
5910340 Uchida et al. Jun 1999 A
5913147 Dubin et al. Jun 1999 A
5915190 Pirkle Jun 1999 A
5918116 Chittipeddi Jun 1999 A
5920792 Lin Jul 1999 A
5926737 Ameen et al. Jul 1999 A
5932077 Reynolds Aug 1999 A
5933757 Yoshikawa et al. Aug 1999 A
5935334 Fong et al. Aug 1999 A
5937323 Orczyk et al. Aug 1999 A
5939831 Fong et al. Aug 1999 A
5942075 Nagahata et al. Aug 1999 A
5944902 Redeker et al. Aug 1999 A
5948702 Rotondaro Sep 1999 A
5951601 Lesinski et al. Sep 1999 A
5951776 Selyutin et al. Sep 1999 A
5951896 Mahawili Sep 1999 A
5953591 Ishihara et al. Sep 1999 A
5953635 Andideh Sep 1999 A
5968610 Liu et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
5990000 Hong et al. Nov 1999 A
5990013 Berenguer et al. Nov 1999 A
5993916 Zhao et al. Nov 1999 A
6004884 Abraham Dec 1999 A
6007635 Mahawili Dec 1999 A
6010962 Liu et al. Jan 2000 A
6013191 Nasser-Faili et al. Jan 2000 A
6013584 M'Saad Jan 2000 A
6015724 Yamazaki et al. Jan 2000 A
6015747 Lopatin et al. Jan 2000 A
6020271 Yanagida Feb 2000 A
6030666 Lam et al. Feb 2000 A
6030881 Papasouliotis et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6037018 Jang et al. Mar 2000 A
6037266 Tao et al. Mar 2000 A
6039851 Iyer Mar 2000 A
6053982 Halpin et al. Apr 2000 A
6059643 Hu et al. May 2000 A
6063683 Wu May 2000 A
6063712 Gilton et al. May 2000 A
6065424 Shacham-Diamand et al. May 2000 A
6072147 Koshiishi Jun 2000 A
6072227 Yau et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6080529 Ye et al. Jun 2000 A
6083344 Hanawa et al. Jul 2000 A
6083844 Bui-Le et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6087278 Kim et al. Jul 2000 A
6090212 Mahawili Jul 2000 A
6093457 Okumura Jul 2000 A
6093594 Yeap et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6107199 Allen et al. Aug 2000 A
6110530 Chen et al. Aug 2000 A
6110836 Cohen et al. Aug 2000 A
6110838 Loewenstein Aug 2000 A
6113771 Landau et al. Sep 2000 A
6117245 Mandrekar et al. Sep 2000 A
6120640 Shih et al. Sep 2000 A
6136163 Cheung et al. Oct 2000 A
6136685 Narwankar et al. Oct 2000 A
6136693 Chan et al. Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6144099 Lopatin et al. Nov 2000 A
6147009 Grill et al. Nov 2000 A
6149828 Vaartstra Nov 2000 A
6150628 Smith et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6165912 McConnell et al. Dec 2000 A
6167834 Wang et al. Jan 2001 B1
6169021 Akram et al. Jan 2001 B1
6170428 Redeker et al. Jan 2001 B1
6171661 Zheng et al. Jan 2001 B1
6174450 Patrick et al. Jan 2001 B1
6174812 Hsiung et al. Jan 2001 B1
6176198 Kao et al. Jan 2001 B1
6176667 Fairbairn Jan 2001 B1
6177245 Ward et al. Jan 2001 B1
6179924 Zhao et al. Jan 2001 B1
6180523 Lee et al. Jan 2001 B1
6182602 Redeker et al. Feb 2001 B1
6184121 Buchwalter et al. Feb 2001 B1
6189483 Ishikawa et al. Feb 2001 B1
6190233 Hong et al. Feb 2001 B1
6194038 Rossman Feb 2001 B1
6197181 Chen Mar 2001 B1
6197364 Paunovic et al. Mar 2001 B1
6197680 Lin et al. Mar 2001 B1
6197688 Simpson Mar 2001 B1
6197705 Vassiliev Mar 2001 B1
6203863 Liu et al. Mar 2001 B1
6204200 Shieh et al. Mar 2001 B1
6210486 Mizukami et al. Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6228233 Lakshmikanthan et al. May 2001 B1
6228751 Yamazaki et al. May 2001 B1
6228758 Pellerin et al. May 2001 B1
6235643 Mui et al. May 2001 B1
6237527 Kellerman et al. May 2001 B1
6238513 Arnold et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6241845 Gadgil et al. Jun 2001 B1
6242349 Nogami et al. Jun 2001 B1
6245396 Nogami Jun 2001 B1
6245670 Cheung et al. Jun 2001 B1
6251236 Stevens Jun 2001 B1
6251802 Moore et al. Jun 2001 B1
6258220 Dordi et al. Jul 2001 B1
6258223 Cheung et al. Jul 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6261637 Oberle Jul 2001 B1
6277733 Smith Aug 2001 B1
6277752 Chen Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6281072 Li et al. Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6291282 Wilk et al. Sep 2001 B1
6291348 Lopatin et al. Sep 2001 B1
