The present invention relates to a semiconductor device and, more particularly, to a semiconductor chip package in which a semiconductor chip is electrically connected to a substrate by wire bonding. Generally, in forming such a package, a semiconductor chip is attached to a mounting means such as a substrate or lead frame using a liquid adhesive.
As illustrated in
As illustrated in
The semiconductor chip packages 310 and 410 are commonly protected from external environments by sealing portions 335 and 435, respectively. The sealing portions 335 and 435 are typically made of an epoxy molding compound (EMC). The sealing portions 335 and 435 seal the semiconductor chips 311, 411 and 413, the bonding wires 327 and 427, and the connection portions of the semiconductor chips and bonding wires. Solder balls 337 and 437 are attached on the bottom surface of the printed circuit boards 321 and 421 and function as external connection terminals.
In the conventional semiconductor chip packages illustrated in
In an effort to address some of the problems associated with liquid adhesives, film-type non-conductive adhesive tape has been used to replace liquid adhesive for mounting semiconductor chips.
As illustrated in
In attaching a semiconductor chip using an adhesive tape, however, misalignment may result in the adhesive tape covering a portion of the chip pads or extending beyond the chip edge so that the wires may not be bonded normally to the chip pads. Furthermore, the empty space remaining between the upper chip and the lower chip at their periphery may compromise the process of attaching bonding wires to the upper chip resulting in poor bonds and/or damaged chips and may result in voids in the EMC.
Exemplary embodiments of the invention provide semiconductor chip packages having an adhesive tape attached to the bonding wires near the chip pads. A semiconductor chip package manufactured according to an exemplary embodiment of the invention may include a semiconductor chip having an active surface with chip pads formed near the edges of the active surface. The semiconductor chip is typically mounted on a mounting means in such a manner that the active surface of the semiconductor chip faces upwardly with a plurality of bonding wires electrically connecting the semiconductor chip to the mounting means. A non-conductive adhesive tape is attached to the active surface of the semiconductor chip and onto at least a portion of the bonding wires located near the upper portion of the semiconductor chip. A package body may then be used to seal the semiconductor chip, the mounting means, the bonding wires, and the non-conductive adhesive tape.
In another exemplary embodiment, the semiconductor chip package comprises a plurality of semiconductor chips, each of which has an active surface with chip pads formed on the active surface. A first semiconductor chip is mounted on a mounting means, with bonding wires electrically connecting the first semiconductor chip to the mounting means. The first semiconductor chip may be attached to the mounting means by a layer of liquid adhesive. A second semiconductor chip is then attached to the first semiconductor chip using a non-conductive adhesive tape. A second non-conductive adhesive tape is then applied to the active surface of the second semiconductor chip. The resulting chip stack structure has adhesive tape attached to the active surface of each of the semiconductor chips and to an upper portion of the bonding wires located near the active surface of each semiconductor chip.
Preferably, the adhesive tape is larger than the active surface of the semiconductor chip and has a thickness of 5 μm to 200 μm. It is also preferable that the adhesive tape comprises a synthetic resin comprising at least one resin selected from polyimide, epoxy, and acryl resins. In addition, the adhesive tape is preferably attached to the entire active surface in a manner that encloses at least the portion of the bonding wires extending over the upper portion of the semiconductor chip.
Exemplary embodiments of the present invention will become readily apparent by the following detailed description, with reference to the accompanying drawings, in which identified reference numerals designate similar or identical structural elements, and, in where:
The invention will now be described more fully with reference to exemplary embodiments and the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
First Exemplary Embodiment
Referring to
The non-conductive adhesive tape 31 is preferably sized larger than the active surface of semiconductor chip 11 so as to cover both the upper portion of bonding wires 27 extending over the upper surface of the chip and a predetermined length of bonding wires 27 extending outwardly from the sides of the chip. The adhesive tape 31 preferably has a thickness of about 5 μm to 200 μm. If the thickness of the adhesive tape 31 is less than about 5 μm, handling difficulties may increase while thicknesses in excess of 200 μm can render the thickness of the whole package excessive.
In this exemplary embodiment, predetermined portions of the bonding wires 27 are generally fixed in place by the adhesive tape 31 and will, therefore, tend to maintain the spacing and orientation relative to adjacent bonding wires 27. Thus, the bonding wires 27 are less likely to experience sagging or sweeping during processing subsequent to the tape bonding process.
The adhesive tape 31 is preferably formed of a material sufficiently soft and thick as to have no damaging effect as it is applied to the bonding wires 27. As shown in
The adhesive tape, in the form of sheet, is preferably made of a thermosetting or thermoplastic synthetic resin such as a polyimide, epoxy or acryl resin, or a composite material, for example, as shown in
The wire bonding may be preferably preformed using stitch bonding of the wire to the chip pads and ball bonding of the wire to the substrate pads. Wire bonding may, however, also utilize ball bonding on the chip pads and stitch bonding on the substrate pads. Although the adhesive tape is preferably larger than the semiconductor chip, the adhesive tape may be almost identical to the size of the semiconductor chip. When the adhesive tape is sized to match the semiconductor chip, the adhesive tape will typically extend over only those portions of the bonding wires that extend over the active surface.
