Plasma processing apparatus

Information

  • Patent Grant
  • 11961710
  • Patent Number
    11,961,710
  • Date Filed
    Thursday, December 19, 2019
    4 years ago
  • Date Issued
    Tuesday, April 16, 2024
    7 months ago
Abstract
A plasma processing apparatus includes a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal, a grounded vacuum container, a first electrode electrically connected to the first balanced terminal, a second electrode electrically connected to the second balanced terminal, an impedance matching circuit, a first power supply connected to the balun via the impedance matching circuit, and configured to supply a high frequency to the first electrode via the impedance matching circuit and the balun, a low-pass filter, and a second power supply configured to supply a voltage to the first electrode via the low-pass filter.
Description
TECHNICAL FIELD

The present invention relates to a plasma processing apparatus.


BACKGROUND ART

There is provided a plasma processing apparatus that generates plasma by applying a high frequency between two electrodes and processes a substrate by the plasma. Such plasma processing apparatus can operate as an etching apparatus or a sputtering apparatus by the bias and/or the area ratio of the two electrodes. The plasma processing apparatus configured as a sputtering apparatus includes the first electrode that holds a target and the second electrode that holds a substrate. A high frequency is applied between the first and second electrodes (between the target and the substrate), and plasma is generated between the target and an anode. When plasma is generated, a self-bias voltage is generated on the surface of the target. This causes ions to collide against the target, and the particles of a material constituting the target are discharged from the target.


PTL 1 describes a plasma processing apparatus including a grounded chamber, a target electrode connected to an RF source via impedance matching circuitry, and a substrate holding electrode grounded via a substrate electrode tuning circuit.


In the sputtering apparatus described in PTL 1, the chamber can function as an anode in addition to the substrate holding electrode. The self-bias voltage can depend on the state of a portion that can function as a cathode and the state of a portion that can function as an anode. Therefore, if the chamber functions as an anode in addition to the substrate holding unit electrode, the self-bias voltage can change depending on the state of a portion of the chamber that functions as an anode. The change in self-bias voltage changes a plasma potential, and the change in plasma potential can influence the characteristic of a film to be formed.


If a film is formed on a substrate using the sputtering apparatus, a film can also be formed on the inner surface of the chamber. This may change the state of the portion of the chamber that can function as an anode. Therefore, if the sputtering apparatus is continuously used, the self-bias voltage changes depending on the film formed on the inner surface of the chamber, and the plasma potential can also change. Consequently, if the sputtering apparatus is used for a long period, it is conventionally difficult to keep the characteristic of the film formed on the substrate constant.


Similarly, if the etching apparatus is used for a long period, the self-bias voltage changes depending on the film formed on the inner surface of the chamber, and this may change the plasma potential. Consequently, it is difficult to keep the etching characteristic of the substrate constant.


The sputtering apparatus described in PTL 1 needs to adjust a high-frequency power to control the self-bias voltage. However, if the high-frequency power is changed to adjust the self-bias voltage, a plasma density also changes. Consequently, it is conventionally impossible to individually adjust the self-bias voltage and the plasma density. Similarly, the etching apparatus cannot conventionally, individually adjust the self-bias voltage and the plasma density.


CITATION LIST
Patent Literature

PTL 1: Japanese Patent Publication No. 55-35465


SUMMARY OF INVENTION
Technical Problem

The present invention has been made based on the above problem recognition, and has as its object to provide a technique advantageous in stabilizing a plasma potential and in individually adjusting a voltage applied to an electrode and a plasma density.


According to one aspect of the present invention, there is provided a plasma processing apparatus comprising a balun including a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal, a grounded vacuum container, a first electrode electrically connected to the first balanced terminal, a second electrode electrically connected to the second balanced terminal, an impedance matching circuit, a first power supply connected to the balun via the impedance matching circuit, and configured to supply a high frequency to the first electrode via the impedance matching circuit and the balun, a low-pass filter, and a second power supply configured to supply a voltage to the first electrode via the low-pass filter.


According to the present invention, there is provided a technique advantageous in stabilizing a plasma potential and in individually adjusting a voltage applied to an electrode and a plasma density.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the first embodiment of the present invention;



FIG. 2A is a circuit diagram showing an example of the arrangement of a balun;



FIG. 2B is a circuit diagram showing another example of the arrangement of the balun;



FIG. 3 is a circuit diagram for explaining the function of a balun 103;



FIG. 4 is a table exemplifying the relationship among currents I1 (=I2), I2′, and I3, ISO, and α(=X/Rp);



FIG. 5A is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is satisfied;



FIG. 5B is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is satisfied;



FIG. 5C is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is satisfied;



FIG. 5D is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is satisfied;



FIG. 6A is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is not satisfied;



FIG. 6B is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is not satisfied;



FIG. 6C is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is not satisfied;



FIG. 6D is a timing chart showing a result of simulating a plasma potential and a cathode potential when 1.5≤X/Rp≤5000 is not satisfied;



FIG. 7 is a circuit diagram exemplifying a method of confirming Rp−jXp;



FIG. 8 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the second embodiment of the present invention;



FIG. 9 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the third embodiment of the present invention;



FIG. 10 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the fourth embodiment of the present invention;



FIG. 11 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the fifth embodiment of the present invention; and



FIG. 12 is a circuit diagram schematically showing the arrangement of a plasma processing apparatus according to the sixth embodiment of the present invention.





DESCRIPTION OF EMBODIMENTS

The present invention will be described below with reference to the accompanying drawings by way of exemplary embodiments.



FIG. 1 schematically shows the arrangement of a plasma processing apparatus 1 according to the first embodiment of the present invention. The plasma processing apparatus 1 includes a balun (balanced/unbalanced conversion circuit) 103, a vacuum container 110, a first electrode 106, a second electrode 111, a low-pass filter 115, and a power supply 116 (second power supply). Alternatively, it may be understood that the plasma processing apparatus 1 includes the balun 103 and a main body 10, and the main body 10 includes the vacuum container 110, the first electrode 106, the second electrode 111, the low-pass filter 115, and the power supply 116 (second power supply). The main body 10 includes a first terminal 251 and a second terminal 252. The power supply 116 can be, for example, a DC power supply or an AC power supply. The DC power supply may generate a DC voltage with an AC component. The main body 10 may include a third terminal 253 connected to the vacuum container 110. The plasma processing apparatus 1 can further include an impedance matching circuit 102 and a high-frequency power supply 101 (first power supply).


The balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the first balanced terminal 211 and the second balanced terminal 212 of the balun 103. The vacuum container 110 is formed by a conductor, and is grounded. The balun 103 may further include a midpoint terminal 213. The balun 103 can be configured so that the voltage of the midpoint terminal 213 is set as the midpoint between the voltage of the first balanced terminal 211 and that of the second balanced terminal 212. The midpoint terminal 213 can electrically be connected to the third terminal 253 of the main body 10.


In the first embodiment, the first electrode 106 serves as a cathode, and holds a target 109. The target 109 can be, for example, an insulator material or a conductor material. Furthermore, in the first embodiment, the second electrode 111 serves as an anode, and holds a substrate 112. The plasma processing apparatus 1 according to the first embodiment can operate as a sputtering apparatus that forms a film on the substrate 112 by sputtering the target 109. The first electrode 106 is electrically connected to the first balanced terminal 211, and the second electrode 111 is electrically connected to the second balanced terminal 212. When the first electrode 106 and the first balanced terminal 211 are electrically connected to each other, this indicates that a current path is formed between the first electrode 106 and the first balanced terminal 211 so that a current flows between the first electrode 106 and the first balanced terminal 211. Similarly, in this specification, when a and b are electrically connected, this indicates that a current path is formed between a and b so that a current flows between a and b.


The above arrangement can be understood as an arrangement in which the first electrode 106 is electrically connected to the first terminal 251, the second electrode 111 is electrically connected to the second terminal 252, the first terminal 251 is electrically connected to the first balanced terminal 211, and the second terminal 252 is electrically connected to the second balanced terminal 212.


In the first embodiment, the first electrode 106 and the first balanced terminal 211 (first terminal 251) are electrically connected via a blocking capacitor 104. The blocking capacitor 104 blocks a DC current between the first balanced terminal 211 and the first electrode 106 (or between the first balanced terminal 211 and the second balanced terminal 212). Instead of providing the blocking capacitor 104, an impedance matching circuit 102 (to be described later) may be configured to block a DC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202. The first electrode 106 can be supported by the vacuum container 110 via an insulator 107. The second electrode 111 can be supported by the vacuum container 110 via an insulator 108. Alternatively, the insulator 108 can be arranged between the second electrode 111 and the vacuum container 110.


The high-frequency power supply 101 (first power supply) supplies a high frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103 via the impedance matching circuit 102. In other words, the high-frequency power supply 101 supplies a high frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first electrode 106 and the second electrode 111 via the impedance matching circuit 102, the balun 103, and the blocking capacitor 104. Alternatively, the high-frequency power supply 101 can be understood to supply a high frequency between the first terminal 251 and the second terminal 252 of the main body 10 via the impedance matching circuit 102 and the balun 103.


The power supply 116 (second power supply) can be configured to supply a negative DC voltage (bias voltage) or an AC voltage to the first electrode 106 via the low-pass filter 115. The low-pass filter 115 blocks a high frequency supplied from the balun 103 so as not to be transmitted to the power supply 116. By supplying a negative DC voltage or an AC voltage from the power supply 116 to the first electrode 106, it is possible to control (decide) the voltage of the surface of the target 109 or ion energy colliding against the surface of the target 109. If the target 109 is made of a conductive material, it is possible to control the voltage of the surface of the target 109 by supplying a negative DC voltage from the power supply 116 to the first electrode 106. If the target 109 is made of an insulating material, it is possible to control ion energy colliding against the surface of the target 109 by supplying an AC voltage from the power supply 116 to the first electrode 106.


If the target 109 is made of an insulating material, and the power supply 116 (second power supply) supplies an AC voltage to the first electrode 106, the frequency of the voltage supplied from the power supply 116 to the first electrode 106 can be set lower than the frequency of the high frequency generated by the high-frequency power supply 101 (first power supply). In this case, the frequency of the voltage supplied from the power supply 116 to the first electrode 106 is preferably set within a range of several hundred KHz to several MHz.


A gas (for example, Ar, Kr, or Xe gas) is supplied to the internal space of the vacuum container 110 through a gas supply unit (not shown) provided in the vacuum container 110. In addition, the high-frequency power supply 101 (first power supply) supplies a high frequency between the first electrode 106 and the second electrode 111 via the impedance matching circuit 102, the balun 103, and the blocking capacitor 104. In addition, the power supply 116 supplies a negative DC voltage or an AC voltage to the first electrode 106 via the low-pass filter 115. This generates plasma between the first electrode 106 and the second electrode 111, and the surface of the target 109 is controlled to a negative voltage or ion energy colliding against the surface of the target 109 is controlled. Then, ions in the plasma collide against the surface of the target 109, and the particles of the material constituting the target 109 are discharged from the target 109. The particles form a film on the substrate 112.



FIG. 2A shows an example of the arrangement of the balun 103. The balun 103 shown in FIG. 2A includes a first coil 221 that connects the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 that connects the second unbalanced terminal 202 and the second balanced terminal 212. The first coil 221 and the second coil 222 are coils having the same number of turns, and share an iron core.



FIG. 2B shows another example of the arrangement of the balun 103. The balun 103 shown in FIG. 2B includes a first coil 221 that connects the first unbalanced terminal 201 and the first balanced terminal 211, and a second coil 222 that connects the second unbalanced terminal 202 and the second balanced terminal 212. The first coil 221 and the second coil 222 are coils having the same number of turns, and share an iron core. The balun 103 shown in FIG. 2B further includes a third coil 223 and a fourth coil 224 both of which are connected between the first balanced terminal 211 and the second balanced terminal 212. The third coil 223 and the fourth coil 224 are configured so that a connection node of the third coil 223 and the fourth coil 224 is set as the midpoint between the voltage of the first balanced terminal 211 and that of the second balanced terminal 212. The connection node is connected to the midpoint terminal 213. The third coil 223 and the fourth coil 224 are coils having the same number of turns, and share an iron core. The midpoint terminal 213 may be grounded, may be connected to the vacuum container 110, or may be floated.


The function of the balun 103 will be described with reference to FIG. 3. Let I1 be a current flowing through the first unbalanced terminal 201, I2 be a current flowing through the first balanced terminal 211, I2′ be a current flowing through the second unbalanced terminal 202, and I3 be a current, of the current I2, flowing to ground. When I3=0, that is, no current flows to ground on the balanced circuit side, the isolation performance of the balanced circuit with respect to ground is highest. When I3=I2, that is, all the current I2 flowing through the first balanced terminal 211 flows to ground, the isolation performance of the balanced circuit with respect to ground is lowest. An index ISO representing the degree of the isolation performance is given by:

ISO[dB]=20 log(I3/I2′)

Under this definition, as the absolute value of the index ISO is larger, the isolation performance is higher.