6303044 Koemtzopoulos Oct 2001 B1
6303418 Cha et al. Oct 2001 B1
6306772 Lin Oct 2001 B1
6312554 Ye Nov 2001 B1
6312995 Yu Nov 2001 B1
6319387 Krishnamoorthy et al. Nov 2001 B1
6322716 Qiao et al. Nov 2001 B1
6323128 Sambucetti et al. Nov 2001 B1
6335288 Kwan et al. Jan 2002 B1
6340435 Bjorkman et al. Jan 2002 B1
6342733 Hu et al. Jan 2002 B1
RE37546 Mahawili Feb 2002 E
6344410 Lopatin et al. Feb 2002 B1
6350320 Sherstinsky et al. Feb 2002 B1
6350697 Richardson Feb 2002 B1
6351013 Luning et al. Feb 2002 B1
6352081 Lu et al. Mar 2002 B1
6355573 Okumura Mar 2002 B1
6364949 Or et al. Apr 2002 B1
6364954 Umotoy et al. Apr 2002 B2
6364957 Schneider et al. Apr 2002 B1
6375748 Yudovsky et al. Apr 2002 B1
6376386 Oshima Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383951 Li May 2002 B1
6387207 Janakiraman et al. May 2002 B1
6391753 Yu May 2002 B1
6395150 Van Cleemput et al. May 2002 B1
6403491 Liu et al. Jun 2002 B1
6415736 Hao et al. Jul 2002 B1
6416647 Dordi et al. Jul 2002 B1
6418874 Cox et al. Jul 2002 B1
6423284 Arno Jul 2002 B1
6427623 Ko Aug 2002 B2
6432819 Pavate et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6436193 Kasai et al. Aug 2002 B1
6436816 Lee et al. Aug 2002 B1
6440863 Tsai et al. Aug 2002 B1
6441492 Cunningham Aug 2002 B1
6446572 Brcka Sep 2002 B1
6448537 Nering Sep 2002 B1
6458718 Todd Oct 2002 B1
6461974 Ni et al. Oct 2002 B1
6462371 Weimer et al. Oct 2002 B1
6465366 Nemani et al. Oct 2002 B1
6477980 White et al. Nov 2002 B1
6479373 Dreybrodt et al. Nov 2002 B2
6488984 Wada et al. Dec 2002 B1
6494959 Samoilov et al. Dec 2002 B1
6499425 Sandhu et al. Dec 2002 B1
6500728 Wang Dec 2002 B1
6503843 Xia et al. Jan 2003 B1
6506291 Tsai et al. Jan 2003 B2
6509623 Zhao Jan 2003 B2
6516815 Stevens et al. Feb 2003 B1
6518548 Sugaya et al. Feb 2003 B2
6527968 Wang et al. Mar 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6537733 Campana et al. Mar 2003 B2
6541397 Bencher Apr 2003 B1
6541671 Martinez et al. Apr 2003 B1
6544340 Yudovsky Apr 2003 B2
6547977 Yan et al. Apr 2003 B1
6551924 Dalton et al. Apr 2003 B1
6558564 Loewenhardt May 2003 B1
6565729 Chen et al. May 2003 B2
6569773 Gellrich et al. May 2003 B1
6573030 Fairbairn et al. Jun 2003 B1
6573606 Sambucetti et al. Jun 2003 B2
6586163 Okabe et al. Jul 2003 B1
6596599 Guo Jul 2003 B1
6596654 Bayman et al. Jul 2003 B1
6602434 Hung et al. Aug 2003 B1
6603269 Vo et al. Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6616967 Test Sep 2003 B1
6627532 Gaillard et al. Sep 2003 B1
6635578 Xu et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6645301 Sainty et al. Nov 2003 B2
6645550 Cheung et al. Nov 2003 B1
6656831 Lee et al. Dec 2003 B1
6656837 Xu et al. Dec 2003 B2
6663715 Yuda et al. Dec 2003 B1
6677242 Liu et al. Jan 2004 B1
6679981 Pan et al. Jan 2004 B1
6688375 Turner Feb 2004 B1
6713356 Skotnicki et al. Mar 2004 B1
6713835 Horak et al. Mar 2004 B1
6717189 Inoue et al. Apr 2004 B2
6720213 Gambino et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6740977 Ahn et al. May 2004 B2
6743473 Parkhe et al. Jun 2004 B1
6743732 Lin et al. Jun 2004 B1
6756235 Liu et al. Jun 2004 B1
6759261 Shimokohbe et al. Jul 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6762435 Towle Jul 2004 B2
6764958 Nemani et al. Jul 2004 B1
6765273 Chau et al. Jul 2004 B1
6767834 Chung et al. Jul 2004 B2
6772827 Keller et al. Aug 2004 B2
6794290 Papasouliotis et al. Sep 2004 B1
6794311 Huang et al. Sep 2004 B2
6796314 Graff Sep 2004 B1
6797189 Hung et al. Sep 2004 B2
6800336 Fornsel et al. Oct 2004 B1
6800830 Mahawili Oct 2004 B2
6802944 Ahmad et al. Oct 2004 B2
6808564 Dietze Oct 2004 B2
6808748 Kapoor et al. Oct 2004 B2
6821571 Huang Nov 2004 B2
6823589 White et al. Nov 2004 B2
6830624 Janakiraman et al. Dec 2004 B2
6835995 Li Dec 2004 B2
6846745 Papasouliotis et al. Jan 2005 B1
6852550 Tuttle et al. Feb 2005 B2
6858153 Bjorkman et al. Feb 2005 B2
6861097 Goosey et al. Mar 2005 B1
