The semiconductor integrated circuit (IC) industry has experienced exponential growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. Such scaling down has also increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed.
For example, a spacer technique is often used to form mandrels, which are used in devices such as a fin field effect transistor (FinFET) device. Frequently, the spacer technique is used for doubling the exposed pattern in advanced lithography. That is, the pitch of a final pattern is reduced to only half compared with the first exposed pattern. Due to constraints from the lithography process, it is difficult to obtain small cut features.
Also in some occasions, it is desirable to have a large process window. The process window refers to a range of focus and exposure settings that will still produce the desired features into the photo-resist layer in the photolithographic process.
Accordingly, what is needed is an improvement in this area.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the performance of a first process before a second process in the description that follows may include embodiments in which the second process is performed immediately after the first process, and may also include embodiments in which additional processes may be performed between the first and second processes. Various features may be arbitrarily drawn in different scales for the sake of simplicity and clarity. Furthermore, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as being “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Referring now to
Referring to
The method 100 proceeds to operation 104 by forming a hard mask layer 220 on the substrate 218. The hard mask layer 220 may include one or more material layers and is formed by a procedure such as deposition. In an embodiment, the hard mask layer 220 may include silicon oxide formed by thermal oxidation. In an embodiment, the hard mask layer 220 may include SiN formed by chemical vapor deposition (CVD). For example, the hard mask layer 220 may be formed by CVD using chemicals including Hexachlorodisilane (HCD or Si2Cl6), Dichlorosilane (DCS or SiH2Cl2), Bis(TertiaryButylAmino) Silane (BTBAS or C8H22N2Si) and Disilane (DS or Si2H6).
Referring to
Referring to
In an embodiment, the second patterning process starts with forming a material layer over the hard mask layer 220 using one or more material different from the hard mask layer 220. For example, while the hard mask layer 220 uses silicon oxide or silicon nitride, the material layer may use bottom anti-reflective coating (BARC) or spin-on glass (SOG). The second patterning process further includes a lithography process and an etching process thereby forming the second plurality of trenches in the hard mask layer 220. In an embodiment, a resist layer, patterned with the second layout, is formed on the material layer using a lithography process. Then, the material layer and the hard mask layer 220 are etched through the openings of the patterned resist layer, forming a plurality of trenches in the hard mask layer 220 by the etching process. The patterned resist layer is removed thereafter using a suitable process, such as wet stripping or plasma ashing. The material layer is removed thereafter using a suitable process, such as an etching process tuned to selectively remove the material layer while the hard mask layer 220 remains.
Thus far, by performing operations 106 and 108 of the method 100, both the first plurality of mandrel trenches and the second plurality of mandrel trenches are formed on the hard mask layer 220, and portions of the first plurality of mandrel trenches and portions of the second plurality of mandrel trenches may merge.
Referring to
The method 100 proceeds to operation 112 by removing the hard mask layer 220 through a suitable process, such as an etching process tuned to selectively remove the hard mask layer while the spacer features remain.
Referring to
The method 100 proceeds to operation 116 by removing the spacer features through a suitable process, such as an etching process tuned to selectively remove the spacer features while the material layer 240 remains. Wherein the width of the merged trenches is equal to or less than twice the thickness of the spacer features, a cut feature is formed after the spacer features are removed.
Referring to
Referring to
Accordingly, the present disclosure provides a method of forming a target pattern or device by performing a first and a second lithography processes to form mandrel trenches in a hard mask layer, and thereafter performing spacer and etching processes.
Although not intended to be limiting, an advantage of one or more embodiments of the present disclosure is that the second layout can be used as not only either a main feature or a cut feature of the target pattern, but also both of them after proper process scheme. That is, the second layout can be used as a new mandrel, a merged portion of the first layout, or a cut feature for the first layout so as to achieve a desirable uniformity in density for lithographic exposure. The desirable uniformity in pattern density improves lithography process window. Therefore, the present disclosure is lithography friendly for forming small cut features. Moreover, the second layout may be used either before or after the first layout in performing the method 100 to achieve same result. The new process can be referred to as LLSE (lithography, lithography, spacer, etch). This LLSE process has the advantage of the conventional LELE processes, and has the capability of making smaller cut features.
Referring now to
Referring now to
Thus, the present disclosure provides an embodiment of a method of forming a target pattern. The method includes forming a first material layer on a substrate; performing a first patterning process using a first layout to form a first plurality of trenches in the first material layer; performing a second patterning process using a second layout to form a second plurality of trenches in the first material layer; forming spacer features on sidewalls of both the first plurality of trenches and the second plurality of trenches, the spacer features having a thickness; removing the first material layer; etching the substrate using the spacer features as an etch mask; and thereafter removing the spacer features. The target pattern is to be formed with the first layout and the second layout.
