The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the invention. It is to be understood that other embodiments would be evident based on the present disclosure, and that system, process, or mechanical changes may be made without departing from the scope of the present invention.
In the following description, numerous specific details are given to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details. In order to avoid obscuring the present invention, some well-known circuits, system configurations, and process steps are not disclosed in detail. Likewise, the drawings showing embodiments of the system are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown greatly exaggerated in the drawing FIGS.
In addition, where multiple embodiments are disclosed and described having some features in common, for clarity and ease of illustration, description, and comprehension thereof, similar and like features one to another will ordinarily be described with like reference numerals. The embodiments have been numbered first embodiment, second embodiment, etc. as a matter of descriptive convenience and are not intended to have any other significance or provide limitations for the present invention.
For expository purposes, the term “horizontal” as used herein is defined as a plane parallel to the plane or surface of the integrated circuit, regardless of its orientation. The term “vertical” refers to a direction perpendicular to the horizontal as just defined. Terms, such as “above”, “below”, “bottom”, “top”, “side” (as in “sidewall”), “higher”, “lower”, “upper”, “over”, and “under”, are defined with respect to the horizontal plane. The term “on” means there is direct contact among elements. The term “processing” as used herein includes deposition of material, patterning, exposure, development, etching, cleaning, molding, and/or removal of the material or as required in forming a described structure. The term “system” as used herein means and refers to the method and to the apparatus of the present invention in accordance with the context in which the term is used.
Referring now to
Also for illustrative purposes the carrier 102 and the external interconnects 104 are shown as formed from a single structure, although it is understood that the carrier 102 and the external interconnects 104 may be formed from a single structure. For example, the carrier 102 and the external interconnects 104 may be formed from a lead frame (not shown) such that the carrier 102 may include a paddle (not shown), such as a die-attach paddle, and the external interconnects 104 may be formed as leads (not shown) or terminal pads (not shown).
Referring now to
The first integrated circuit structure 210 preferably includes a first integrated circuit die 214 having a first insulating structure 216, such as an epoxy molding compound. The first integrated circuit die 214 has first bond pads 218 electrically connected to the integrated circuits (not shown) within the first integrated circuit die 214. The first insulating structure 216 preferably surrounds first conductive interconnects 220, such as solder bumps or gold bumps, bonded to the first bond pads 218. The first insulating structure 216 has a first recess 221 formed into the edges of the first insulating structure 216.
For illustrative purposes, the first integrated circuit structure 210 is shown with a structure having the first insulating structure 216 exposing a side of the first integrated circuit die 214 opposite the first insulating structure 216, although it is understood that the first insulating structure 216 may not expose the other side of the first integrated circuit die 214. For example, the first integrated circuit structure 210 may be formed in as packaged integrated circuit.
The first insulating structure 216 at the first recess 221 partially exposes the first conductive interconnects 220. First interconnects 222, such as bond wires or ribbon bond wires, couple the first conductive interconnects 220 to the carrier 102. The height of the first recess 221 provides a predetermined clearance for the first interconnects 222 disposed underneath the second integrated circuit structure 212. The combined height of the first insulating structure 216 and the first integrated circuit die 214 is greater than the height of the first interconnects 222.
For illustrative purposes, the first integrated circuit structure 210 is shown with the first conductive interconnects 220 coupled with the first bond pads 218, although it is understood that the first integrated circuit structure 210 may not include the first conductive interconnects 220. For example, the first integrated circuit structure 210 may have the first recess 221 of the first insulating structure 216 expose the first bond pads 218 and the first interconnects 222 attached with the first bond pads 218.
The second integrated circuit structure 212 preferably includes a second integrated circuit die 226 having a second insulating structure 228, such as an epoxy molding compound. A bottom surface of the second integrated circuit die 226 is preferably coupled to a top surface of the first insulating structure 216 of the first integrated circuit structure 210. The second integrated circuit die 226 has preferably second bond pads 230 electrically connected to the integrated circuits (not shown) within the second integrated circuit die 226.
