Tamper-proof electronic packages with stressed glass component substrate(s)

Information

  • Patent Grant
  • 10535618
  • Patent Number
    10,535,618
  • Date Filed
    Thursday, July 26, 2018
    6 years ago
  • Date Issued
    Tuesday, January 14, 2020
    4 years ago
Abstract
Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass. Further, the electronic package may include an enclosure, and the glass substrate may be located within the secure volume separate from the enclosure, or alternatively, the enclosure may be a stressed glass enclosure, an inner surface of which is the glass substrate for the electronic component(s).
Description
BACKGROUND

Many activities require secure electronic communications. To facilitate secure electronic communications, an encryption/decryption system may be implemented on an electronic assembly or printed circuit board assembly that is included in equipment connected to a communications network. Such an electronic assembly is an enticing target for malefactors since it may contain codes or keys to decrypt intercepted messages, or to encode fraudulent messages. To prevent this, an electronic assembly may be mounted in an enclosure, which is then wrapped in a security sensor and encapsulated with polyurethane resin. A security sensor may be, in one or more embodiments, a web or sheet of insulating material with circuit elements, such as closely-spaced, conductive lines fabricated on it. The circuit elements are disrupted if the sensor is torn, and the tear can be sensed in order to generate an alarm signal. The alarm signal may be conveyed to a monitor circuit in order to reveal an attack on the integrity of the assembly. The alarm signal may also trigger an erasure of encryption/decryption keys stored within the electronic assembly.


SUMMARY

Provided herein, in one or more aspects, is a tamper-proof electronic package which includes: a glass substrate, the glass substrate including stressed glass with a compressively-stressed surface layer; and at least one electronic component secured to the glass substrate within a secure volume of the tamper-proof electronic package. Further, the tamper-proof electronic package includes a glass enclosure that defines, least in part, the secure volume. The glass enclosure includes stressed glass with a compressively-stressed surface layer. The glass enclosure includes the glass substrate, and at least one electronic component is adhesively coupled to an inner surface of the glass enclosure. Further, the glass enclosure is an upper glass enclosure, and the tamper-proof electronic package also includes a base glass enclosure. The upper glass enclosure and the base glass enclosure being adhesively secured together to define the secure volume, with the base glass enclosure also including stressed glass with a compressively-stressed surface layer. In operation, the glass substrate fragments with an attempted intrusion event into the tamper-proof electronic package, and the fragmenting of the glass substrate also fragments the at least one electronic component secured thereto, destroying the at least one electronic component. Additionally, the glass enclosure is an upper glass enclosure, and the tamper-proof electronic package further includes a base glass enclosure. The upper glass enclosure and the base glass enclosure are adhesively secured together to define the secure volume. The base glass enclosure also includes stressed glass with a compressively-stressed surface layer.


In one or more other aspects, a fabrication method is provided which includes fabricating a tamper-proof electronic package. The fabricating includes: providing a glass substrate, the glass substrate comprising stressed glass with a compressively-stressed surface layer; securing at least one electronic component to the glass substrate, the glass substrate being within a secure volume of the tamper-proof electronic package, the at least one electronic component including an electronic module. Further, the fabricating includes providing a glass enclosure defining, least in part, the secure volume. The glass enclosure includes stressed glass with a compressively-stressed surface layer. The glass enclosure includes the glass substrate, with at least one electronic component being adhesively coupled to an inner surface of the glass enclosure. Further, the glass enclosure is an upper glass enclosure, and the method further includes providing a base glass enclosure. The upper glass enclosure and the base glass enclosure being adhesively secured together to define the secure volume, and the base glass enclosure also including stressed glass with a compressively-stressed surface layer. In operation, the glass substrate fragments with an attempted intrusion event into the secure volume of the tamper-proof electronic package, and the fragmenting of the glass substrate also fragments the at least one electronic component secured thereto, destroying the at least one electronic component.


Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.





BRIEF DESCRIPTION OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1 is a partial cut-away of one embodiment of a tamper-proof electronic package;



FIG. 2A is a cross-sectional elevational view of another embodiment of a tamper-proof electronic package, or tamper-respondent assembly, which includes (in part) a glass enclosure formed of stressed glass, and a multi-layer circuit board with an embedded tamper-respondent sensor, in accordance with one or more aspects of the present invention;



FIG. 2B is a top plan view of the multilayer circuit board of FIG. 2A, depicting one embodiment of the secure volume where defined, in part, within the multilayer circuit board, in accordance with one or more aspects of the present invention;



FIG. 3 is a partial cross-sectional elevational view of a more detailed embodiment of the tamper-proof electronic package of FIGS. 2A & 2B comprising (in part) a glass enclosure, and a multilayer circuit board with embedded tamper-respondent sensor, in accordance with one or more aspects of the present invention;



FIG. 4 depicts one embodiment of a process of fabricating a multilayer circuit board with an embedded tamper-respondent sensor, in accordance with one or more aspects of the present invention;



FIG. 5 depicts one embodiment of a tamper-proof electronic package, or tamper-respondent assembly, which includes (in part) a glass enclosure formed of stressed glass, and a tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 6 depicts another embodiment of a tamper-proof electronic package, which includes (in part) a glass enclosure formed of stressed glass and a tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 7 depicts a further embodiment of a tamper-proof electronic package, which includes (in part) a glass enclosure assembly substantially fully enclosing one or more electronic components (such as a circuit board or card) to be protected, in accordance with one or more aspects of the present invention;



FIG. 8A depicts another embodiment of a tamper-proof electronic package comprising (in part) a glass enclosure formed of stressed glass and a tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 8B depicts a further embodiment of a tamper-proof electronic package including (in part) a glass enclosure formed of stressed glass and a tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 8C is another embodiment of a tamper-proof electronic package comprising (in part) a glass enclosure formed of stressed glass and a tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 8D depicts a further embodiment of a tamper-proof electronic package comprising (in part) a glass enclosure formed of stressed glass and an optical tamper-respondent detector, in accordance with one or more aspects of the present invention;



FIG. 9 illustrates a further embodiment of a tamper-proof electronic package, which includes (in part) an electronic component mounted to a glass substrate within a secure volume of the tamper-proof electronic package, in accordance with one or more aspects of the present invention;



FIG. 10 depicts a further embodiment of a tamper-proof electronic package comprising (in part) an electronic component mounted to an inner surface of a glass enclosure formed of stressed glass, in accordance with one or more aspects of the present invention; and



FIG. 11 depicts another embodiment of a tamper-proof electronic package including (in part) an electronic component mounted to an inner surface of a glass enclosure assembly formed of stressed glass, in accordance with one or more aspects of the present invention.