6861332 Park et al. Mar 2005 B2
6869880 Shamouilian et al. Mar 2005 B2
6875280 Ikeda et al. Apr 2005 B2
6878206 Tzu et al. Apr 2005 B2
6879981 Rothschild et al. Apr 2005 B2
6886491 Kim et al. May 2005 B2
6892669 Xu et al. May 2005 B2
6893967 Wright et al. May 2005 B1
6897532 Schwarz et al. May 2005 B1
6903511 Chistyakov Jun 2005 B2
6908862 Li et al. Jun 2005 B2
6911112 An Jun 2005 B2
6911401 Khandan et al. Jun 2005 B2
6921556 Shimizu et al. Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6930047 Yamazaki Aug 2005 B2
6942753 Choi et al. Sep 2005 B2
6946033 Tsuei et al. Sep 2005 B2
6951821 Hamelin et al. Oct 2005 B2
6958175 Sakamoto et al. Oct 2005 B2
6958286 Chen et al. Oct 2005 B2
6995073 Liou Feb 2006 B2
7017269 White et al. Mar 2006 B2
7018941 Cui et al. Mar 2006 B2
7030034 Fucsko et al. Apr 2006 B2
7049200 Arghavani et al. May 2006 B2
7071532 Geffken et al. Jul 2006 B2
7084070 Lee et al. Aug 2006 B1
7115525 Abatchev et al. Oct 2006 B2
7122949 Strikovski Oct 2006 B2
7145725 Hasel et al. Dec 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166233 Johnson et al. Jan 2007 B2
7183214 Nam et al. Feb 2007 B2
7196342 Ershov et al. Mar 2007 B2
7226805 Hallin et al. Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7252716 Kim et al. Aug 2007 B2
7253123 Arghavani et al. Aug 2007 B2
7256370 Guiver Aug 2007 B2
7288482 Panda et al. Oct 2007 B2
7341633 Lubomirsky et al. Mar 2008 B2
7358192 Merry et al. Apr 2008 B2
7364956 Saito Apr 2008 B2
7365016 Ouellet et al. Apr 2008 B2
7396480 Kao et al. Jul 2008 B2
7416989 Liu et al. Aug 2008 B1
7465358 Weidman et al. Dec 2008 B2
7468319 Lee Dec 2008 B2
7484473 Keller et al. Feb 2009 B2
7488688 Chung et al. Feb 2009 B2
7494545 Lam et al. Feb 2009 B2
7500445 Zhao et al. Mar 2009 B2
7553756 Hayashi et al. Jun 2009 B2
7575007 Tang et al. Aug 2009 B2
7581511 Mardian et al. Sep 2009 B2
7604708 Wood et al. Oct 2009 B2
7628897 Mungekar et al. Dec 2009 B2
7682518 Chandrachood et al. Mar 2010 B2
7708859 Huang et al. May 2010 B2
7722925 White et al. May 2010 B2
7723221 Hayashi May 2010 B2
7749326 Kim et al. Jul 2010 B2
7785672 Choi et al. Aug 2010 B2
7790634 Munro et al. Sep 2010 B2
7806078 Yoshida Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7825038 Ingle et al. Nov 2010 B2
7837828 Ikeda et al. Nov 2010 B2
7915139 Lang et al. Mar 2011 B1
7932181 Singh et al. Apr 2011 B2
7939422 Ingle et al. May 2011 B2
7968441 Xu Jun 2011 B2
7976631 Burrows Jul 2011 B2
7981806 Jung Jul 2011 B2
7989365 Park et al. Aug 2011 B2
8008166 Sanchez et al. Aug 2011 B2
8058179 Draeger et al. Nov 2011 B1
8071482 Kawada Dec 2011 B2
8074599 Choi et al. Dec 2011 B2
8076198 Lee et al. Dec 2011 B2
8083853 Choi et al. Dec 2011 B2
8119530 Hori et al. Feb 2012 B2
8133349 Panagopoulos Mar 2012 B1
8183134 Wu May 2012 B2
8187486 Liu et al. May 2012 B1
8211808 Sapre et al. Jul 2012 B2
8298627 Minami et al. Oct 2012 B2
8309440 Sanchez et al. Nov 2012 B2
8313610 Dhindsa Nov 2012 B2
8328939 Choi et al. Dec 2012 B2
8368308 Banna et al. Feb 2013 B2
8427067 Espiau et al. Apr 2013 B2
8435902 Tang et al. May 2013 B2
8475674 Thadani et al. Jul 2013 B2
8491805 Kushibiki et al. Jul 2013 B2
8501629 Tang et al. Aug 2013 B2
8506713 Takagi Aug 2013 B2
8512509 Bera et al. Aug 2013 B2
8551891 Liang Oct 2013 B2
8573152 De La Llera Nov 2013 B2
8623148 Mitchell et al. Jan 2014 B2
8623471 Tyler et al. Jan 2014 B2
8642481 Wang et al. Feb 2014 B2
8679982 Wang et al. Mar 2014 B2
8679983 Wang et al. Mar 2014 B2
8741778 Yang et al. Jun 2014 B2
8747680 Deshpande Jun 2014 B1
8765574 Zhang et al. Jul 2014 B2
8771536 Zhang et al. Jul 2014 B2
8771539 Zhang et al. Jul 2014 B2
8772888 Jung et al. Jul 2014 B2
8778079 Begarney et al. Jul 2014 B2
8801952 Wang et al. Aug 2014 B1
8808563 Wang et al. Aug 2014 B2
8846163 Kao et al. Sep 2014 B2
8895449 Zhu et al. Nov 2014 B1
8900364 Wright Dec 2014 B2
8921234 Liu et al. Dec 2014 B2
8927390 Sapre et al. Jan 2015 B2
8951429 Liu et al. Feb 2015 B1