For illustrative purposes, the second integrated circuit structure 212 is shown with a structure having the second insulating structure 228 exposing a side of the second integrated circuit die 226 opposite the second insulating structure 228, although it is understood that the second insulating structure 228 may not expose the other side of the second integrated circuit die 226. For example, the second integrated circuit structure 212 may be formed in as packaged integrated circuit.
The second insulating structure 228 preferably includes second conductive interconnects 232, such as solder bumps or gold bumps, bonded to the second bond pads 230, and a second recess 233 formed into the edges of the second insulating structure 228. The second insulating structure 228 at the second recess 233 preferably partially exposes the second conductive interconnects 232. Second interconnects 234, such as bond wires or ribbon bond wires, preferably couple the second conductive interconnects 232 to the carrier 102.
For illustrative purposes, the second integrated circuit structure 212 is shown with the second conductive interconnects 232 coupled with the second bond pads 230, although it is understood that the second integrated circuit structure 212 may not include the second conductive interconnects 232. For example, the second integrated circuit structure 212 may have the second recess 233 of the second insulating structure 228 expose the second bond pads 230 and the second interconnects 234 attached with the second bond pads 230.
The first recess 221 and the second recess 233 may be preferably formed along multiple sides of the first integrated circuit structure 210 and the second integrated circuit structure 212. The first integrated circuit structure 210 and the second integrated circuit structure 212 may preferably be encapsulated in an encapsulation 238, such as an epoxy molding compound, covering the first interconnects 222 and the second interconnects 234 and forming the integrated circuit package system 100 with a low profile.
For illustrative purposes, the integrated circuit package system 100 is shown having the second integrated circuit structure 212 stacked over the first integrated circuit structure 210, although it is understood that the integrated circuit package system 100 may not have the same number of integrated circuit structures, such as the first integrated circuit structure 210 and the second integrated circuit structure 212. For example, the integrated circuit package system 100 may have the first integrated circuit structure 210 without stacking the second integrated circuit structure 212 thereover. Also, as another example, the integrated circuit package system 100 may have more than the first integrated circuit structure 210 and the second integrated circuit structure 212.
Referring now to
A carrier 302, such as a printed circuit board or a laminate substrate, includes a first surface 304 and a second surface 306 opposite to the first surface 304. External interconnects 308, such as conductive balls or conductive bumps comprised of solder or other metal or metal alloys, are preferably attached to the first surface 304. A first integrated circuit structure 310 is preferably mounted over the second surface 306 of the carrier 302. A second integrated circuit structure 312 is preferably stacked over the first integrated circuit structure 310.
The first integrated circuit structure 310 preferably includes a first integrated circuit die 314 having a first insulating structure 316, such as an epoxy molding compound. The first integrated circuit die 314 has first bond pads 318 electrically connected to the integrated circuits (not shown) within the first integrated circuit die 314. The first insulating structure 316 preferably surrounds first conductive interconnects 320, such as solder bumps or gold bumps, bonded to the first bond pads 318. The first insulating structure 316 has a first recess 321 formed into the edges of the first insulating structure 316.
The first insulating structure 316 at the first recess 321 partially exposes the first conductive interconnects 320. First interconnects 322, such as bond wires or ribbon bond wires, couple the first conductive interconnects 320 to the carrier 302. The height of the first recess 321 provides a predetermined clearance for the first interconnects 322 disposed underneath the second integrated circuit structure 312. The combined height of the first insulating structure 316 and the first integrated circuit die 314 is greater than the height of the first interconnects 322.
A film 324 is preferably applied between the top surface of the first insulating structure 316 of the first integrated circuit structure 310 and the bottom surface of a second integrated circuit die 326 of the second integrated circuit structure 312. The film 324 may server a number of functions. For example, the film 324 may provide/insulation between the first integrated circuit structure 310 and the second integrated circuit structure 312. As another example, the film 324 may function as an adhesive material for attaching the first integrated circuit structure 310 and the second integrated circuit structure 312.
The second integrated circuit structure 312 preferably includes the second integrated circuit die 326 having a second insulating structure 328, such as an epoxy molding compound. A bottom surface of the second integrated circuit die 326 is preferably coupled to a top surface of the first insulating structure 316 of the first integrated circuit structure 310. The second integrated circuit die 326 has preferably second bond pads 330 electrically connected to the integrated circuits (not shown) within the second integrated circuit die 326.