DETAILED DESCRIPTION

Aspects of the present invention and certain features, advantages, and details thereof, are explained more fully below with reference to the non-limiting example(s) illustrated in the accompanying drawings. Descriptions of well-known materials, fabrication tools, processing techniques, etc., are omitted so as not to unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific example(s), while indicating aspects of the invention, are given by way of illustration only, and are not by way of limitation. Various substitutions, modifications, additions, and/or arrangements, within the spirit and/or scope of the underlying inventive concepts will be apparent to those skilled in the art for this disclosure. Note further that reference is made below to the drawings, which are not drawn to scale for ease of understanding, wherein the same reference numbers used throughout different figures designate the same or similar components. Also, note that numerous inventive aspects and features are disclosed herein, and unless otherwise inconsistent, each disclosed aspect or feature is combinable with any other disclosed aspect or feature as desired for a particular application, for instance, for establishing a secure volume about an electronic component(s) or electronic assembly to be protected.


Reference is first made to FIG. 1 of the drawings, which illustrates one approach for an electronic package 100 configured as a tamper-proof electronic package for purposes of discussion. In the depicted embodiment, an electronic assembly enclosure 110 is provided containing, for instance, an electronic assembly, which in one embodiment may include a plurality of electronic components, such as an encryption and/or decryption module and associated memory. The encryption and/or decryption module may comprise security-sensitive information with, for instance, access to the information stored in the module requiring use of a variable key, and with the nature of the key being stored in the associated memory within the enclosure.


In one or more implementations, a tamper-proof electronic package such as depicted is configured or arranged to detect attempts to tamper-with or penetrate into electronic assembly enclosure 110. Accordingly, electronic assembly enclosure 110 also includes, for instance, a monitor circuit which, if tampering is detected, activates an erase circuit to erase information stored within the associated memory, as well as the encryption and/or decryption module within the communications card. These components may be mounted on, and interconnected by, a multilayer circuit board, such as a printed circuit board or other multilayer substrate, and be internally or externally powered via a power supply provided within the electronic assembly enclosure.


In the embodiment illustrated, and as one example only, electronic assembly enclosure 110 may be surrounded by a tamper-respondent sensor 120, an encapsulant 130, and an outer, thermally conductive enclosure 140. In one or more implementations, tamper-respondent sensor 120 may include a tamper-respondent laminate that is folded around electronic assembly enclosure 110, and encapsulant 130 may be provided in the form of a molding. Tamper-respondent sensor 120 may include various detection layers, which are monitored through, for instance, a ribbon cable by the enclosure monitor, against sudden violent attempts to penetrate enclosure 110 and damage the enclosure monitor or erase circuit, before information can be erased from the encryption module. The tamper-respondent sensor may be, for example, any such article commercially available or described in various publications and issued patents, or any enhanced article such as disclosed herein.


By way of example, tamper-respondent sensor 120 may be formed as a tamper-respondent laminate comprising a number of separate layers with, for instance, an outermost lamination-respondent layer including a matrix of, for example, diagonally-extending or sinusoidally-extending, conductive or semi-conductive lines printed onto a regular, thin insulating film. The matrix of lines forms a number of continuous conductors which would be broken if attempts are made to penetrate the film. The lines may be formed, for instance, by printing carbon-loaded Polymer Thick Film (PTF) ink onto the film and selectively connecting the lines on each side, by conductive vias, near the edges of the film. Connections between the lines and an enclosure monitor of the communications card may be provided via, for instance, one or more ribbon cables. The ribbon cable itself may be formed of lines of conductive ink printed onto an extension of the film, if desired. Connections between the matrix and the ribbon cable may be made via connectors formed on one edge of the film. As noted, the laminate may be wrapped around the electronic assembly enclosure to define the tamper-respondent sensor 120 surrounding enclosure 110.


In one or more implementations, the various elements of the laminate may be adhered together and wrapped around enclosure 110, in a similar manner to gift-wrapping a parcel, to define the tamper-respondent sensor shape 120. The assembly may be placed in a mold which is then filled with, for instance, cold-pour polyurethane, and the polyurethane may be cured and hardened to form an encapsulant 130. The encapsulant may, in one or more embodiments, completely surround the tamper-respondent sensor 120 and enclosure 110, and thus form a complete environmental seal, protecting the interior of the enclosure. The hardened polyurethane is resilient and increases robustness of the electronic package in normal use. Outer, thermally conductive enclosure 140 may optionally be provided over encapsulant 130 to, for instance, provide further structural rigidity to the electronic package.


When considering tamper-proof packaging, the electronic package needs to maintain defined tamper-proof requirements, such as those set forth in the National Institutes of Standards and Technology (NIST) Publication FIPS 140-2, which is a U.S. Government Computer Security Standard, used to accredit cryptographic modules. The NIST FIPS 140-2 defines four levels of security, named Level 1 to Level 4, with Security Level 1 providing the lowest level of security, and Security Level 4 providing the highest level of security. At Security Level 4, physical security mechanisms are provided to establish a complete envelope of protection around the cryptographic module, with the intent of detecting and responding to any unauthorized attempt at physical access. Penetration of the cryptographic module enclosure from any direction has a very high probability of being detected, resulting in the immediate zeroization of all plain text critical security parameters (CSPs). Security Level 4 cryptographic modules are useful for operation in physically unprotected environments.


To address the demands for ever-improving anti-intrusion technology, and the higher-performance encryption/decryption functions being provided, enhancements to the tamper-proof, tamper-evident packaging for the electronic component(s) or assembly at issue are desired.


Numerous enhancements are described hereinbelow to, for instance, tamper-proof electronic packages and tamper-respondent sensors. Note that the numerous inventive aspects described herein may be used singly, or in any desired combination. Additionally, in one or more implementations, the enhancements to tamper-proof electronic packaging described herein may be provided to work within defined space limitations for existing packages. For instance, one or more of the concepts described may be configured to work with peripheral component interconnect express (PCIe) size limits.


Disclosed hereinbelow with reference to FIGS. 2A-11 are various approaches and/or enhancements to creating, for instance, a secure volume for accommodating one or more electronic components, such as one or more encryption and/or decryption modules and associated components of, for instance, a communications card or other electronic assembly to be protected.



FIGS. 2A & 2B depict one embodiment of a tamper-proof electronic package 200, or tamper-respondent assembly, which comprises one or more electronic components, such as a circuit 215 and/or electronic devices (or elements) 202 to be protected, in accordance with one or more further aspects of the present invention.


Referring collectively to FIGS. 2A & 2B, circuit 215 resides on or is embedded within a multilayer circuit board 210, which also has an embedded tamper-respondent sensor 211 that facilitates defining, in part, a secure volume 201 associated with multilayer circuit board 210 that (in one or more embodiments) extends into multilayer circuit board 210. In particular, in the embodiment of FIGS. 2A & 2B, secure volume 201 may exist partially within multilayer circuit board 210, and partially above multilayer circuit board 210. One or more electronic devices 202 are mounted to multilayer circuit board 210 within secure volume 201 and may comprise, for instance, one or more encryption modules and/or decryption modules, and/or associated components, to be protected within the tamper-proof electronic package. In one or more implementations, the one or more electronic components to be protected may comprise, for instance, a secure communications card of a computer system.