In FIG. 3, Rp−jXp represents an impedance (including the reactance of the blocking capacitor 104) when viewing the side of the first electrode 106 and the second electrode 111 (the side of the main body 10) from the side of the first balanced terminal 211 and the second balanced terminal 212 in a state in which plasma is generated in the internal space of the vacuum container 110. Note that this impedance is an impedance at the frequency of the high frequency generated by the high-frequency power supply 101, and the impedances of the low-pass filter 115 and the power supply 116 are negligible. Rp represents a resistance component, and −Xp represents a reactance component. Furthermore, in FIG. 3, X represents the reactance component (inductance component) of the impedance of the first coil 221 of the balun 103. ISO has a correlation with X/Rp.


To clarify the advantage of the arrangement in which the high-frequency power supply 101 supplies the high frequency between the first electrode 106 and the second electrode 111 via the balun 103, the operation of the plasma processing apparatus 1 in a state in which the power supply 116 (and the low-pass filter 115) is detached from the plasma processing apparatus 1 (main body 10) will be described. FIG. 4 exemplifies the relationship among the currents I1 (=I2), I2′, and I3, ISO, and a (=X/Rp) in the state in which the power supply 116 (and the low-pass filter 115) is detached from the plasma processing apparatus 1 (main body 10).


The present inventor found that when 1.5≤X/Rp≤5000 is satisfied, the potential (plasma potential) of plasma formed in the internal space (the space between the first electrode 106 and the second electrode 111) of the vacuum container 110 is insensitive to the state of the inner surface of the vacuum container 110. When the plasma potential is insensitive to the state of the inner surface of the vacuum container 110, this indicates that it is possible to stabilize the plasma potential even if the plasma processing apparatus 1 is used for a long period. 1.5≤X/Rp≤5000 corresponds to −10.0 dB≥ISO≥−80 dB.



FIGS. 5A to 5D each show a result of simulating the plasma potential and the potential (cathode potential) of the first electrode 106 when 1.5≤X/Rp≤5000 is satisfied. FIG. 5A shows the plasma potential and the cathode potential in a state in which no film is formed on the inner surface of the vacuum container 110. FIG. 5B shows the plasma potential and the cathode potential in a state in which a resistive film (1,000Ω) is formed on the inner surface of the vacuum container 110. FIG. 5C shows the plasma potential and the cathode potential in a state in which an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. FIG. 5D shows the plasma potential and the cathode potential in a state in which a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. With reference to FIGS. 5A to 5D, it is understood that when 1.5≤X/Rp≤5000 is satisfied, the plasma potential is stable in various states of the inner surface of the vacuum container 110.



FIGS. 6A to 6D each show a result of simulating the plasma potential and the potential (cathode potential) of the first electrode 116 when 1.5≤X/Rp≤5000 is not satisfied. FIG. 6A shows the plasma potential and the cathode potential in a state in which no film is formed on the inner surface of the vacuum container 110. FIG. 6B shows the plasma potential and the cathode potential in a state in which a resistive film (1,000Ω) is formed on the inner surface of the vacuum container 110. FIG. 6C shows the plasma potential and the cathode potential in a state in which an inductive film (0.6 μH) is formed on the inner surface of the vacuum container 110. FIG. 6D shows the plasma potential and the cathode potential in a state in which a capacitive film (0.1 nF) is formed on the inner surface of the vacuum container 110. With reference to FIGS. 6A to 6D, it is understood that when 1.5≤X/Rp≤5000 is not satisfied, the plasma potential changes depending on the state of the inner surface of the vacuum container 110.


In both the case in which X/Rp>5000 (for example, X/Rp=∞) is satisfied and the case in which X/Rp<1.5 (for example, X/Rp=1.0 or X/Rp=0.5) is satisfied, the plasma potential readily changes depending on the state of the inner surface of the vacuum container 110. If X/Rp>5000 is satisfied, in a state in which no film is formed on the inner surface of the vacuum container 110, discharge occurs only between the first electrode 106 and the second electrode 111. However, if X/Rp>5000 is satisfied, when a film starts to be formed on the inner surface of the vacuum container 110, the plasma potential sensitively reacts to this, and the results exemplified in FIGS. 6A to 6D are obtained. On the other hand, when X/Rp<1.5 is satisfied, a current flowing to ground via the vacuum container 110 is large. Therefore, the influence of the state of the inner surface of the vacuum container 110 (the electrical characteristic of a film formed on the inner surface) is conspicuous, and the plasma potential changes depending on formation of a film. Thus, as described above, the plasma processing apparatus 1 should be configured to satisfy 1.5≤X/Rp≤5000.


A method of deciding Rp−jXp (it is desired to actually know only Rp) will be exemplified with reference to FIG. 7. The balun 103 is detached from the plasma processing apparatus 1 and an output terminal 230 of the impedance matching circuit 102 is connected to the first terminal 251 (blocking capacitor 104) of the main body 10. Furthermore, the second terminal 252 (second electrode 111) of the main body 10 is grounded. In this state, the high-frequency power supply 101 supplies a high frequency to the first terminal 251 of the main body 10 via the impedance matching circuit 102. In the example shown in FIG. 7, the impedance matching circuit 102 is equivalently formed by coils L1 and L2 and variable capacitors VC1 and VC2. It is possible to generate plasma by adjusting the capacitance values of the variable capacitors VC1 and VC2. In the state in which the plasma is stable, the impedance of the impedance matching circuit 102 matches the impedance Rp−jXp on the side of the main body 10 (the side of the first electrode 106 and the second electrode 111) when the plasma is generated. The impedance of the impedance matching circuit 102 at this time is given by Rp+jXp. Therefore, Rp−jXp (it is desired to actually know only Rp) can be obtained based on the impedance Rp+jXp of the impedance matching circuit 102 when the impedance is matched. Alternatively, for example, Rp−jXp can be obtained by simulation based on design data.


Based on Rp obtained in this way, the reactance component (inductance component) X of the impedance of the first coil 221 of the balun 103 is decided so as to satisfy 1.5≤X/Rp≤5000. By deciding the reactance component of the balun 103 as described above, it is possible to stabilize the plasma potential (and the self-bias voltage (the surface voltage of the target 109)) even if no power supply 116 is provided.