The second insulating structure 328 preferably includes second conductive interconnects 332, such as solder bumps or gold bumps, bonded to the second bond pads 330, and a second recess 333 formed into the edges of the second insulating structure 328. The second insulating structure 328 at the second recess 333 preferably partially exposes the second conductive interconnects 332. Second interconnects 334, such as bond wires or ribbon bond wires, preferably couple the second conductive interconnects 332 to the carrier 302.
The first recess 321 and the second recess 333 may be preferably formed along multiple sides of the first integrated circuit structure 310 and the second integrated circuit structure 312. The first integrated circuit structure 310 and the second integrated circuit structure 312 may preferably be encapsulated in an encapsulation 338, such as an epoxy molding compound, covering the first interconnects 322 and the second interconnects 334 and forming the integrated circuit package system 300 with a low profile.
Referring now to
Referring now to
For illustrative purposes, the integrated circuit die 502 is shown as a wire bonded integrated circuit, although it is understood that the integrated circuit die 502 may be a different type of integrated circuit. For example, the integrated circuit die 502 may be a flip chip, a packaged device, or stacked integrated circuits.
The encapsulation 402 preferably has a first thickness 508 at central region between the sides of the encapsulation 402 having the recess 404, wherein the first thickness 508 is the thickest portion of the encapsulation 402. The encapsulation 402 also preferably has a second thickness 512 at the recess 404.
The recess 404 in the encapsulation 402 eliminates some of the molding compound material from the encapsulation 402. The elimination of a portion of the encapsulation 402 reduces the size and weight of the integrated circuit package system 400. The recess 404 in the encapsulation 402 does not impede the internal interconnects 504 or the integrated circuit die 502.
Referring now to
Referring now to
An insertion side 718 of the integrated circuit package system 600 preferably has a nonorthogonal lower segment 720 of the carrier 602 and the encapsulation 604. The insertion side 718 also preferably has an upper corner segment 722 of the encapsulation 604. The nonorthogonal lower segment 720 may preferably expose contacts (not shown) on a second surface 724 of the carrier 602. The contacts electrically connect the integrated circuit package system 600 and the electronic system 732. The nonorthogonal lower segment 720 may also help direct the integrated circuit package system 600 during insertion into, as well as mating with, the electronic system 732.
The first device 704 may be a stack of integrated circuits, such as a first integrated circuit die 726 below a second integrated circuit die 728, and connected to the carrier 602 with internal interconnects 730, such as bond wires. The second device 706 may be a passive component. The carrier 602 spans from approximate the insertion side 718 to an extraction side 716. The carrier 602 helps provide planar rigidity to the integrated circuit package system 600 as well as electrical connectivity.
For illustrative purpose, the first device 704 is shown as a stack of the first integrated circuit die 726 and the second integrated circuit die 728, although it is understood that the first device 704 may be a different configuration with different types, such as components or prepackaged devices. Also for illustrative purposes, the first integrated circuit die 726 and the second integrated circuit die 728 are shown as wire bonded to the carrier 602, although it is understood that the first integrated circuit die 726 and the second integrated circuit die 728 may be have different electrical connectivity, such as solder bumps for flip chip. Further for illustrative purposes, the second device 706 is shown as a passive component, although it is understood that the second device 706 may not be a passive component.
Referring now to
Referring now to
Conductive structures 904, such as conductive bumps comprised of solder, gold, or other metals or metal alloy, are formed on the bond pads 902. A covering material for the insulating structure 804 is applied over the wafer 802 covering the bond pads 902 and the conductive structures 904.