Tamper-proof electronic package 200 further includes a glass enclosure 220, such as a pedestal-type, stressed glass enclosure, mounted to multilayer circuit board 210 within, for instance, a continuous groove (or trench) 212 formed within an upper surface of multilayer circuit board 210, and secured to the multilayer circuit board 210 via, for instance, a structural adhesive 217 disposed within continuous groove 212. In one or more embodiments, glass enclosure 220 comprises stressed glass with a compressively-stressed surface layer, as described further below. A thermally conductive cap or cover 221 may overlie and couple to outer surfaces of glass enclosure 220, to operate as a heatsink for facilitating cooling the one or more electronic components within the secure volume. As described further below, a tamper-respondent detector (not shown) is also provided within the secure volume to monitor the stressed glass enclosure and identify a tamper intrusion event with, for instance, fragmentation of the stressed glass. Together with the stressed glass, and the tamper-respondent detector, tamper-respondent sensor 211 embedded within multilayer circuit board 210 facilitates defining secure volume 201.


As depicted in FIG. 2B, one or more external circuit connection vias 213 may be provided within multilayer circuit board 210 for electrically connecting to the one or more electronic components within secure volume 201. These one or more external circuit connection vias 213 may electrically connect to one or more external signal lines or planes (not shown) embedded within multilayer circuit board 210 and extending, for instance, into a secure base region of (or below) secure volume 201, as explained further below. Electrical connections to and from secure volume 201 may be provided by coupling to such external signal lines or planes within the multilayer circuit board 210.


As noted, secure volume 201 may be sized to house one or more electronic components to be protected, and may be constructed to extend into multilayer circuit board 210. In one or more implementations, multilayer circuit board 210 includes electrical interconnect within the secure volume 201 defined in the board, for instance, for electrically connecting one or more tamper-respondent layers of the embedded tamper-respondent sensor 211 to associated monitor circuitry also disposed within secure volume 201, along with, for instance, one or more daughter cards, such as memory DIMMs, PCIe cards, processor cards, etc.


Note that the packaging embodiment depicted in FIGS. 2A & 2B is presented by way of example only. Other configurations of glass enclosure 220, or multilayer circuit board 210 may be employed, and/or other approaches to coupling glass enclosure 220 and multilayer circuit board 210 may be used. For instance, in one or more alternate implementations, glass enclosure 220 may be securely affixed to an upper surface of multilayer circuit board 210 (without a continuous groove) using, for instance, a structural bonding material such as an epoxy or other adhesive.


By way of further example, FIG. 3 depicts a partial cross-sectional elevational view of a more detailed embodiment of tamper-proof electronic package 200, and in particular, of multilayer circuit board 210, to which glass enclosure 220 is secured. In this configuration, the embedded tamper-respondent sensor includes multiple tamper-respondent layers including, by way of example, at least one tamper-respondent mat (or base) layer 300, and at least one tamper-respondent frame 301. In the example depicted, two tamper-respondent mat layers 300 and two tamper-respondent frame 301 are illustrated, by way of example only. The lower-most tamper-respondent mat layer 300 may be a continuous sense or detect layer extending completely below the secure volume being defined within and/or above multilayer circuit board 210. One or both tamper-respondent mat layers 300 below secure volume 201 may be partitioned into multiple circuit zones. Within each tamper-respondent mat layer, or more particularly, within each circuit zone of each tamper-respondent mat layer, multiple circuits or conductive traces may be provided in any desired configuration. Further, the conductive traces within the tamper-respondent layers may be implemented as, for instance, a resistive layer.


As illustrated, one or more external signal lines or planes 305 may enter secure volume 201 between, in one embodiment, two tamper-respondent mat layers 300, and then electrically connect upwards into the secure volume 201 through one or more conductive vias, arranged in any desired location and pattern. In the configuration depicted, the one or more tamper-respondent frames 301 are disposed at least inside of the area defined by continuous groove 212 accommodating the base of glass enclosure 220. Together with the tamper-respondent detector associated with glass enclosure 220, tamper-respondent frames 301, and tamper-respondent mat layers 300, define secure volume 201, which extends, in part, into multilayer circuit board 210. With secure volume 201 defined, in part, within multilayer circuit board 210, the external signal line(s) 305 may be securely electrically connected to, for instance, the one or more electronic components mounted to, or of, multilayer circuit board 210 within secure volume 201. In addition, secure volume 201 may accommodate electrical interconnection of the conductive traces of the multiple tamper-respondent layers 300, 301, for instance, via appropriate monitor circuitry.


Added security may be provided by extending tamper-respondent mat layers 300 (and if desired, tamper-respondent frames 301) outward past the periphery of glass enclosure 220. In this manner, a line of attack may be made more difficult at the interface between glass enclosure 220 and multilayer circuit board 210 since the attack would need to clear, for instance, tamper-respondent mat layers 300, the glass enclosure 220, as well as the tamper-respondent frames 301 of the embedded tamper-respondent sensor.


Numerous variations on multilayer circuit board 210 of FIGS. 2A-2B are possible. For instance, in one embodiment, the embedded tamper-respondent sensor may include one or more tamper-respondent mat layers 300 and one or more tamper-respondent frames 301, such as described above, and a tri-plate structure comprising one or more external signal lines or layers sandwiched between an upper ground plane and a lower ground plane. In this configuration, high-speed transfer of signals to and from the secure volume, and in particular, to and from the one or more electronic components resident within the secure volume, would be facilitated.


Note also that, once within the secure volume is defined in part within multilayer circuit board 210, conductive vias within the secure volume between layers of multilayer circuit board 210 may be either aligned, or offset, as desired, dependent upon the implementation. Alignment of conductive vias may facilitate, for instance, providing a shortest connection path, while offsetting conductive vias between layers may further enhance security of the tamper-proof electronic package by making an attack into the secure volume through or around one or more tamper-respondent layers of the multiple tamper-respondent layers more difficult.


The tamper-respondent layers of the embedded tamper-respondent sensor formed within the multilayer circuit board of the electronic circuit or electronic package may include multiple conductive traces or lines formed between, for instance, respective sets of input and output contacts or vias at the trace termination points. Any pattern and any number of conductive traces or circuits may be employed in defining a tamper-respondent layer or a tamper-respondent circuit zone within a tamper-respondent layer. For instance, 4, 6, 8, etc., conductive traces may be formed in parallel (or otherwise) within a given tamper-respondent layer or circuit zone between the respective sets of input and output contacts to those conductive traces.


In one or more implementations, the multilayer circuit board may be a multilayer wiring board or printed circuit board formed, for instance, by building up the multiple layers of the board. FIG. 4 illustrates one embodiment for forming and patterning a tamper-respondent layer within such a multilayer circuit board.