Furthermore, in the arrangement in which the power supply 116 supplies a negative DC voltage to the first electrode 106 via the low-pass filter 115, it is possible to control the surface voltage of the target 109 by the DC voltage. On the other hand, in the arrangement in which the power supply 116 supplies an AC voltage to the first electrode 106 via the low-pass filter 115, it is possible to control, by the AC voltage, ion energy colliding against the surface of the target 109. Therefore, the power of the high frequency supplied between the first electrode 106 and the second electrode 111 from the high-frequency power supply 101 can be adjusted independently of the surface voltage of the target 109. Furthermore, in the arrangement in which the power supply 116 supplies a negative DC voltage or an AC voltage to the first electrode 106 via the low-pass filter 115, it is possible to make the plasma potential insensitive to the state of the inner surface of the vacuum container 110. Therefore, it is not always necessary to satisfy 1.5≤X/Rp≤5000. Even if 1.5≤X/Rp≤5000 is not satisfied, the practical performance can be provided.


The relationship between the size of the first electrode 106 and that of the second electrode 111 is not limited. However, the first electrode 106 and the second electrode 111 preferably have similar sizes. In this case, the self-bias voltage can be made low, and the surface voltage of the target 109 or ion energy colliding against the surface of the target 109 can be freely controlled by the power supply 116.



FIG. 8 schematically shows the arrangement of a plasma processing apparatus 1 according to the second embodiment of the present invention. The plasma processing apparatus 1 according to the second embodiment can operate as an etching apparatus that etches a substrate 112. In the second embodiment, a first electrode 106 serves as a cathode, and holds the substrate 112. In the second embodiment, a second electrode 111 serves as an anode. In the plasma processing apparatus 1 according to the second embodiment, the first electrode 106 and a first balanced terminal 211 are electrically connected via a blocking capacitor 104. In other words, in the plasma processing apparatus 1 according to the second embodiment, the blocking capacitor 104 is arranged in an electrical connection path between the first electrode 106 and the first balanced terminal 211.



FIG. 9 schematically shows the arrangement of a plasma processing apparatus 1 according to the third embodiment of the present invention. The plasma processing apparatus 1 according to the third embodiment is a modification of the plasma processing apparatus 1 according to the first embodiment, and further includes at least one of a mechanism for vertically moving a second electrode 111 and a mechanism for rotating the second electrode 111. In the example shown in FIG. 9, the plasma processing apparatus 1 includes a driving mechanism 114 having both the mechanism for vertically moving the second electrode 111 and the mechanism for rotating the second electrode 111. A bellows 113 forming a vacuum partition can be provided between a vacuum container 110 and the driving mechanism 114. Similarly, the plasma processing apparatus 1 according to the second embodiment can further include at least one of a mechanism for vertically moving the second electrode 111 and a mechanism for rotating the second electrode 111.


In the third embodiment as well, the relationship between the size of a first electrode 106 and that of the second electrode 111 is not limited. However, the first electrode 106 and the second electrode 111 preferably have similar sizes.



FIG. 10 schematically shows the arrangement of a plasma processing apparatus 1 according to the fourth embodiment of the present invention. Items which are not referred to as the plasma processing apparatus 1 according to the fourth embodiment can comply with the first to third embodiments. The plasma processing apparatus 1 includes a balun 103, a vacuum container 110, a first electrode 106, a second electrode 135, a third electrode 151, low-pass filters 115 and 303, a power supply 116, and a DC power supply 304. Alternatively, it may be understood that the plasma processing apparatus 1 includes the balun 103 and a main body 10, and the main body 10 includes the vacuum container 110, the first electrode 106, the second electrode 135, the third electrode 151, the low-pass filters 115 and 303, the power supply 116, and the DC power supply 304. The main body 10 includes a first terminal 251 and a second terminal 252. The plasma processing apparatus 1 can further include impedance matching circuits 102 and 302 and high-frequency power supplies 101 and 301. The power supply 116 can be, for example, a DC power supply or an AC power supply. The DC power supply may generate a DC voltage with an AC component.


The balun 103 includes a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212. An unbalanced circuit is connected to the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the first balanced terminal 211 and the second balanced terminal 212 of the balun 103. The balun 103 may further include a midpoint terminal, as described above. The midpoint terminal can electrically be connected to the vacuum container 110.


The first electrode 106 holds a target 109. The target 109 can be, for example, an insulator material or a conductor material. The second electrode 135 is arranged around the first electrode 106. The first electrode 106 is electrically connected to the first balanced terminal 211 of the balun 103, and the second electrode 135 is electrically connected to the second balanced terminal 212 of the balun 103. The third electrode 151 holds a substrate 112. The third electrode 151 can be supplied with a high frequency from the high-frequency power supply 301 via the impedance matching circuit 302.


The above arrangement can be understood as an arrangement in which the first electrode 106 is electrically connected to the first terminal 251, the second electrode 135 is electrically connected to the second terminal 252, the first terminal 251 is electrically connected to the first balanced terminal 211 of the balun 103, and the second terminal 252 is electrically connected to the second balanced terminal 212 of the balun 103.


The first electrode 106 and the first balanced terminal 211 (first terminal 251) can electrically be connected via a blocking capacitor 104. The blocking capacitor 104 blocks a DC current or an AC current from the power supply 116 between the first balanced terminal 211 of the balun 103 and the first electrode 106 (or between the first balanced terminal 211 and the second balanced terminal 212 of the balun 103). Instead of providing the blocking capacitor 104, the impedance matching circuit 102 may be configured to block a DC current or an AC current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 from the power supply 116. Alternatively, the blocking capacitor 104 may be arranged between the second electrode 135 and the second balanced terminal 212 (second terminal 252). The first electrode 106 and the second electrode 135 can be supported by the vacuum container 110 via an insulator 132.


The high-frequency power supply 101 supplies a high frequency between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103 via the impedance matching circuit 102. In other words, the high-frequency power supply 101 supplies a high frequency between the first electrode 106 and the second electrode 135 via the first impedance matching circuit 102, the balun 103, and the blocking capacitor 104. Alternatively, the high-frequency power supply 101 supplies a high frequency between the first terminal 251 and the second terminal 252 of the main body 10 via the impedance matching circuit 102 and the balun 103. The high-frequency power supply 301 supplies a high frequency to the third electrode 151 via the impedance matching circuit 302.


The power supply 116 supplies a negative DC voltage (bias voltage) or an AC voltage to the first electrode 106 via the low-pass filter 115. The low-pass filter 115 blocks a high frequency supplied from the balun 103 so as not to be transmitted to the power supply 116. By supplying a negative DC voltage from the power supply 116 to the first electrode 106, it is possible to control the voltage of the surface of the target 109. By supplying an AC voltage from the power supply 116 to the first electrode 106, it is possible to control ion energy colliding against the surface of the target 109. The DC power supply 304 supplies a DC voltage (bias voltage) to the third electrode 151 via the low-pass filter 303. The low-pass filter 303 blocks a high frequency supplied from the high-frequency power supply 301 so as not to be transmitted to the DC power supply 304. When the DC power supply 304 supplies a DC voltage to the third electrode 151, it is possible to control the surface potential of the substrate 112.