The present disclosure also provides another embodiment of a method of forming a target pattern on a substrate. The method includes forming a first material layer on the substrate; performing a first patterning process using a first layout to form a first plurality of trenches in the first material layer; performing a second patterning process using a second layout to form a second plurality of trenches in the first material layer; forming spacer features on sidewalls of both the first plurality of trenches and the second plurality of trenches, the spacer features having a thickness; removing the first material layer; forming a second material layer on the substrate and within openings defined by the spacer features; and removing the spacer features. The target pattern is to be formed with the first layout and the second layout.
The present disclosure provides yet another embodiment of a method of forming a target pattern. The method includes depositing a first material layer on a substrate; performing a first lithography patterning process using a first layout to form a first plurality of trenches in the first material layer; performing a second lithography patterning process using a second layout to form a second plurality of trenches in the first material layer; forming spacer features on sidewalls of both the first plurality of trenches and the second plurality of trenches using a process including deposition and etching, the spacer features having a thickness; removing the first material layer by an etching process; etching the substrate using the spacer features as an etch mask; and thereafter removing the spacer features using one of: an etching process and a polishing process. The target pattern is to be formed with the first layout and the second layout; the first layout includes a first subset of the target pattern; the second layout includes a second subset of the target pattern and a cut pattern for the first subset; and the cut pattern corresponds to a portion of the second layout wherein width of the second layout is less than twice the thickness of the spacer features.
The foregoing outlines features of several embodiments so that those of ordinary skill in the art may better understand the aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This is a divisional application of U.S. patent application Ser. No. 15/357,203, filed on Nov. 21, 2016, which is a continuation application of U.S. patent application Ser. No. 14/850,764, filed Sep. 10, 2015, which is a divisional application of U.S. patent application Ser. No. 14/081,345, filed Nov. 15, 2013, now issued U.S. Pat. No. 9,153,478, which claims the benefit of U.S. Provisional Application No. 61/791,138 entitled “Spacer Etching Process for Integrated Circuit Design” filed Mar. 15, 2013 each of which is herein incorporated by references in its entirety. This patent application also herein incorporates by reference U.S. patent application Ser. No. 13/892,945 entitled “A Method of Fabricating a FinFET Device” filed May 13, 2013, now issued U.S. Pat. No. 8,932,957.
Number | Name | Date | Kind |
---|---|---|---|
6063688 | Doyle et al. | May 2000 | A |
7560390 | Sant et al. | Jul 2009 | B2 |
7662721 | Manger et al. | Feb 2010 | B2 |
7842601 | Lee et al. | Nov 2010 | B2 |
7862962 | Shieh et al. | Jan 2011 | B2 |
7989355 | Shieh et al. | Aug 2011 | B2 |
8039179 | Shieh et al. | Oct 2011 | B2 |
8110466 | Shieh et al. | Feb 2012 | B2 |
8202681 | Lin et al. | Jun 2012 | B2 |
8241823 | Shieh et al. | Aug 2012 | B2 |
8338310 | Jung et al. | Dec 2012 | B2 |
8728332 | Lin et al. | May 2014 | B2 |
8822243 | Yan et al. | Sep 2014 | B2 |
8932957 | Shieh et al. | Jan 2015 | B2 |
20010049182 | Urakami | Dec 2001 | A1 |
20060091468 | Liaw | May 2006 | A1 |
20070063276 | Beintner et al. | Mar 2007 | A1 |
20070161245 | Rathsack et al. | Jul 2007 | A1 |
20070249170 | Kewley | Oct 2007 | A1 |
20100144153 | Sills et al. | Jun 2010 | A1 |
20110097863 | Shieh et al. | Apr 2011 | A1 |
20110281208 | Lin et al. | Nov 2011 | A1 |
20120100673 | Shieh et al. | Apr 2012 | A1 |
20120278776 | Lei et al. | Nov 2012 | A1 |
20130029436 | Fujita | Jan 2013 | A1 |
20130232456 | Kallingal et al. | Sep 2013 | A1 |
20130270716 | Kim et al. | Oct 2013 | A1 |
20130295769 | Lin et al. | Nov 2013 | A1 |
20130320451 | Liu et al. | Dec 2013 | A1 |
20140117529 | Sipani | May 2014 | A1 |
20140193974 | Lee et al. | Jul 2014 | A1 |
20140215421 | Chen et al. | Jul 2014 | A1 |
20140242794 | Lin et al. | Aug 2014 | A1 |
20140264760 | Chang et al. | Sep 2014 | A1 |
20140264899 | Chang et al. | Sep 2014 | A1 |
20140273442 | Liu et al. | Sep 2014 | A1 |
20140273446 | Huang et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
101026094 | Aug 2007 | CN |
101542685 | Sep 2011 | CN |
Entry |
---|
China Patent Office, Chinese Office Action dated Apr. 1, 2016, for Application No. 201410056283.1, 79 pages. |
Number | Date | Country | |
---|---|---|---|
20200286738 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
61791138 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15357203 | Nov 2016 | US |
Child | 16882063 | US | |
Parent | 14081345 | Nov 2013 | US |
Child | 14850764 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14850764 | Sep 2015 | US |
Child | 15357203 | US |