As illustrated in FIG. 4, in one or more implementations, a tamper-respondent layer, such as a tamper-respondent mat layer or a tamper-respondent frame disclosed herein, may be formed by providing a material stack comprising, at least in part, a structural layer 401, such as a pre-preg (or pre-impregnated) material layer, a trace material layer 402 for use in defining the desired trace patterns, and an overlying conductive material layer 403, to be patterned to define conductive contacts or vias electrically connecting to the pattern of traces being formed within the trace material layer 402, for instance, at trace terminal points. In one or more implementations, the trace material layer 402 may comprise nickel phosphorous (NiP), and the overlying conductive layer 403 may comprise copper. Note that these materials are identified by way of example only, and that other trace and/or conductive materials may be used within the build-up 400.


A first photoresist 404 is provided over build-up 400, and patterned with one or more openings 405, through which the overlying conductive layer 403 may be etched. Depending on the materials employed, and the etch processes used, a second etch process may be desired to remove portions of trace material layer 402 to define the conductive traces of the subject tamper-respondent layer. First photoresist 404 may then be removed, and a second photoresist 404′ is provided over the conductive layer 403 features to remain, such as the input and output contacts. Exposed portions of conductive layer 403 are then etched, and the second photoresist 404′ may be removed, with any opening in the layer being filled, for instance, with an adhesive (or pre-preg) and a next build-up layer is provided, as shown. Note that in this implementation, most of overlying conductive layer 403 is etched away, with only the conductive contacts or vias remaining where desired, for instance, at the terminal points of the traces formed within the layer by the patterning of the trace material layer 402. Note that any of a variety of materials may be employed to form the conductive lines or traces within a tamper-respondent layer. Nickel-phosphorous (NiP) is particularly advantageous as a material since it is resistant to contact by solder, or use of a conductive adhesive to bond to it, making it harder to bridge from one circuit or trace to the next during an attempt to penetrate into the protected secure volume of the electronic circuit. Other materials which could be employed include OhmegaPly®, offered by Ohmega Technologies, Inc., of Culver City, Calif. (USA), or Ticer™, offered by Ticer Technologies of Chandler, Ariz. (USA).


The trace lines or circuits within the tamper-respondent layers, and in particular, the tamper-respondent circuit zones, of the embedded tamper-respondent sensor, along with the tamper-respondent detector monitoring the glass enclosure, may be electrically connected to monitor or compare circuitry provided, for instance, within secure volume 201 (FIG. 2A) of the tamper-proof electronic package. The monitor circuitry may include various bridge or compare circuits, and conventional printed wiring board electrical interconnect inside secure volume 201 (FIG. 2A), for instance, located within the secure volume defined by the tamper-respondent frames 301 (FIG. 3), and the tamper-respondent mat layers 300 (FIG. 3).


Note that advantageously, different tamper-respondent circuit zones on different tamper-respondent layers may be electrically interconnected into, for instance, the same comparator circuit, Wheatstone bridge, or similar monitor circuitry. Thus, any of a large number of interconnect configurations may be possible. For instance, if each of two tamper-respondent mat layers contains 30 tamper-respondent circuit zones, and each of two tamper-respondent frames contains 4 tamper-respondent circuit zones, then, for instance, the resultant 68 tamper-respondent circuit zones may be connected in any configuration within the secure volume to create the desired arrangement of circuit networks within the secure volume being monitored for changes in resistance or tampering. Note in this regard, that the power supply or battery for the tamper-respondent sensor may be located external to the secure volume, with the sensor being configured to trip and destroy any protected or critical data if the power supply or battery is tampered with.


As briefly noted, in one or more implementations, the tamper-proof electronic packages disclosed herein may include (at least in part) stressed glass enclosure protection of the one or more electronic components. The secure volume, for instance, secure volume 201 (FIG. 2A) may be defined in part by glass enclosure 220, as well as a tamper-respondent detector monitoring, the glass enclosure. The glass enclosure may be fabricated of stressed glass, such that the stressed glass fragments (at least in part) with an attempted intrusion event into the secure volume such as, for instance, a mechanical or chemical attack through the stressed glass. The tamper-respondent detector detects the fragmentation of the stressed glass, and thus the tamper intrusion event. Once tampering is detected, the monitor circuitry may activate an erase circuit to erase information stored within, for instance, associated memory, as well as any encryption and/or decryption module within the secure volume. More generally, monitor circuitry could activate an erase circuit to erase any confidential information stored within the secure volume.


In one or more implementations, the glass enclosure may comprise a highly stressed glass enclosure with a compressively-stressed surface layer. For instance, the glass enclosure may comprise a machined glass or molded (or cast) glass stressed using an ion exchange process, referred to herein as ion exchanged glass. Note also in this regard, that the stressed glass may be any friable glass or friable glass ceramic, with stressed glass being used herein as inclusive of a stressed glass ceramic. In one or more embodiments, the compressively-stressed surface layer(s) may be compressively-stressed or tailored so that the stress glass fragments into, for instance, glass particles less than 1000 μm in size, such as in a range of 100-1000 μm in size, with an attempted tamper intrusion event through the stressed glass. The fragmentation size of the glass particles may be tailored to ensure that the tamper-respondent detector monitoring the glass enclosure senses the tamper intrusion event. For instance, the tamper-respondent detector may monitor structural integrity of the stressed glass via a sensor associated with the stressed glass, and the fragmentation size of the glass particles should be sufficient to, for instance, break the sensor, and thereby signal the tamper event.


In one or more embodiments, the stressed glass of the glass enclosure may be coated to provide, in part, opaqueness to the glass enclosure. For instance, one or more surfaces of the stressed glass, after undergoing processing to stress the surfaces, may be coated to provide opaqueness to the glass enclosure. Alternatively, the glass enclosure, such as the compressively-stressed surface layer(s) of the enclosure, may be partially etched, for instance, after undergoing processing to stress the surface(s), thereby providing opaqueness to the glass enclosure.


The stressed glass may be, in one or more embodiments, a monolithic glass element configured to enclose, at least in part, the at least one electronic component within the secure volume. For instance, a machined or molded, monolithic glass element could be formed to define a multi-sided glass structure, such as a five-sided glass enclosure. The multi-sided glass structure could then be treated to compressively stress the surfaces of the glass. For instance, ion-exchange processing could be employed to provide a desired degree of compressive stressing on the surfaces or surface layers of the monolithic glass element. In this manner, the monolithic glass element is formed that comprises stressed glass which defines multiple sides of the secure volume. In another embodiment, the glass enclosure could comprise a plurality of stressed glass elements adhesively bonded together to form the glass enclosure, such as a multi-sided glass enclosure. Each stressed glass element may comprise a respective, compressively-stressed surface layer or layers. For instance, with an ion-exchange process, any exposed surface of a glass element may be treated to create the respective, compressively-stressed surface layer(s) of the stressed glass element.