In the fourth embodiment as well, by supplying a negative DC voltage or an AC voltage from the power supply 116 to the first electrode 106, it is possible to control the voltage of the surface of the target 109 or ion energy colliding against the target 109, thereby controlling a plasma density by the high-frequency power supply 101 and the high-frequency power supply 301. In addition, in the fourth embodiment as well, satisfying 1.5≤X/Rp≤5000 is advantageous in more stabilizing the plasma potential.


In the fourth embodiment as well, the relationship between the size of the first electrode 106 and that of the second electrode 135 is not limited. However, the first electrode 106 and the second electrode 135 preferably have similar sizes.



FIG. 11 schematically shows the arrangement of a plasma processing apparatus 1 according to the fifth embodiment of the present invention. The plasma processing apparatus 1 according to the fifth embodiment has an arrangement obtained by adding a driving mechanism 114 to the plasma processing apparatus 1 according to the fourth embodiment. The driving mechanism 114 can include at least one of a mechanism for vertically moving a third electrode 151 and a mechanism for rotating the third electrode 151.


In the fifth embodiment as well, the relationship between the size of a first electrode 106 and that of a second electrode 135 is not limited. However, the first electrode 106 and the second electrode 135 preferably have similar sizes.



FIG. 12 schematically shows the arrangement of a plasma processing apparatus 1 according to the sixth embodiment of the present invention. Items which are not referred to as the sixth embodiment can comply with the first to fifth embodiments. The plasma processing apparatus 1 according to the sixth embodiment includes a plurality of first high-frequency supply units and at least one second high-frequency supply unit. An example in which the plurality of first high-frequency supply units are formed by two high-frequency supply units will be described. In addition, the two high-frequency supply units and constituent elements associated with them are distinguished from each other using subscripts a and b. Similarly, two targets are distinguished from each other using subscripts a and b.


One of the plurality of first high-frequency supply units can include a first electrode 106a, a second electrode 135a, a balun 103a, a power supply 116a, a low-pass filter 115a, a high-frequency power supply 101a, an impedance matching circuit 102a, and a blocking capacitor 104a. Another one of the plurality of first high-frequency supply units can include a first electrode 106b, a second electrode 135b, a balun 103b, a power supply 116b, a low-pass filter 115b, a high-frequency power supply 101b, an impedance matching circuit 102b, and a blocking capacitor 104b. The second high-frequency supply unit can include a high-frequency power supply 301, an impedance matching circuit 302, a DC power supply 304, and a low-pass filter 303. Each of the power supplies 116a and 116b can be, for example, a DC power supply or an AC power supply. The DC power supply may generate a DC voltage with an AC component.


From another viewpoint, the plasma processing apparatus 1 includes the baluns 103a and 103b, a vacuum container 110, the first electrodes 106a and 106b, the second electrodes 135a and 135b, a third electrode 151, the low-pass filters 115a, 115b, and 303, the power supplies 116a and 116b, the DC power supply 304, and the high-frequency power supplies 101a, 101b, and 301.


The balun 103a includes a first unbalanced terminal 201a, a second unbalanced terminal 202a, a first balanced terminal 211a, and a second balanced terminal 212a. An unbalanced circuit is connected to the first unbalanced terminal 201a and the second unbalanced terminal 202a of the balun 103a, and a balanced circuit is connected to the first balanced terminal 211a and the second balanced terminal 212a of the balun 103a. The balun 103b includes a first unbalanced terminal 201b, a second unbalanced terminal 202b, a first balanced terminal 211b, and a second balanced terminal 212b. An unbalanced circuit is connected to the first unbalanced terminal 201b and the second unbalanced terminal 202b of the balun 103b, and a balanced circuit is connected to the first balanced terminal 211b and the second balanced terminal 212b of the first balun 103b.


The first electrodes 106a and 106b hold targets 109a and 109b, respectively. Each of the targets 109a and 109b can be, for example, an insulator material or a conductor material. The second electrodes 135a and 135b are arranged around the first electrodes 106a and 106b, respectively. The first electrodes 106a and 106b are electrically connected to the first balanced terminals 211a and 211b of the baluns 103a and 103b, respectively, and the second electrodes 135a and 135b are electrically connected to the second balanced terminals 212a and 212b of the first baluns 103a and 103b, respectively. The high-frequency power supply 101a supplies a high frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first unbalanced terminal 201a and the second unbalanced terminal 202a of the balun 103a via the impedance matching circuit 102a. The high-frequency power supply 101b supplies a high frequency (high-frequency current, high-frequency voltage, and high-frequency power) between the first unbalanced terminal 201b and the second unbalanced terminal 202b of the balun 103b via the impedance matching circuit 102b. The third electrode 151 holds a substrate 112. The third electrode 151 can be supplied with a high frequency from the high-frequency power supply 301 via the impedance matching circuit 302.


The power supplies 116a and 116b supply negative DC voltages (bias voltages) or AC voltages to the first electrodes 106a and 106b via the low-pass filters 115a and 115b, respectively. The low-pass filters 115a and 115b block high frequencies supplied from the baluns 103a and 103b so as not to be transmitted to the power supplies 116a and 116b, respectively. By supplying negative DC voltages from the power supplies 116a and 116b to the first electrodes 106a and 106b, it is possible to control the voltages of the surfaces of the targets 109a an 109b, respectively. By supplying AC voltages from the power supplies 116a and 116b to the first electrodes 106a and 106b, it is possible to control ion energy colliding against the surfaces of the targets 109a and 109b, respectively. The DC power supply 304 supplies a DC voltage (bias voltage) to the third electrode 151 via the low-pass filter 303. The low-pass filter 303 blocks a high frequency supplied from the high-frequency power supply 301 so as not to be transmitted to the DC power supply 304. When the DC power supply 304 supplies a DC voltage to the third electrode 151, it is possible to control the surface potential of the substrate 112.


Each of the first high-frequency supply unit and the second high-frequency supply unit can be represented by an equivalent circuit similar to that shown in FIG. 3. In the sixth embodiment as well, it is preferable to satisfy 1.5≤X/Rp≤5000.


In the sixth embodiment as well, the relationship between the size of the first electrode 106a and that of the second electrode 135a is not limited. However, the first electrode 106a and the second electrode 135a preferably have similar sizes. Similarly, the relationship between the size of the first electrode 106b and that of the second electrode 135b is not limited. However, the first electrode 106b and the second electrode 135b preferably have similar sizes.


The present invention is not limited to the above-described embodiments, and various changes and modifications can be made within the spirit and scope of the present invention. Therefore, to apprise the public of the scope of the present invention, the following claims are made.