Referring now to
Referring now to
Referring now to
The stepped portion 1204 forms conductive interconnects 1208 and a stepped opening 1210 having a width “W” over the through cut 1206. The stepped opening 1210 may form the first recess 221 of
The integrated circuit devices, such as the first integrated circuit structure 210 of
It has been discovered that the present invention improves manufacturing throughput and yield by singulating molded devices, such as molding compound covered wafers, with a multi-level saw having both a cutting portion and a stepped portion. The cutting portion provide side support as the stepped portion partially cuts or partially grinds the insulating structure and the conductive structures providing repeatable dimensions for the recess in the insulating structure. Also, the cutting portion provide side support as the stepped portion partially cuts or partially grinds the molding compound cover and the conductive structures eliminating or mitigating chipping, cracking, or tearing of the molding compound cover adjacent to the through cut. Inadvertent chipping, cracking, or tearing of the molding compound may expose the active circuitry (not shown) or the bond pads resulting in failed parts and reliability problems both leading to increased cost.
Referring now to
The top view depicts a multi-level saw 1306 for cutting the encapsulated devices 1304 from the carrier frame 1302 in a first direction, such as along the x-axis, and to form recesses, such as the recess 404 of
The top view also depicts a cutting saw 1308 for cutting the encapsulated devices 1304 from the carrier frame 1302 in a second direction, such as along the y-axis. In this example, the cutting saw 1308 cuts the carrier frame 1302 eighteen times.
It has been discovered that the present invention improves manufacturing throughput and yield by singulating molded devices, such as molding compound covered wafers or packaged integrated circuits, with a multi-level saw having both a cutting portion and a stepped portion. The multi-level saw reduces singulation time and increases the throughput. In this example, the multi-level saw traverses the carrier frame seven times and the cutting saw traverses the carrier frame eighteen times extending the lifetime of the multi-level saw. The unit per hour (UPH) throughput improvement is approximately 36% compared to conventional two-step cut for forming the stepped contour in the encapsulated devices and for singulating the encapsulated devices from the carrier frame.
Referring now to
Referring now to
Referring now to
The integrated circuit devices, such as the integrated circuit package system 400 of
It has been discovered that the present invention improves manufacturing throughput and yield by singulating molded devices, such as packaged integrated circuits, with a multi-level saw having both a cutting portion and a stepped portion. The cutting portion provide side support as the stepped portion partially cuts or partially grinds the encapsulation providing repeatable dimensions for the recess in the encapsulation. Also, the cutting portion provide side support as the stepped portion partially cuts or partially grinds the encapsulation eliminating or mitigating chipping, cracking, or tearing of the encapsulation adjacent to the through cut. Inadvertent chipping, cracking, or tearing of the encapsulation may expose the active circuitry (not shown), as an example, resulting in failed parts and reliability problems both leading to increased cost.
Referring now to
The integrated circuit devices, such as the integrated circuit package system 600 of
It has been discovered that the present invention improves manufacturing throughput and yield by singulating molded devices, such as molding compound covered wafers or packaged integrated circuits, with a multi-level saw having both a cutting portion and a sloped portion. The cutting portion provide side support as the sloped portion partially cuts or partially grinds the encapsulation and the carrier eliminating or mitigating chipping, cracking, or tearing of the encapsulation adjacent to the through cut. Inadvertent chipping, cracking, or tearing of the encapsulation and the carrier may expose the active circuitry (not shown), as an example, resulting in failed parts and reliability problems both leading to increased cost. Also, the unit per hour (UPH) throughput improvement is approximately 46% compared to conventional two cut step for forming the sloped contour in the encapsulated devices and for singulating three rows of encapsulated devices from a carrier frame. The decrease cutting runs by the multi-level saw extends its lifetime.
Referring now to
Yet another important aspect of the present invention is that it valuably supports and services the historical trend of reducing costs, simplifying systems, and increasing performance.
These and other valuable aspects of the present invention consequently further the state of the technology to at least the next level.
Thus, it has been discovered that the integrated circuit package system of the present invention furnishes important and heretofore unknown and unavailable solutions, capabilities, and functional aspects for improving yield, increasing reliability, and reducing cost of integrated circuit package system. The resulting processes and configurations are straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization.
While the invention has been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations that fall within the scope of the included claims. All matters hithertofore set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
This application claims the benefit of U.S. Provisional Patent Application No. 60/804,429 filed Jun. 10, 2006.
Number | Date | Country | |
---|---|---|---|
60804429 | Jun 2006 | US |