As noted, in one or more embodiments, the tamper-respondent detector monitors structural integrity of the stressed glass via one or more sensors associated with the stressed glass of the glass enclosure. For instance, the one or more sensors may comprise at least one conductor attached to or coating an inner surface of the stressed glass within the secure volume. The at least one conductor may be sized, designed or configured to fragment with fragmentation of the stressed glass, thereby, for instance, open-circuiting the sensor and allowing monitor circuitry of or associated with the detector to detect the tamper intrusion event. By way of example, the sensor(s) may comprise a thin conductive coating or a conductive trace on one or more inner surfaces of the stressed glass. Alternatively, the sensor(s) may monitor a capacitance or inductance of the stressed glass in monitoring structural integrity of the glass enclosure. In one or more other embodiments, the sensor(s) may monitor optical reflectance of the stressed glass or utilize the stressed glass as a waveguide in monitoring structural integrity of the glass enclosure. In such cases, one or more reflective coatings may be provided on or in association with the stressed glass of the glass enclosure to facilitate reflectance of an optical signal between, for instance, an optical emitter and one or more optical receivers disposed within the secure volume of the tamper-proof electronic package.


In one or more other implementations, the glass enclosure may be an upper glass enclosure, and the tamper-proof electronic package may also include a base glass enclosure, with the upper glass enclosure and the base glass enclosure being adhesively secured together (or to opposite sides of a circuit board), via, for instance, structural adhesive, to define the secure volume accommodating the at least one electronic component. In one or more embodiments, the base glass enclosure may also comprise stressed glass, with one or more compressively-stressed surface layers as described herein. In such embodiments, the electronic component(s) to be protected within the secure volume may be substantially 360° surrounded by a stressed glass assembly.


Note that in one or more embodiments, responsive to detecting an attempted intrusion event through the stressed glass, the tamper-respondent detector, which comprises the monitor circuitry within the secure volume, may signal an erase circuit to erase any confidential information within the secure volume, such as a variable key of an encryption and/or decryption module, or other security sensitive information disposed within the secure volume. This erasure of information would occur automatically and commensurate with, for instance, fragmentation of the stressed glass due to an intrusion event.


Before describing further exemplary tamper-proof electronic packages in accordance with one or more aspects of the present invention, stressed glass materials and processings are discussed below.


Highly-stressed glass has been known to fragment into small pieces. There are several ways to create highly-stressed glass. For example, tempered glass is a type of highly-stressed glass that is made using thermal treatments. Tempering the glass puts the outer surfaces of the glass into compression, and the inner portion of the glass into tension.


Another way to create highly-stressed glass is using chemical treatments, such as an ion-exchange process. A commonly used ion-exchange process for soda lime glass is a potassium and sodium (K/Na) ion-exchange process. Unstressed glass is submerged in a bath containing a potassium salt, typically potassium nitrate (KNO3), at an elevated temperature. The sodium ions at the surface of the glass are replaced by potassium ions from the potassium nitrate. Because the potassium ions are roughly 30% larger than the sodium ions, the surface of the glass is put into a compressive state. The surface compression is balanced by residual internal tensile stresses. The ion-exchange depth and the number of sodium ions replaced by potassium ions determines the compressive layer depth and the magnitudes of the compressive and tensile stresses. The ion-exchanged depth is a diffusion-controlled process, modulated by time and temperature.


In material science, there has recently been work in controlling fragmentation characteristics of chemically strengthened glass.


The basic mechanism by which stressed glass fragmentation occurs has only recently been understood using the framework of fracture mechanics. The fragmentation phenomenon relies on glass having an interior region in a highly tensile state contained within an exterior that is compressively-stressed. If a flaw is introduced into the tensile region of the glass, the glass experiences a large mode I crack driving force due to the release of strain energy from the stressed region. The high-strain energy release rate causes a tensile crack to advance through the glass at speeds approaching the speed of sound. As the crack propagates through the glass, it bifurcates due to the interaction between the stress field in front of the crack and stress waves. The more often the crack bifurcates, the smaller the fragments will be.


The crack propagation may have two components. The crack may tunnel through the bulk of the material, and the crack may travel towards the surface of the material. For chemically strengthened glass, the crack front tunneling through the bulk of the material experiences a high, and mostly constant, crack driving force through the tensile region of the substrate. This allows it to propagate at a relatively steady velocity, close to the speed of sound, and allows it to branch and create a network of cracks in the tensile region of the substrate.


As used herein, the “fragmentation size” is a fragmentation characteristic pertaining to the width of the fragments of the glass substrate upon fracturing. The fragmentation size may be the average of the largest linear widths of the fragments created by the fracturing of the glass substrate. For example, a rectangular fragment of glass with a first edge 250 microns wide, and a second edge 100 microns wide, will have a fragment width of roughly 269 microns, because that is the largest distance across a surface of the glass substrate, in this case, from corner to opposite corner. Fragmentation characteristics of chemically strengthened glass can be controlled by altering the glass's stress field. By altering the stress field within the glass, the frequency of the crack bifurcation may be increased to cause the glass to fragment into smaller pieces. In particular, fragmentation size is determined by the ratio of the compressive layer (CL) stress to the tensile layer (TL) stress. There are certain constraints to this characterization when the compressive layer becomes too thick. To solve that issue, larger ions, such as rubidium (Rb) may be used, along with thinner compressive layers formed, for instance, via shorter, higher-temperature anneals.


A “stress field” describes the magnitude and type of stress (e.g., compressive, tensile) through a body, or through a region of a body. An “inhomogeneous stress field” is a stress field where the stresses within a material are not uniform. For example, a chemically strengthened glass substrate may have surfaces in compression, while the bulk of the material is in tension. The stress field for the chemically strengthened glass substrate may be considered inhomogeneous because the stresses through the glass substrate are not the same.


By way of detailed example, studies of ion-exchange glass substrates have mapped out the crack branch and behavior in certain commercially available glass substrates. The results show the dimension (x) of the glass fragments according to the following empirical relationship:









x
=




K
1
2


c


σ
t
2




(

1
+
v

)



t

(


0.5





t

-
δ

)







(
1
)








Where:

    • x=fragment size,
    • K1c=toughness,
    • σt=tensile stress in the glass (the higher the tensile stress, the larger the driving force),
    • t=thickness,
    • v=Poisson's ration (which is a constant for a given glass composition, and is a measure of how much the glass part expands (in compression) or contracts (in tension)), and
    • δ=ion exchange depth.


Based on this relationship, it would be expected that for a given substrate thickness, the fragment size should principally decrease with an increased ion exchange depth, and hence an increased ion exchange time. That is, fragmentation or particle size will decrease with higher tensile stress in the middle of the stressed glass layer, and a decreased glass thickness. Thus, in implementation, a balance needs to be obtained between making the glass substrate too thin such that the middle tensile layer becomes vanishing thin as well.


By way of example, an ion exchange process may be developed to achieve a desired glass fragmentation size using, for instance, a tube furnace with a quartz tube and a PID controller. A stainless steel boat in the tube may be used to carry out the ion exchange. Glass plates may be placed in salt melt in the boat during processing. If desired, a stainless steel basket may be used inside the stainless steel boat to handle very fragile thin glass plates.