REFERENCE SIGNS LIST






    • 1: plasma processing apparatus, 10: main body, 101: high-frequency power supply, 102: impedance matching circuit, 103: balun, 104: blocking capacitor, 106: first electrode, 107, 108: insulator, 109: target, 110: vacuum container, 111: second electrode, 112: substrate, 115: low-pass filter, 116: power supply, 201: first unbalanced terminal, 202: second unbalanced terminal, 211: first balanced terminal, 212: second balanced terminal, 213: midpoint terminal, 251: first terminal, 252: second terminal, 253: third terminal, 221: first coil, 222: second coil, 223: third coil, 224: fourth coil




Claims
  • 1. A plasma processing apparatus comprising: a balun including a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal;a grounded vacuum container formed by a conductor;a first electrode electrically connected to the first balanced terminal;a second electrode electrically connected to the second balanced terminal;an impedance matching circuit;a first power supply connected to the balun via the impedance matching circuit, and configured to supply a high frequency to the first electrode via the impedance matching circuit and the balun;a low-pass filter; anda second power supply configured to supply a voltage to the first electrode via the low-pass filter;wherein the balun includes a first coil configured to connect the first unbalanced terminal and the first balanced terminal, and a second coil configured to connect the second unbalanced terminal and the second balanced terminal.
  • 2. The plasma processing apparatus according to claim 1, wherein the first electrode holds a target, and the second electrode holds a substrate.
  • 3. The plasma processing apparatus according to claim 1, wherein the balun further includes a third coil and a fourth coil both of which are connected between the first balanced terminal and the second balanced terminal, and the third coil and the fourth coil are configured to set, as a midpoint between a voltage of the first balanced terminal and a voltage of the second balanced terminal, a voltage of a connection node of the third coil and the fourth coil.
  • 4. The plasma processing apparatus according to claim 3, wherein the connection node is connected to the vacuum container.
  • 5. The plasma processing apparatus according to claim 1 wherein the second power supply includes an AC power supply, anda frequency of a voltage supplied from the AC power supply to the first electrode is lower than the frequency.
  • 6. The plasma processing apparatus according to claim 1 wherein the first electrode is supported by the vacuum container via an insulator.
  • 7. The plasma processing apparatus according to claim 1, wherein an insulator is arranged between the second electrode and the vacuum container.
  • 8. The plasma processing apparatus according to claim 1, further comprising at least one of a mechanism configured to vertically move the second electrode and a mechanism configured to rotate the second electrode.
  • 9. The plasma processing apparatus according to claim 1, wherein the first electrode holds a substrate, and the plasma processing apparatus is configured as an etching apparatus.
  • 10. The plasma processing apparatus according to claim 1, wherein the first electrode holds a target, and the second electrode is arranged around the first electrode.
  • 11. The plasma processing apparatus according to claim 1, wherein a plurality of high-frequency supply units are provided, and each of the plurality of high-frequency supply units includes the balun, the first electrode, and the second electrode, andthe first electrode of each of the plurality of high-frequency supply units holds a target and, in each of the plurality of high-frequency supply units, the second electrode is arranged around the first electrode.
  • 12. The plasma processing apparatus according to claim 10, wherein the first electrode and the second electrode are supported by the vacuum container via an insulator.
  • 13. The plasma processing apparatus according to claim 10, further comprising: a third electrode configured to hold a substrate; anda second high-frequency power supply configured to supply a high frequency to the third electrode via a second impedance matching circuit.
  • 14. The plasma processing apparatus according to claim 13, further comprising: a second DC power supply configured to supply a DC voltage to the third electrode via a second low-pass filter.
  • 15. The plasma processing apparatus according to claim 13, wherein an insulator is arranged between the third electrode and the vacuum container.
  • 16. The plasma processing apparatus according to claim 13, further comprising at least one of a mechanism configured to vertically move the third electrode and a mechanism configured to rotate the third electrode.
  • 17. The plasma processing apparatus according to claim 1, wherein the first balanced terminal and the first electrode are electrically connected via a blocking capacitor.
  • 18. The plasma processing apparatus according to claim 1, wherein the second balanced terminal and the second electrode are electrically connected via a blocking capacitor.
  • 19. The plasma processing apparatus according to claim 1, wherein when Rp represents a resistance component between the first balanced terminal and the second balanced terminal when viewing a side of the first electrode and the second electrode from a side of the first balanced terminal and the second balanced terminal, and X represents an inductance between the first unbalanced terminal and the first balanced terminal, 1.5≤X/Rp≤5000 is satisfied.