Second Exemplary Embodiment
A first semiconductor chip 111 is attached to the printed circuit board 121 using a layer of liquid adhesive 125. A second semiconductor chip 113, however, is attached to the first semiconductor chip 111 using an adhesive tape 131. Another adhesive tape 132 is then attached to the active surface of the second semiconductor chip 113. Each of the adhesive tapes 131 and 132 preferably has a thickness of about 5 μm to 200 μm and is formed of a non-conductive synthetic resin material. Both of the adhesive tapes 131 and 132 are preferably larger than the respective surfaces of semiconductor chips 111 and 113 to which they are applied. The adhesive tapes 131 and 132 also preferably cover the portion of bonding wires 127b and 127a extending above the active surface and a predetermined length of the bonding wires extending outwardly from the sides of the semiconductor chips 111 and 113.
The two adhesive tapes 131 and 132 may have substantially different compositions or different structures that cause the two adhesive tapes to have different thermal characteristics. For example, using two different adhesive tapes that begin to flow at different temperatures may allow an increased degree of control in the chip mounting process. If the first adhesive tape 131 has a flow temperature that is higher than the flow temperature of the second adhesive tape 132, the attachment to or encapsulation of the lower bonding wires 127b by the first adhesive tape can be completed before attaching the second adhesive tape. The second adhesive tape 132 can then be applied to the upper surface of the second semiconductor chip 113 and heated to a temperature sufficient to cause the second adhesive tape to attach to or encapsulate the upper bonding wires 127a without causing additional flow within the first adhesive tape 131. Conversely, the two adhesive tapes may be selected to have substantially identical thermal behavior so that a single thermal treatment performed after both the first adhesive tape 131 and the second adhesive tape 132 are in place will cause the adhesive tapes to attach to or encompass the respective bonding wires 127b, 127a substantially simultaneously.
In this exemplary embodiment, no significant empty space or voids are present between the upper semiconductor chip 113 and the lower semiconductor chip 111. The adhesive tapes can support and resist the forces generated by a bonding tool during a wire-bonding process after attaching the upper semiconductor chip. Thus, the connection state of the bonding wires is generally more consistent and the likelihood of bonding failures can be reduced. Moreover, by using an adhesive tape on the upper semiconductor chip, even though the length of bonding wires is increased due to the stacking of chips, the tendency of the bonding wires to sag or sweep can be reduced. In addition, by using an adhesive tape that is larger than the active surface of the lower semiconductor chip, interference between bonding wires coupled to the upper chip and the lower chip, respectively, can be reduced.
Third Exemplary Embodiment
According to the exemplary embodiments of the invention, a semiconductor chip package may be formed using stacked semiconductor chips of the same size or semiconductor chips having different sizes. When the stacked semiconductor chip package includes chips of different sizes, it is preferred that the upper semiconductor chip is smaller than the lower semiconductor chip.
Although the exemplary embodiments show a printed circuit board used as the mounting means, a film type tape circuit board or conventional lead frames may also be used as mounting means. Also, although the adhesive tape is preferably larger than the active surface of the semiconductor chip to which it is attached, the adhesive tape may be substantially the same size or slightly smaller than the active area of the semiconductor chip to which it is attached. Further, although in the described exemplary embodiments the initial attachment of the first or sole semiconductor chip to the substrate used a liquid adhesive, an adhesive tape could be used to provide the initial attachment. Although exemplary embodiments have been illustrated with semiconductor chip packages having two semiconductor chips, the invention is equally applicable to semiconductor chip packages including stacks of more than two semiconductor chips.
It should be understood that this invention is not to be limited to the exemplary embodiments and examples described above, and that numerous modifications and variations can be made by those skilled in the art without departing from the spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
2002-55690 | Sep 2002 | KR | national |
This U.S. nonprovisional patent application is a divisional application of and claims priority under 35 U.S.C. § 120 to application Ser. No. 10/458,281, filed on Jun. 11, 2003 now U.S. Pat. No. 7,005,577, which claims priority under 35 U.S.C. § 119 of Korean Patent Application 2002-55690 filed on Sep. 13, 2002, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5323060 | Fogal et al. | Jun 1994 | A |
6316727 | Liu | Nov 2001 | B1 |
6333562 | Lin | Dec 2001 | B1 |
6388313 | Lee et al. | May 2002 | B1 |
6414384 | Lo et al. | Jul 2002 | B1 |
6499213 | Tandy | Dec 2002 | B2 |
6545365 | Kondo et al. | Apr 2003 | B2 |
6569709 | Derderian | May 2003 | B2 |
6650019 | Glenn et al. | Nov 2003 | B2 |
20020109216 | Matsuzaki et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
2000-058742 | Feb 2000 | JP |
2000-0003001 | Jan 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20060108138 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10458281 | Jun 2003 | US |
Child | 11324293 | US |