The glass plates employed in forming the glass enclosure may be, for instance, aluminosilicates available from Abrisa Technology, Inc. of Santa Paula, Calif., USA. The glass plates may have a variety of thicknesses. For instance, glass substrate thicknesses in a range of 0.5 mm to 3 mm might be employed in forming the glass enclosure. Additional grinding and polishing may be carried out on untreated glass to reduce the thickness of the glass if a very thin glass substrate is desired for a particular application. By way of further example, machineable aluminosilicate glass may be obtained from Corning Glass through Swift Glass Company of Elmira, N.Y., USA.


By way of specific example, in one or more embodiments, the glass enclosures described herein could comprise High Ion Exchange (HIE™), chemically strengthened glass, provided by Abrisa Technologies, of Santa Palo, Calif., USA. HIE™ glass is a thin, lightweight, aluminosilicate glass that is used in certain applications to achieve greater scratch, impact, and shock resistance.


Note also that, the glass enclosures described herein may have a final wall thickness in the range of, for instance, 0.1-0.8 mm (100 to 800 μm) of an ion-exchangeable glass substrate, where the glass substrate has been machined to its final dimensions, including rounded corners, prior to ion-exchanging in a suitable bath to allow for the compressive layer to be formed to an optimum thickness for a particular application, leaving a highly-tensile stressed core in the center of the glass. Final, fragmented particle size can be in a large range, provided that the fragmentation size is small enough to break the one or more sensors of the tamper-respondent detector sufficiently to disable the sensor and thereby signal a tamper intrusion event. This range could be, for instance, 100-1000 μm.



FIGS. 5-8D depict further exemplary tamper-proof electronic packages, in accordance with one or more aspects of the present invention. As described below, in each implementation, a glass enclosure comprising stressed glass is employed along with a tamper-respondent detector to detect fragmenting of the glass enclosure with an attempted intrusion event through the stressed glass. As described herein, with detecting fragmenting of a stressed glass enclosure, an erase circuit may be activated to erase confidential information stored within the secure memory.


Referring to FIG. 5, a tamper-proof electronic package 500 is depicted which comprises, by way of example, a glass enclosure 220 formed of a plurality of stressed glass elements 520 adhesively bonded together. In this example, each stressed glass element 520 includes one or more respective, compressively-stressed surface layers, and together the plurality of stressed glass elements 520 define multiple sides of secure volume 201. Stressed glass elements 520 may be adhesively secured together using, for instance, the same structural adhesive used in securing glass enclosure 220 to, for instance, multilayer circuit board 210. As one example, the structural adhesive may be, for instance, Henkel Loctite Hysol EA 9360 AERO epoxy adhesive, which adheres well to glass surfaces. As described above, multi-layer circuit board 210 may comprise multiple embedded tamper-respondent sensors 300 within the circuit board. Fabrication of multilayer circuit board 210 and provision of embedded tamper-respondent sensors may be as described above in connection with FIGS. 2A-4.


In the embodiment of FIG. 5, a tamper-respondent detector 505 is provided comprising monitor circuitry 501 and multiple sensors 502. Each sensor 502 is associated with a respective stressed glass element 520, with only two sensors 502 being depicted in FIG. 5 for clarity. Conductive lines may be provided coupling each sensor 502 to monitor circuitry 501. Sensors 502 may be designed or configured to ensure fragmenting of the sensor with fragmenting of the attached stressed glass element 520.


In one or more implementations, each stressed glass element comprises, for instance, ion-exchange glass formed as described above. When the glass elements are assembled and adhesively secured together as depicted in FIG. 5, they form glass enclosure 220 enclosing the at least one electronic component, such as electronic devices or elements 202 within secure volume 201 of tamper-proof electronic package 500. The sensors 502 may be formed as conductive or resistive elements, of any desired material, and (in one or more embodiments) be sufficiently thin to fragment with fragmenting of the attached stressed glass element 520. Monitor circuitry 501 may comprise or be coupled to an erase circuit which automatically erases confidential information stored within secure volume 201 with fragmenting of one or more of the stressed glass elements 520.


Note with respect to tamper-proof electronic package 500 of FIG. 5, that glass enclosure 220 may be bonded to an upper surface of multilayered circuit board 210 without, for instance, residing within a continuous groove such as that described above in connection with the embodiment of FIGS. 2A-3. The structural adhesive noted above bonds tenaciously to both the glass and the multilayer circuit board, and advantageously results in the glass fracturing or the multilayer circuit board tearing upon an attempt to breach the enclosure through the structural adhesive. Note that in one or more implementations, depending upon the fragmentation process, or stressed glass elements used, fewer sensors 502 may be employed in association with glass enclosure 220. For instance, it may be possible for fragmentation of one stressed glass element 520 to be propagated to the other stressed glass elements 520 across the structural adhesive. Further, although depicted as assembled from five distinct stressed glass elements 520, less than five stress glass elements may be employed to form glass enclosure 220. For instance, two L-shaped glass elements could be brought together and adhesively secured, along with a top side glass element to produce the multi-sided glass enclosure depicted in FIG. 5. Note also that the shape and size of sensors 502 may vary depending on the implementation. For instance, each sensor 502 could comprise one or more conductive lines, traces or coatings covering a portion or substantially all of the inner surface of the respective stressed glass element 520 within secure volume 201. Further, any desired material could be employed in forming sensor 502 or the conductive lines coupling each sensor 502 to monitor circuitry 501 of the tamper-respondent detector 505.



FIG. 6 depicts an alternate embodiment of a tamper-proof electronic package 600, in accordance with one or more aspects of the present invention. In this embodiment, a glass enclosure 220′ is provided and, for instance, adhesively secured to an upper surface of multilayer circuit board 210. Multilayer circuit board 210 again includes embedded tamper-respondent sensors 300 such as described above, and one or more electronic components, such as electronic devices or elements 202 are disposed within the defined secure volume 201 of tamper-proof electronic package 600.


In this embodiment, glass enclosure 220′ is a monolithic glass element comprising a multi-sided glass structure defining multiple sides of secure volume 201. In this monolithic example, fewer sensors 502 may be employed by the tamper-respondent detector 505 to monitor for fragmentation of glass enclosure 220′ since fragmentation of the entire element would occur upon any attempt to penetrate the stressed glass from any direction, whether mechanically or chemically attacking the stressed glass, thereby triggering detection of the tamper event by the monitor circuitry 501. By way of example, a monolithic glass element such as depicted in FIG. 6 could be molded (or cast) in the desired shape, or formed from a single block of glass hollowed out, for instance, by etching or other machining methods, to create a cavity that allows for the glass enclosure to accommodate the one or more electronic components to be protected within secure volume 201 between glass enclosure 220′ and multilayer circuit board 210.