  • 20. The plasma processing apparatus according to claim 1, wherein a part of a current flowing through the first coil flows to ground through the grounded vacuum container.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of International Patent Application No. PCT/JP2017/023603 filed Jun. 27, 2017, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (141)
Number Name Date Kind
4014779 Kuehnle Mar 1977 A
4025339 Kuehnle May 1977 A
4131533 Bialko et al. Dec 1978 A
4170475 Hagenlocher et al. Oct 1979 A
4284489 Weber Aug 1981 A
4284490 Weber Aug 1981 A
4584079 Lee et al. Apr 1986 A
4802080 Bossi et al. Jan 1989 A
4871421 Ogle et al. Oct 1989 A
4887005 Rough et al. Dec 1989 A
4956582 Bourassa Sep 1990 A
5121067 Marsland Jun 1992 A
5147493 Nishimura Sep 1992 A
5169509 Latz et al. Dec 1992 A
5316645 Yamagami May 1994 A
5330578 Sakama Jul 1994 A
5415757 Szcyrbowski May 1995 A
5464499 Moslehi et al. Nov 1995 A
5611899 Maass Mar 1997 A
5698082 Teschner et al. Dec 1997 A
5718815 Szczyrbowski et al. Feb 1998 A
5733511 De Mar 1998 A
5755938 Fukui et al. May 1998 A
5803973 Szczyrbowski et al. Sep 1998 A
5807470 Szczyrbowski et al. Sep 1998 A
5830331 Kim et al. Nov 1998 A
5865969 Clarke Feb 1999 A
5932116 Matsumoto et al. Aug 1999 A
5989999 Levine et al. Nov 1999 A
5990016 Kim et al. Nov 1999 A
6017221 Flamm Jan 2000 A
6046641 Chawla et al. Apr 2000 A
6096174 Teschner et al. Aug 2000 A
6150826 Hokodate et al. Nov 2000 A
6239404 Lea et al. May 2001 B1
6252354 Collins et al. Jun 2001 B1
6273022 Pu et al. Aug 2001 B1
6422172 Tanaka et al. Jul 2002 B1
6517912 Morfill et al. Feb 2003 B1
6568346 Pu et al. May 2003 B2
6703080 Reyzelman et al. Mar 2004 B2
6818103 Scholl et al. Nov 2004 B1
6825618 Pu et al. Nov 2004 B2
6876205 Walde et al. Apr 2005 B2
6885154 Uchida et al. Apr 2005 B2
6913703 Strang et al. Jul 2005 B2
7032536 Fukuoka et al. Apr 2006 B2
7298091 Pickard et al. Nov 2007 B2
7445690 Kasai et al. Nov 2008 B2
7586210 Wiedemuth et al. Sep 2009 B2
7670455 Keller et al. Mar 2010 B2
7777567 Polizzo Aug 2010 B2
8033246 Wiedemuth et al. Oct 2011 B2
8293068 Koshimizu et al. Oct 2012 B2
8450635 Dhindsa May 2013 B2
8647585 Hancock Feb 2014 B2
8932430 Srivastava et al. Jan 2015 B2
8992723 Sorensen et al. Mar 2015 B2
9039864 Baek et al. May 2015 B2
9121786 Tie Sep 2015 B2
9147555 Richter Sep 2015 B2
9245776 Himori et al. Jan 2016 B2
9401265 Michel et al. Jul 2016 B2
9455126 Valcore et al. Sep 2016 B2
9564360 Akasaka et al. Feb 2017 B2
9607810 Valcore et al. Mar 2017 B2
9620337 Valcore et al. Apr 2017 B2
9640367 Keller et al. May 2017 B2
9675716 Hancock Jun 2017 B2
9779196 Valcore et al. Oct 2017 B2
9875881 Nagami et al. Jan 2018 B2
10081869 Augustyniak et al. Sep 2018 B2
10083817 Godyak Sep 2018 B1
10157729 Valcore, Jr. Dec 2018 B2
RE47276 Benjamin Mar 2019 E
10224463 Daigo Mar 2019 B2
10231321 Valcore, Jr. et al. Mar 2019 B2
10354838 Mopidevi et al. Jul 2019 B1
10410889 Sadjadi et al. Sep 2019 B2
10544505 Yang et al. Jan 2020 B2
10553406 Chang et al. Feb 2020 B2
10685810 Mopidevi et al. Jun 2020 B2
10879043 Selmo Dec 2020 B2
11013075 Ester et al. May 2021 B2
11114287 Harris et al. Sep 2021 B2
11170991 Sakane Nov 2021 B2
11315765 Yamawaku et al. Apr 2022 B2
20010054383 Pu et al. Dec 2001 A1
20020022836 Goble et al. Feb 2002 A1
20030087044 Willms et al. May 2003 A1
20030215373 Reyzelman et al. Nov 2003 A1
20040222184 Hayami Nov 2004 A1
20040262156 Seymour et al. Dec 2004 A1
20050136604 Al-bayati et al. Jun 2005 A1
20050138577 Adamian Jun 2005 A1
20050160987 Kasai et al. Jul 2005 A1
20050258148 Condrashoff Nov 2005 A1
20060032738 Wiedemuth Feb 2006 A1
20080050537 Godyak Feb 2008 A1
20080236750 Koshimizu Oct 2008 A1
20080258411 Miura et al. Oct 2008 A1
20080308041 Koshiishi Dec 2008 A1
20090041640 Kasai et al. Feb 2009 A1
20090075597 Degani et al. Mar 2009 A1
20090085597 Burns et al. Apr 2009 A1
20090102385 Wi Apr 2009 A1
20090117707 Shimomura et al. May 2009 A1
20090242135 Koshimizu et al. Oct 2009 A1
20100252199 Marakhtanov et al. Oct 2010 A1
20100294433 Jianhui Nov 2010 A1
20110300694 Matsumoto et al. Dec 2011 A1
20130017315 Lai et al. Jan 2013 A1
20130105082 Melikyan et al. May 2013 A1
20130337657 Savas et al. Dec 2013 A1
20140373783 Sawada et al. Dec 2014 A1
20150054405 Nettesheim Feb 2015 A1
20150165752 Plach et al. Jun 2015 A1
20150170882 Yamawaku et al. Jun 2015 A1
20150255258 Nozawa et al. Sep 2015 A1
20160240351 Burgess et al. Aug 2016 A1
20160289837 Savas Oct 2016 A1
20160307743 Brown et al. Oct 2016 A1
20160336084 Laguardia et al. Nov 2016 A1
20170018401 Rudolph Jan 2017 A1
20170084432 Valcore et al. Mar 2017 A1
20170213734 Marakhtanov et al. Jul 2017 A9
20170232122 Hancock Aug 2017 A1
20170338081 Yamazawa Nov 2017 A1
20180130640 Gregor et al. May 2018 A1
20180269035 Selmo Sep 2018 A1
20180318459 Hancock et al. Nov 2018 A1
20190221405 Yamawaku et al. Jul 2019 A1
20200126763 Sekiya et al. Apr 2020 A1
20200126764 Noue et al. Apr 2020 A1
20200126766 Sekiya et al. Apr 2020 A1
20200126767 Takeda et al. Apr 2020 A1
20200126768 Inoue et al. Apr 2020 A1
20200161096 Chang et al. May 2020 A1
20210005429 Tanabe et al. Jan 2021 A1
20210118649 Huh et al. Apr 2021 A1
20220051878 Sekiya et al. Feb 2022 A1
Foreign Referenced Citations (81)
Number Date Country
1155748 Jul 1997 CN
1220931 Jun 1999 CN
1390436 Jan 2003 CN
2907173 May 2007 CN
101425456 May 2009 CN
101478857 Jul 2009 CN
101546697 Sep 2009 CN
102479657 May 2012 CN
103091042 May 2013 CN
103094042 May 2013 CN
104024471 Sep 2014 CN
105887050 Aug 2016 CN
106024568 Oct 2016 CN
19713637 Oct 1998 DE
1748687 Jan 2007 EP
S53-141937 Nov 1978 JP
S53141937 Nov 1978 JP
S55035465 Sep 1980 JP
S 62133065 Jun 1987 JP
H02501608 May 1990 JP
H02156080 Jun 1990 JP
H02156081 Jun 1990 JP
H02156082 Jun 1990 JP
H02156083 Jun 1990 JP
H04-317325 Nov 1992 JP
H10261621 Sep 1998 JP
H11307299 Nov 1999 JP
2000030896 Jan 2000 JP
2000195851 Jul 2000 JP
2000294543 Oct 2000 JP