8956980 Chen et al. Feb 2015 B1
8969212 Ren et al. Mar 2015 B2
8980005 Carlson et al. Mar 2015 B2
8980758 Ling et al. Mar 2015 B1
8980763 Wang et al. Mar 2015 B2
8992723 Sorensen et al. Mar 2015 B2
8999656 Zhang Apr 2015 B2
8999839 Su et al. Apr 2015 B2
8999856 Zhang Apr 2015 B2
9012302 Sapre et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9023732 Wang et al. May 2015 B2
9023734 Chen et al. May 2015 B2
9034770 Park et al. May 2015 B2
9040422 Wang et al. May 2015 B2
9064815 Zhang et al. Jun 2015 B2
9064816 Kim et al. Jun 2015 B2
9072158 Ikeda et al. Jun 2015 B2
9093371 Wang et al. Jul 2015 B2
9093390 Wang et al. Jul 2015 B2
9111877 Chen et al. Aug 2015 B2
9111907 Kamineni Aug 2015 B2
9114438 Hoinkis et al. Aug 2015 B2
9117855 Cho et al. Aug 2015 B2
9132436 Liang et al. Sep 2015 B2
9136273 Purayath et al. Sep 2015 B1
9144147 Yang et al. Sep 2015 B2
9153442 Wang et al. Oct 2015 B2
9159606 Purayath et al. Oct 2015 B1
9165786 Purayath et al. Oct 2015 B1
9184055 Wang et al. Nov 2015 B2
9190293 Wang et al. Nov 2015 B2
9209012 Chen et al. Dec 2015 B2
9236265 Korolik et al. Jan 2016 B2
9245762 Zhang et al. Jan 2016 B2
20010008803 Takamatsu et al. Jul 2001 A1
20010015261 Kobayashi et al. Aug 2001 A1
20010028093 Yamazaki et al. Oct 2001 A1
20010028922 Sandhu Oct 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010034121 Fu et al. Oct 2001 A1
20010036706 Kitamura Nov 2001 A1
20010037856 Park Nov 2001 A1
20010041444 Shields et al. Nov 2001 A1
20010047760 Mosiehl Dec 2001 A1
20010053585 Kikuchi et al. Dec 2001 A1
20010053610 Athavale Dec 2001 A1
20010054381 Umotoy et al. Dec 2001 A1
20010055842 Uh et al. Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020016080 Khan et al. Feb 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020028582 Nallan et al. Mar 2002 A1
20020028585 Chung et al. Mar 2002 A1
20020029747 Powell et al. Mar 2002 A1
20020033233 Savas Mar 2002 A1
20020036143 Segawa et al. Mar 2002 A1
20020040764 Kwan et al. Apr 2002 A1
20020040766 Takahashi Apr 2002 A1
20020045966 Lee et al. Apr 2002 A1
20020054962 Huang May 2002 A1
20020069820 Yudovsky Jun 2002 A1
20020070414 Drescher et al. Jun 2002 A1
20020074573 Takeuchi et al. Jun 2002 A1
20020090781 Skotnicki et al. Jul 2002 A1
20020090835 Chakravarti et al. Jul 2002 A1
20020096493 Hattori Jul 2002 A1
20020098681 Hu et al. Jul 2002 A1
20020106845 Chao et al. Aug 2002 A1
20020124867 Kim et al. Sep 2002 A1
20020129769 Kim et al. Sep 2002 A1
20020153808 Skotnicki et al. Oct 2002 A1
20020164885 Lill et al. Nov 2002 A1
20020177322 Li et al. Nov 2002 A1
20020187280 Johnson et al. Dec 2002 A1
20020187655 Tan et al. Dec 2002 A1
20030003757 Naltan et al. Jan 2003 A1
20030010645 Ting et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029566 Roth Feb 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030032284 Enomoto et al. Feb 2003 A1
20030038127 Liu et al. Feb 2003 A1
20030038305 Wasshuber Feb 2003 A1
20030054608 Tseng et al. Mar 2003 A1
20030072639 White et al. Apr 2003 A1
20030075808 Inoue et al. Apr 2003 A1
20030077909 Jiwari Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030087531 Kang et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030098125 An May 2003 A1
20030109143 Hsieh et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116439 Seo et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030124465 Lee et al. Jul 2003 A1
20030124842 Hytros et al. Jul 2003 A1
20030127740 Hsu et al. Jul 2003 A1
20030129106 Sorensen et al. Jul 2003 A1
20030129827 Lee et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030140844 Maa et al. Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030152691 Baude Aug 2003 A1
20030159307 Sago et al. Aug 2003 A1
20030173333 Wang et al. Sep 2003 A1
20030173347 Guiver Sep 2003 A1
20030173675 Watanabe et al. Sep 2003 A1
20030181040 Ivanov et al. Sep 2003 A1
20030183244 Rossman Oct 2003 A1
20030190426 Padhi et al. Oct 2003 A1
20030199170 Li Oct 2003 A1