Note that in both the multiple stressed glass elements embodiment of FIG. 5 and the monolithic glass element embodiment of FIG. 6, thickness of the stressed glass may be tailored to a desired substrate size for a particular application and a particular desired fragmentation size of fragmented glass pieces resulting from an attempted intrusion event. Additionally, opacity of the glass enclosure may be provided to, for instance, prevent an intruder from having visibility into the secure volume of the tamper-proof electronic package. Possible coatings of the glass enclosure could include InSnOxide or a metal or metal alloy coating, such as aluminum, or an aluminum alloy. Alternatively, the glass enclosure, and more particularly, the stressed glass element(s) of the glass enclosure could be mildly etched (for instance, after ion-exchange processing of the glass) to make the glass enclosure opaque. Further, opacity may be provided in combination with any of the tamper-proof electronic packages discussed herein.


By way of example, FIG. 7-8D depict various alternate implementations of a tamper-proof electronic package. In each implementation depicted, glass enclosure 220′ is assumed to comprise a monolithic glass element, by way of example only. In other implementations, multiple stressed glass elements may be adhesively secured together to form the glass enclosure, such as described above in connection with FIG. 5. As noted, with a monolithic implementation, tamper-respondent detector 505 may include monitor circuitry 501 and a single sensor 502 associated with the monolithic glass element. In one or more other implementations, multiple sensors 502 could be provided in association with the stressed glass element, for instance, on the same glass face or surface, or on different glass faces of the element.


Referring to FIG. 7, another embodiment of tamper-proof electronic package 700 is shown, in accordance with one or more aspects of the present invention. In this embodiment, the multilayer circuit board 210 of FIGS. 5 & 6 is replaced by, for instance, a base glass enclosure 701 structurally adhesively bonded 702 to glass enclosure 220′, which in this assembly is an upper glass enclosure. Together, the upper and lower glass enclosures 220′, 701 substantially form a 360-degree glass enclosure about secure volume 201, accommodating the electronic components to be protected. Base glass enclosure 701 may also comprise stressed glass, with one or more compressively-stressed surface layers, such as described herein. Note that the thickness of the upper and lower glass enclosures 220′, 701 may be the same or different. The tamper-respondent detector 505 includes monitor circuitry 501 and multiple sensors 502, with one sensor 502 being associated with upper glass enclosure 220′, and in one or more embodiments, another sensor (not shown) being associated with base glass enclosures 701, such that an attempted intrusion event through any portion of the tamper-proof electronic package results in fragmentation of at least the corresponding upper or base glass enclosure, and thereby detection of the tamper event to allow for one or more actions to be taken to protect any confidential information within secure volume 201.


Note that in addition to structural adhesive 702, tamper-proof electronic package 700 may include one or more sensors such as exposed conductive lines or traces on one or both of the upper and base glass enclosures, for instance, where joined via the adhesive 702. Thus, any pulling apart of the adhesive would necessarily result in damage to the conductive trace(s) at the interface, and thereby, detection of an attempted intrusion event through the adhesive. Further, any of the tamper-proof electronic packages disclosed herein could similarly employ one or more conductive traces at the interface between, for instance, the glass enclosure and the multilayer circuit board to further protect the interface between the two structures against an undetected tamper event.


In the example of FIG. 7, electrical signals may be provided into or from the secure volume via one or more signal lines 703 extending through, for instance, specially configured exit portals of base glass enclosure 701. For instance, in one or more implementations, Z-shaped or other angled channels could be formed in base enclosure 701 through which electrical signal lines 703 may pass. The angled channels are formed to provide a mechanically secure egress and ingress of electrical signal lines 703 from and to secure volume 201.



FIG. 8A depicts another embodiment of a tamper-proof electronic package 800, in accordance with one or more aspects of the present invention. This tamper-proof electronic package 800 is similar to that described above in connection with FIG. 6. For instance, the tamper-proof electronic package 800 includes a glass enclosure 220′ which, in one or more implementations, is a monolithic glass element that is structurally adhesively secured to multilayer circuit board 210 having embedded tamper-respondent sensors 300 disposed therein. Secure volume 201 is defined by glass enclosure 220′ for accommodating one or more electronic components, such as electronic devices or elements 202. In this embodiment, tamper-respondent detector 505 includes monitor circuitry 501 and a sensor coating 810m which is provided on the inner surface of the monolithic glass element defining secure volume 201. This sensor coating 810 may be, for instance, a conductive coating, such as a metal or metal alloy coating, and the detector 505 may include conductive traces or lines to multiple locations of the conductive coating 810 to electrically connect to and monitor the conductive coating, and thus the monolithic glass element, for fragmentation. Note in this regard that the coating may be sufficiently thin, such as 1000 Angstroms or less, so that should the stressed glass substrate of glass enclosure 220′ fragment due to an attempted tamper event, the coating will also fragment with the glass pieces. Note also that as in the other embodiments described herein, the glass enclosure 220′ comprises stressed glass having one or more compressively-stressed surface layers. For instance, in one or more embodiments, both the inner surface and the outer surface of the monolithic glass element may be compressively-stressed.



FIG. 8B depicts another tamper-proof electronic package 801 similar to that described in connection with FIG. 6, but with the addition of one or more sensor lines 820 at the interface between glass enclosure 220′ and multilayer circuit board 210. As discussed above, these sensor lines 820 may be exposed conductive lines or traces on one or both sides of glass enclosure 220′, for instance, about the periphery of the glass enclosure, between or adjacent to the interface of glass enclosure 220′ and multilayer circuit board 210. In one or more implementations, sensor lines 820 would be covered by the structural adhesive securing glass enclosure 220′ to multilayer circuit board 210. Therefore, an attempted mechanical or chemical attack at the adhesive would necessarily result in damage to the conductive trace(s) 820 at the interface, and thereby detection of the attempted intrusion event through the adhesive.


As illustrated in FIG. 8B, tamper-respondent detector 505 may include one or more conductive lines connecting monitor circuitry 501 to sensor line(s) 820, as well as conductive lines coupling one or more sensors 502 to monitor circuitry 501. As noted, in one or more implementations, glass enclosure 220′ may be a monolithic glass element that is structurally, adhesively secured to multilayer circuit board 210, which has embedded tamper-respondent sensors 300 disposed therein. Together, the tamper-respondent detector 505 and the embedded tamper-respondent sensors 300, which may also be electrically connected to monitor circuitry 501, facilitate defining secure volume 201 accommodating the one or more electronic components, such as electronic devices or elements 202, to be protected.



FIGS. 8C & 8D depict tamper-proof electronic packages 802, 803, respectively, with alternate embodiments of tamper-respondent detectors 505. These tamper-proof electronic packages 802, 803 of FIGS. 8C & 8D are similar to the tamper-proof electronic package described above in connection with FIG. 6.