2001122690 May 2001 JP
2001181848 Jul 2001 JP
2001518230 Oct 2001 JP
2002004040 Jan 2002 JP
2002118101 Apr 2002 JP
2002141292 May 2002 JP
2003512526 Apr 2003 JP
2003155556 May 2003 JP
2005026540 Jan 2005 JP
2005130376 May 2005 JP
2005303257 Oct 2005 JP
2006336084 Dec 2006 JP
2008294465 Dec 2008 JP
2008300322 Dec 2008 JP
2009021634 Jan 2009 JP
2009105030 May 2009 JP
2009302566 Dec 2009 JP
2010045664 Feb 2010 JP
2010109157 May 2010 JP
2010255061 Nov 2010 JP
2011138907 Jul 2011 JP
2011144450 Jul 2011 JP
4909523 Apr 2012 JP
2012142332 Jul 2012 JP
2012174682 Sep 2012 JP
2013139642 Jul 2013 JP
2014049541 Mar 2014 JP
2015115216 Jun 2015 JP
5824072 Nov 2015 JP
2016225376 Dec 2016 JP
201721144 Nov 2017 JP
6280677 Feb 2018 JP
6280677 Feb 2018 JP
6309683 Apr 2018 JP
10-2014-0135202 Nov 2014 KR
200741794 Nov 2007 TW
201311059 Mar 2013 TW
201423827 Jun 2014 TW
I492294 Jul 2015 TW
201532220 Aug 2015 TW
201643932 Dec 2016 TW
I560767 Dec 2016 TW
I575107 Mar 2017 TW
I 601309 Oct 2017 TW
8902695 Mar 1989 WO
0129278 Apr 2001 WO
0137619 May 2001 WO
2010024128 Mar 2010 WO
2010041679 Apr 2010 WO
2012095961 Jul 2012 WO
2019004191 Jan 2019 WO
Non-Patent Literature Citations (31)
Entry
Extended European Search Report issued in European Patent Application No. 18 92 4031, dated Feb. 15, 2022, 1 (9 pages). European Patent Application No. 18 92 4031 corresponds to U.S. Appl. No. 17/023,675.
International Search Report (PCT/ISA/210) and translation and Written Opinion (PCT/ISA/237) dated Sep. 11, 2018, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2018/024150.
Supplemental European Search Report issued in corresponding European Patent Application No. 18824433, dated Apr. 1, 30, 2020 (8 pages).
International Search Report (PCT/ISA/210) and translation and Written Opinion (PCT/ISA/237) dated Sep. 19, 2017, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2017/023603.
First Office Action dated Jun. 2, 2021, by the Chinese Patent Office in Chinese Patent Application No. 201880042465, and an English Translation of the Office Action. (23 pages).
First Office Action dated Jun. 2, 2021, by the Chinese Patent Office in Chinese Patent Application No. 201880042477.2, and an English Translation of the Office Action. (20 pages).
First Office Action dated Jun. 2, 2021, by the Chinese Patent Office in Chinese Patent Application No. 201780092518.4, and an English Translation of the Office Action. (21 pages).
First Office Action dated Jun. 2, 2021, by the Chinese Patent Office in Chinese Patent Application No. 201780092519.9, and an English Translation of the Office Action. (23 pages).
First Office Action dated Jun. 3, 2021, by the Chinese Patent Office in Chinese Patent Application No. 201880042506.5, and an English Translation of the Office Action. (21 pages).
Office Action (Notice of Preliminary Rejection) dated Apr. 19, 2021, by the Korean Patent Office in corresponding Korean Patent Application No. 10-2020-7001366, and an English Translation of the Office Action. (14 pages).
Office Action (Notice of Preliminary Rejection) dated Apr. 26, 2021, by the Korean Patent Office in corresponding Korean Patent Application No. 10-2020-7001366, and an English Translation of the Office Action. (9 pages).
Office Action (Grant of Patent) dated Apr. 27, 2021, by the Korean Patent Office in corresponding Korean Patent Application No. 10-2020-7001397, and an English Translation of the Office Action. (4 pages).
Office Action issued in U.S. Appl. No. 16/720,087, dated Apr. 7, 2022, (84 pages).
Supplemental European Search Report issued in corresponding European Patent Application No. 18823378.7, dated May 1, 25, 2020 (7 pages).
International Preliminary Report on Patentability (PCT/IPEA/409) received for PCT Patent Application No. PCT/JP2018/024145, dated Jul. 23, 2019, 10 pages of English Translation.
International Search Report (PCT/ISA/210) and Written Opinion (PCT/ISA/237) received for PCT Patent Application No. PCT/JP2018/047319, dated Mar. 12, 2019, 16 pages including 2 pages of English Translation.
Non Final Office Action received for U.S. Appl. No. 16/720,154, dated May 26, 2022, 16 pages.
Notice of Allowance received for U.S. Appl. No. 16/720,262, dated May 27, 2022, 8 pages.
Notice of Allowance received for U.S. Appl. No. 17/023,675, dated May 26, 2022, 12 pages.
Written Decision on Registration issued in Korean Patent Application No. 10-2020-7001366, dated Sep. 23, 1 2022, with English Translation (6 pages).
Office Action received for U.S. Appl. No. 16/720,154, dated Jan. 6, 2021, 27 pages.
Office Action received for U.S. Appl. No. 16/720,154, dated Mar. 15, 2021, 19 pages.
Notice of Allowance received for U.S. Appl. No. 16/720,154, dated Sep. 20, 2021, 16 pages.
Office Action received for U.S. Appl. No. 16/720,262, dated Sep. 22, 2021, 63 pages.
Office Action received for U.S. Appl. No. 16/720,156, dated Apr. 1, 2022, 19 pages.
Office Action received for U.S. Appl. No. 16/720,156, dated Oct. 25, 2021, 71 pages.
Office Action received for U.S. Appl. No. 17/023,675, dated Aug. 19, 2021, 35 pages.
Notice of Reasons for Refusal issued in corresponding Japanese Patent Application No. 2019-012426, dated Aug. 15, 2022, with English Translation (8 pages).
Notice of Reasons for Refusal issued in corresponding Japanese Patent Application No. 2019-012419, dated Aug. 15, 2022, with English Translation (14 pages).
Final Office Action issued in U.S. Appl. No. 16/720,087, dated Oct. 25, 2022 (36 pages).
Notification of the First Office Action issued in Chinese Patent Application No. 201880094963.9, dated Oct. 10, 2022, with English Translation (33 pages).
Related Publications (1)
Number Date Country
20200126764 A1 Apr 2020 US
Continuations (1)
Number Date Country
Parent PCT/JP2017/023603 Jun 2017 US
Child 16720173 US