20030205329 Gujer et al. Nov 2003 A1
20030215963 AmRhein et al. Nov 2003 A1
20030216044 Lin et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224617 Baek et al. Dec 2003 A1
20040005726 Huang Jan 2004 A1
20040020801 Zhao et al. Feb 2004 A1
20040026371 Nguyen et al. Feb 2004 A1
20040033678 Arghavani et al. Feb 2004 A1
20040033684 Li Feb 2004 A1
20040050328 Kumagai et al. Mar 2004 A1
20040058293 Nguyen et al. Mar 2004 A1
20040069225 Fairbairn et al. Apr 2004 A1
20040070346 Choi Apr 2004 A1
20040072446 Liu et al. Apr 2004 A1
20040092063 Okumura et al. May 2004 A1
20040099378 Kim et al. May 2004 A1
20040101667 O'Loughlin et al. May 2004 A1
20040115876 Goundar et al. Jun 2004 A1
20040129671 Ji et al. Jul 2004 A1
20040137161 Segawa et al. Jul 2004 A1
20040144490 Zhao et al. Jul 2004 A1
20040147126 Yamashita et al. Jul 2004 A1
20040152342 Li Aug 2004 A1
20040154535 Chen et al. Aug 2004 A1
20040157444 Chiu Aug 2004 A1
20040175929 Schmitt et al. Sep 2004 A1
20040182315 Laflamme et al. Sep 2004 A1
20040192032 Ohmori et al. Sep 2004 A1
20040194799 Kim et al. Oct 2004 A1
20040200499 Harvey Oct 2004 A1
20040211357 Gadgil et al. Oct 2004 A1
20040219737 Quon Nov 2004 A1
20040219789 Wood et al. Nov 2004 A1
20040263827 Xu et al. Dec 2004 A1
20050001276 Gao et al. Jan 2005 A1
20050003676 Ho et al. Jan 2005 A1
20050009340 Saijo et al. Jan 2005 A1
20050009358 Choi et al. Jan 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050026431 Kazumi et al. Feb 2005 A1
20050035455 Hu et al. Feb 2005 A1
20050051094 Schaepkens et al. Mar 2005 A1
20050073051 Yamamoto et al. Apr 2005 A1
20050079706 Kumar et al. Apr 2005 A1
20050090120 Hasegawa et al. Apr 2005 A1
20050098111 Shimizu et al. May 2005 A1
20050105991 Hofmeister et al. May 2005 A1
20050112876 Wu May 2005 A1
20050112901 Ji et al. May 2005 A1
20050164479 Perng et al. Jul 2005 A1
20050167394 Liu et al. Aug 2005 A1
20050181588 Kim Aug 2005 A1
20050196967 Savas et al. Sep 2005 A1
20050199489 Stevens et al. Sep 2005 A1
20050205110 Kao et al. Sep 2005 A1
20050205862 Koemtzopoulos et al. Sep 2005 A1
20050208215 Eguchi et al. Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050218507 Kao et al. Oct 2005 A1
20050221552 Kao et al. Oct 2005 A1
20050230350 Kao et al. Oct 2005 A1
20050236694 Wu et al. Oct 2005 A1
20050239282 Chen et al. Oct 2005 A1
20050251990 Choi et al. Nov 2005 A1
20050266622 Arghavani et al. Dec 2005 A1
20050266691 Gu et al. Dec 2005 A1
20050269030 Kent et al. Dec 2005 A1
20050287755 Bachmann Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000802 Kumar et al. Jan 2006 A1
20060000805 Todorow et al. Jan 2006 A1
20060005856 Sun et al. Jan 2006 A1
20060006057 Laermer Jan 2006 A1
20060011298 Lim et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019456 Bu et al. Jan 2006 A1
20060019486 Yu et al. Jan 2006 A1
20060021574 Armour et al. Feb 2006 A1
20060024954 Wu et al. Feb 2006 A1
20060024956 Zhijian et al. Feb 2006 A1
20060033678 Lubomirsky et al. Feb 2006 A1
20060040055 Nguyen et al. Feb 2006 A1
20060043066 Kamp Mar 2006 A1
20060046412 Nguyen et al. Mar 2006 A1
20060046419 Sandhu et al. Mar 2006 A1
20060051966 Or et al. Mar 2006 A1
20060051968 Joshi et al. Mar 2006 A1
20060054184 Mozetic et al. Mar 2006 A1
20060060942 Minixhofer et al. Mar 2006 A1
20060093756 Rajagopalan et al. May 2006 A1
20060097397 Russell et al. May 2006 A1
20060102076 Smith et al. May 2006 A1
20060102587 Kimura May 2006 A1
20060121724 Yue et al. Jun 2006 A1
20060124242 Kanarik et al. Jun 2006 A1
20060130971 Chang et al. Jun 2006 A1
20060157449 Takahashi et al. Jul 2006 A1
20060162661 Jung et al. Jul 2006 A1
20060166107 Chen et al. Jul 2006 A1
20060166515 Karim et al. Jul 2006 A1
20060178008 Yeh et al. Aug 2006 A1
20060185592 Matsuura Aug 2006 A1
20060191479 Mizukami et al. Aug 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060207504 Hasebe et al. Sep 2006 A1
20060210723 Ishizaka Sep 2006 A1
20060216878 Lee Sep 2006 A1
20060222481 Foree Oct 2006 A1
20060226121 Aoi Oct 2006 A1
20060228889 Edelberg et al. Oct 2006 A1
20060240661 Annapragada et al. Oct 2006 A1
20060244107 Sugihara Nov 2006 A1
20060246217 Weidman et al. Nov 2006 A1
20060251800 Weidman et al. Nov 2006 A1
20060251801 Weidman et al. Nov 2006 A1
20060252252 Zhu et al. Nov 2006 A1
20060252265 Jin et al. Nov 2006 A1
20060254716 Mosden et al. Nov 2006 A1
20060260750 Rueger Nov 2006 A1
20060261490 Su et al. Nov 2006 A1
20060264043 Stewart et al. Nov 2006 A1
20060266288 Choi Nov 2006 A1
20070025907 Rezeq Feb 2007 A1
20070048977 Lee et al. Mar 2007 A1
20070056925 Liu et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070071888 Shanmugasundram et al. Mar 2007 A1
20070072408 Enomoto et al. Mar 2007 A1
20070090325 Hwang et al. Apr 2007 A1
20070099428 Shamiryan et al. May 2007 A1
20070099438 Ye et al. May 2007 A1
20070107750 Sawin et al. May 2007 A1
20070108404 Stewart et al. May 2007 A1
20070111519 Lubomirsky et al. May 2007 A1
20070117396 Wu et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070123051 Arghavani et al. May 2007 A1
20070131274 Stollwerck et al. Jun 2007 A1
20070154838 Lee Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070181057 Lam et al. Aug 2007 A1
20070193515 Jeon et al. Aug 2007 A1
20070197028 Byun et al. Aug 2007 A1
20070212288 Holst Sep 2007 A1
20070227554 Satoh et al. Oct 2007 A1
20070231109 Pak et al. Oct 2007 A1
20070235134 Iimuro Oct 2007 A1
20070238199 Yamashita Oct 2007 A1
20070238321 Futase Oct 2007 A1
20070243685 Jiang et al. Oct 2007 A1
20070259467 Tweet et al. Nov 2007 A1
20070264820 Liu et al. Nov 2007 A1
20070266946 Choi Nov 2007 A1
20070277734 Lubomirsky et al. Dec 2007 A1
20070281106 Lubomirsky et al. Dec 2007 A1
20070287292 Li et al. Dec 2007 A1
20080020570 Naik Jan 2008 A1
20080044990 Lee Feb 2008 A1
20080063810 Park et al. Mar 2008 A1
20080075668 Goldstein Mar 2008 A1
20080081483 Wu Apr 2008 A1
20080085604 Hoshino et al. Apr 2008 A1
20080099147 Myo et al. May 2008 A1
20080099431 Kumar et al. May 2008 A1
20080099876 Seto May 2008 A1
20080102570 Fisher et al. May 2008 A1
20080102640 Hassan et al. May 2008 A1
20080115726 Ingle et al. May 2008 A1
20080121970 Aritome May 2008 A1
20080124937 Xu et al. May 2008 A1
20080142831 Su Jun 2008 A1
20080153306 Cho et al. Jun 2008 A1
20080156771 Jeon et al. Jul 2008 A1
20080157225 Datta et al. Jul 2008 A1
20080160210 Yang et al. Jul 2008 A1
20080171407 Nakabayashi et al. Jul 2008 A1
20080173906 Zhu Jul 2008 A1
20080182381 Kiyotoshi Jul 2008 A1
20080182383 Lee et al. Jul 2008 A1
20080202892 Smith et al. Aug 2008 A1
20080230519 Takahashi Sep 2008 A1
20080233709 Conti et al. Sep 2008 A1
20080254635 Benzel et al. Oct 2008 A1
20080261404 Kozuka et al. Oct 2008 A1
20080268645 Kao et al. Oct 2008 A1
20080292798 Huh et al. Nov 2008 A1
20080293248 Park et al. Nov 2008 A1
20090001480 Cheng Jan 2009 A1
20090004849 Eun Jan 2009 A1
20090017227 Fu et al. Jan 2009 A1
20090045167 Maruyama Feb 2009 A1
20090072401 Arnold et al. Mar 2009 A1
20090081878 Dhindsa Mar 2009 A1
20090084317 Wu et al. Apr 2009 A1
20090087960 Cho et al. Apr 2009 A1
20090087979 Raghuram et al. Apr 2009 A1
20090095621 Kao et al. Apr 2009 A1
20090098706 Kim et al. Apr 2009 A1
20090104738 Ring et al. Apr 2009 A1
20090104782 Lu et al. Apr 2009 A1
20090111280 Kao et al. Apr 2009 A1
20090120464 Rasheed et al. May 2009 A1
20090170221 Jacques et al. Jul 2009 A1
20090170331 Cheng et al. Jul 2009 A1
20090179300 Arai Jul 2009 A1
20090189246 Wu et al. Jul 2009 A1
20090194810 Kiyotoshi et al. Aug 2009 A1
20090197418 Sago Aug 2009 A1
20090202721 Nogami et al. Aug 2009 A1
20090255902 Satoh et al. Oct 2009 A1
20090258162 Furuta et al. Oct 2009 A1
20090269934 Kao et al. Oct 2009 A1
20090275146 Takano et al. Nov 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090275206 Katz et al. Nov 2009 A1
20090277587 Lubomirsky et al. Nov 2009 A1
20090277874 Rui et al. Nov 2009 A1
20090280650 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090294898 Feustel et al. Dec 2009 A1
20100003824 Kadkhodayan et al. Jan 2010 A1
20100022030 Ditizio Jan 2010 A1
20100048027 Cheng et al. Feb 2010 A1
20100055408 Lee et al. Mar 2010 A1
20100055917 Kim Mar 2010 A1
20100059889 Gosset et al. Mar 2010 A1
20100062603 Ganguly et al. Mar 2010 A1
20100075503 Bencher Mar 2010 A1
20100093151 Arghavani et al. Apr 2010 A1
20100099236 Kwon et al. Apr 2010 A1
20100099263 Kao et al. Apr 2010 A1
20100101727 Ji Apr 2010 A1
20100105209 Winniczek et al. Apr 2010 A1
20100130001 Noguchi May 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100164422 Shu et al. Jul 2010 A1
20100173499 Tao et al. Jul 2010 A1
20100178748 Subramanian Jul 2010 A1
20100178755 Lee et al. Jul 2010 A1
20100180819 Hatanaka et al. Jul 2010 A1
20100187534 Nishi et al. Jul 2010 A1
20100187588 Kim et al. Jul 2010 A1
20100187694 Yu et al. Jul 2010 A1
20100190352 Jaiswal Jul 2010 A1
20100197143 Nishimura Aug 2010 A1
20100203739 Becker et al. Aug 2010 A1
20100207205 Grebs et al. Aug 2010 A1
20100240205 Son Sep 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100330814 Yokota et al. Dec 2010 A1
20110008950 Xu Jan 2011 A1
20110011338 Chuc et al. Jan 2011 A1
20110034035 Liang et al. Feb 2011 A1
20110039407 Nishizuka Feb 2011 A1
20110045676 Park Feb 2011 A1
20110053380 Sapre et al. Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110081782 Liang et al. Apr 2011 A1
20110100489 Orito May 2011 A1
20110111596 Kanakasabapathy May 2011 A1
20110114601 Lubomirsky et al. May 2011 A1
20110115378 Lubomirsky et al. May 2011 A1
20110124144 Schlemm et al. May 2011 A1
20110143542 Feurprier et al. Jun 2011 A1
20110151674 Tang et al. Jun 2011 A1
20110151677 Wang et al. Jun 2011 A1
20110151678 Ashtiani et al. Jun 2011 A1
20110155181 Inatomi Jun 2011 A1
20110159690 Chandrashekar et al. Jun 2011 A1
20110165771 Ring et al. Jul 2011 A1
20110180847 Ikeda et al. Jul 2011 A1
20110195575 Wang Aug 2011 A1
20110217851 Liang et al. Sep 2011 A1
20110226734 Sumiya et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110230052 Tang et al. Sep 2011 A1
20110232737 Ruletzki et al. Sep 2011 A1
20110266252 Thadani et al. Nov 2011 A1
20110266682 Edelstein et al. Nov 2011 A1
20110294300 Zhang et al. Dec 2011 A1
20110298061 Siddiqui et al. Dec 2011 A1
20120003782 Byun et al. Jan 2012 A1
20120009796 Cui et al. Jan 2012 A1
20120025289 Liang et al. Feb 2012 A1
20120031559 Dhindsa et al. Feb 2012 A1
20120052683 Kim et al. Mar 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120103518 Kakimoto May 2012 A1
20120104564 Won et al. May 2012 A1
20120129354 Luong May 2012 A1
20120135576 Lee et al. May 2012 A1
20120161405 Mohn et al. Jun 2012 A1
20120164839 Nishimura Jun 2012 A1
20120180954 Yang et al. Jul 2012 A1
20120181599 Lung Jul 2012 A1
20120196447 Yang et al. Aug 2012 A1
20120211462 Zhang Aug 2012 A1
20120223048 Paranjpe et al. Sep 2012 A1
20120225557 Serry et al. Sep 2012 A1
20120228642 Aube et al. Sep 2012 A1
20120238102 Zhang et al. Sep 2012 A1
20120238103 Zhang et al. Sep 2012 A1
20120247670 Dobashi et al. Oct 2012 A1
20120247671 Sugawara Oct 2012 A1
20120267346 Kao et al. Oct 2012 A1
20120285621 Tan Nov 2012 A1
20120292664 Kanike Nov 2012 A1
20120309204 Kang et al. Dec 2012 A1
20130005103 Liu et al. Jan 2013 A1
20130005140 Jeng et al. Jan 2013 A1
20130034968 Zhang et al. Feb 2013 A1
20130045605 Wang et al. Feb 2013 A1
20130052827 Wang et al. Feb 2013 A1
20130052833 Ranjan et al. Feb 2013 A1
20130059440 Wang et al. Mar 2013 A1
20130065398 Ohsawa et al. Mar 2013 A1
20130082197 Yang et al. Apr 2013 A1
20130089988 Wang et al. Apr 2013 A1
20130098868 Nishimura et al. Apr 2013 A1
20130119016 Kagoshima May 2013 A1
20130119457 Lue et al. May 2013 A1
20130119483 Alptekin et al. May 2013 A1
20130130507 Wang et al. May 2013 A1
20130187220 Surthi Jul 2013 A1
20130193108 Zheng Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224960 Payyapilly et al. Aug 2013 A1
20130260533 Sapre et al. Oct 2013 A1
20130260564 Sapre et al. Oct 2013 A1
20130284369 Kobayashi et al. Oct 2013 A1
20130284370 Collins et al. Oct 2013 A1
20130298942 Ren et al. Nov 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20130337655 Lee et al. Dec 2013 A1
20140004708 Thedjoisworo Jan 2014 A1
20140021673 Chen et al. Jan 2014 A1
20140057447 Yang et al. Feb 2014 A1
20140065842 Anthis et al. Mar 2014 A1
20140080308 Chen et al. Mar 2014 A1
20140080309 Park Mar 2014 A1
20140080310 Chen et al. Mar 2014 A1
20140083362 Lubomirsky et al. Mar 2014 A1
20140087488 Nam et al. Mar 2014 A1
20140097270 Liang et al. Apr 2014 A1
20140099794 Ingle et al. Apr 2014 A1
20140134847 Seya May 2014 A1
20140141621 Ren et al. May 2014 A1
20140147126 Linnartz et al. May 2014 A1
20140166617 Chen Jun 2014 A1
20140166618 Tadigadapa et al. Jun 2014 A1
20140190410 Kim Jul 2014 A1
20140199851 Nemani et al. Jul 2014 A1
20140225504 Kaneko et al. Aug 2014 A1
20140227881 Lubomirsky Aug 2014 A1
20140234466 Gao et al. Aug 2014 A1
20140248780 Ingle et al. Sep 2014 A1
20140256131 Wang et al. Sep 2014 A1
20140262031 Belostotskiy et al. Sep 2014 A1
20140262038 Wang et al. Sep 2014 A1
20140263272 Duan et al. Sep 2014 A1
20140264533 Simsek-Ege Sep 2014 A1
20140271097 Wang et al. Sep 2014 A1
20140273373 Makala et al. Sep 2014 A1
20140273406 Wang et al. Sep 2014 A1
20140273451 Wang et al. Sep 2014 A1
20140273462 Simsek-Ege et al. Sep 2014 A1
20140273489 Wang et al. Sep 2014 A1
20140273491 Zhang et al. Sep 2014 A1
20140273492 Anthis et al. Sep 2014 A1
20140273496 Kao Sep 2014 A1
20140288528 Py Sep 2014 A1
20140302678 Paterson et al. Oct 2014 A1
20140302680 Singh Oct 2014 A1
20140308758 Nemani et al. Oct 2014 A1
20140308816 Wang et al. Oct 2014 A1
20140311581 Belostotskiy et al. Oct 2014 A1
20140342532 Zhu Nov 2014 A1
20140342569 Zhu et al. Nov 2014 A1
20140349477 Chandrashekar et al. Nov 2014 A1
20150011096 Chandrasekharan et al. Jan 2015 A1
20150014152 Hoinkis et al. Jan 2015 A1
20150031211 Sapre et al. Jan 2015 A1
20150060265 Cho et al. Mar 2015 A1
20150076110 Wu et al. Mar 2015 A1
20150079797 Chen et al. Mar 2015 A1
20150118858 Takaba Apr 2015 A1
20150126035 Diao et al. May 2015 A1
20150126039 Korolik et al. May 2015 A1
20150126040 Korolik et al. May 2015 A1
20150129541 Wang et al. May 2015 A1
20150129545 Ingle et al. May 2015 A1
20150129546 Ingle et al. May 2015 A1
20150132953 Nowling May 2015 A1
20150132968 Ren et al. May 2015 A1
20150155177 Zhang et al. Jun 2015 A1
20150170879 Nguyen et al. Jun 2015 A1
20150170920 Purayath et al. Jun 2015 A1
20150170924 Nguyen et al. Jun 2015 A1
20150170935 Wang et al. Jun 2015 A1
20150170943 Nguyen et al. Jun 2015 A1
20150171008 Luo et al. Jun 2015 A1
20150179464 Wang et al. Jun 2015 A1
20150206764 Wang et al. Jul 2015 A1
20150214066 Luere et al. Jul 2015 A1
20150214067 Zhang et al. Jul 2015 A1
20150214092 Purayath et al. Jul 2015 A1
20150214337 Ko Jul 2015 A1
20150221541 Nemani et al. Aug 2015 A1
20150235863 Chen Aug 2015 A1
20150235865 Wang et al. Aug 2015 A1
20150235867 Nishizuka Aug 2015 A1
20150247231 Nguyen et al. Sep 2015 A1
20150249018 Park et al. Sep 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275361 Lubomirsky et al. Oct 2015 A1
20150275375 Kim et al. Oct 2015 A1
20150294980 Lee et al. Oct 2015 A1
20150357201 Chen et al. Dec 2015 A1
20150357205 Wang et al. Dec 2015 A1
20150371861 Li et al. Dec 2015 A1
20150371864 Hsu et al. Dec 2015 A1
20150371865 Chen et al. Dec 2015 A1
20150371866 Chen et al. Dec 2015 A1
20160005572 Liang et al. Jan 2016 A1
20160005833 Collins et al. Jan 2016 A1
20160027654 Kim et al. Jan 2016 A1
20160027673 Wang et al. Jan 2016 A1
20160035586 Purayath et al. Feb 2016 A1
20160035614 Purayath et al. Feb 2016 A1
Foreign Referenced Citations (1)
Number Date Country
H08-264510 Oct 1996 JP
Non-Patent Literature Citations (1)
Entry
U.S. Appl. No. 14/542,394, filed Nov. 14, 2014 first named inventor Zhijun Chen.