Referring to FIG. 8C, a tamper-respondent detector 505 is illustrated comprising monitor circuitry 501 and multiple conductive contacts or plates 830, 831. The conductive contacts or plates 830, 831 may be disposed in various locations on the monolithic glass element of glass enclosure 220′. By way of example, conductive contact or plate 830 may be located on an inner surface of the monolithic glass element, and conductive contact or plate 831 may be located on the outer surface of the monolithic glass element. In both cases, the conductive contact or plate may be a thin conductive plate or coating, on or attached to the respective surface of the monolithic glass element. Conductive lines are provided from monitor circuitry 501 to the conductive contacts or elements 830, 831, and the tamper-respondent detector may monitor in this configuration capacitance or inductance of the stressed glass element. Should fragmentation of the stressed glass element occur, then the capacitance change between the contacts or plates 830, 831 would be detected by the monitor circuitry, thereby detecting the attempted intrusion event. In this regard, note that one or more circuit lines 835 may extend through, for instance, specially-configured exit portals of the monolithic glass element, or the multilayer circuit board 210. As described above, in one or more implementations, Z-shaped or other angled channels could be formed in the monolithic glass element through which electrical signal lines 835 pass. The angled channels advantageously provide secure ingress and egress of electrical signal lines to the secure volume 201, and in this case, to and from monitor circuitry 501.



FIG. 8D depicts a further variation, wherein tamper-respondent detector 505 comprises one or more optical emitters 840 and one or more optical detectors or receivers 841 for monitoring reflectance 842 of the stressed glass. As with other embodiments of tamper-proof electronic packages disclosed herein, multiple optical emitters and detectors or receivers 841 may be employed to monitor different portions of the stressed glass, particularly, for instance, in a configuration where multiple stressed glass elements are adhesively secured together to form the glass enclosure. In the example of FIG. 8D, glass enclosure 220′ may comprise a single monolithic glass element, as described above in connection with FIG. 6. Together with multilayer circuit board 210, having embedded tamper-respondent sensors 300, glass enclosure 220′ forms secure volume 201 within which one or more electronic components, such as one or more electronic devices or elements 202 may reside. In the tamper-proof electronic package 803 embodiment of FIG. 8D, monitor circuitry 501 may monitor for change in reflectance 842, which may indicate, for instance, fragmentation of the monolithic glass element. With fragmentation, reflectance 842 would, for instance, be lost, in which case the attempted tamper intrusion event would be detected by the tamper-respondent detector 505.


In an alternate embodiment, the tamper-respondent detector 505 could utilize the glass enclosure as a waveguide, providing one or more emitters and one or more optical detectors in association with an inner surface of the glass enclosure for transmitting and receiving an optical signal through the glass enclosure. Security may be further enhanced by modulating the signal being transmitted through the glass enclosure to any desired pattern, for instance, with only the monitor circuitry within the secure volume of the tamper-proof electronic package knowing of the correct signal modulation for the optical signal passing through the glass enclosure.


As noted, in one or more embodiments, responsive to detecting an attempted intrusion event into the stressed glass, the tamper-respondent detector signals an erase circuit to erase any confidential information within the secure volume. This confidential information is typically stored in volatile memory to allow for fast erasure of information upon detection of an attempted intrusion event. However, volatile memory requires a certain amount of battery power to maintain the volatile memory active, and allow for the fast erasing of confidential information in the event of a tamper event. This requirement for battery power to provide protection in the event of a tamper event complicates the tamper-proof electronic packaging design by requiring additional power as part of the design.


To address this, disclosed hereinbelow with reference to FIGS. 9-11 are exemplary alternative tamper-proof electronic packages which may be employed in combination with, for instance, persistent memory, to advantageously simplify the tamper-proof assembly, and reduce the need for battery power within the assembly in the event of a tamper event.


To summarize, in one or more enhanced embodiments, a tamper-proof electronic package in accordance with one or more aspects of the present invention may include a glass substrate which comprises stressed glass with a compressively-stressed surface layer, and one or more electronic components may be secured to the glass substrate within a secure volume of the tamper-proof electronic package. Advantageously, the glass substrate fragments with an attempted intrusion event into the tamper-proof electronic package, and the fragmenting of the glass substrate also physically fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). Various configurations for accomplishing this are described below and depicted, by way of example, in FIGS. 9-11.


Note that in one or more embodiments, the glass substrate may have undergone ion-exchange processing to provide the stressed glass with the compressively-stressed surface layer. In one or more implementations, the compressively-stressed surface layer of the stressed glass may be compressively stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 μms with the attempted intrusion event. Further, the one or more electronic components may be thinned to any desired thickness which ensures fragmenting of the electronic component(s) with fragmenting of the glass substrate to which it is adhesively secured using, for instance, a structural adhesive.


As noted, in one or more implementations, the electronic component(s) secured to the glass substrate may comprise one or more memory components, such as one or more persistent memory components adhesively secured to the glass substrate.


In one or more embodiments, the tamper-proof electronic package may include an enclosure to define, at least in part, the secure volume. Further, a tamper-respondent detector may monitor for the attempted intrusion event into the secure volume, and a fragmentation trigger element may be provided secured to the glass substrate. When present, the fragmentation trigger element operates to trigger fragmentation of the glass substrate responsive to the tamper-respondent detector detecting the attempted intrusion event into the secure volume.


In one or more implementations, the enclosure may be a glass enclosure defining, at least in part, the secure volume, with the glass enclosure comprising stressed glass with a compressively-stressed surface layer. For instance, the enclosure may comprise a plurality of stressed glass elements adhesively bonded together to form the enclosure, each stressed glass element comprising a respective, compressively-stressed surface layer, with the plurality of stressed glass elements defining multiple sides of the secure volume. In this implementation, one stressed glass element of the plurality of stressed glass elements may comprise or be the glass substrate, and the electronic component(s) and the fragmentation trigger element may both be secured to the one stressed glass element. In other implementations, the glass substrate may be located within the secure volume, and be separate from the enclosure. Further, note that in these implementations, the enclosure may be other than a glass enclosure.


In one or more implementations, the tamper-proof electronic package may include a glass enclosure which defines, at least in part, the secure volume. The glass enclosure may comprise stressed glass with a compressively-stressed surface layer, and the glass enclosure may be the glass substrate, with the electronic component(s) being adhesively coupled to an inner surface of the glass enclosure. By way of further example, the package may include an upper glass enclosure, and a base glass enclosure, with the upper glass enclosure and the base glass enclosure being adhesively secured together to define the secure volume, and both comprising stressed glass with a compressively-stressed surface layer. In such a configuration, the electronic component(s) may be adhesively secured to an inner surface of either enclosure.


Referring to FIG. 9, one embodiment of a tamper-proof electronic package, generally denoted 600′, is presented, which includes a stressed glass component substrate, in accordance with one or more aspects of the present invention. By way of example, tamper-proof electronic package 600′ is similar to tamper-proof electronic package 600 described above in connection with FIG. 6. In this embodiment, however, a glass substrate 900 is provided mounted, for instance, to a surface of multilayer circuit board 210 within secure volume 201. As noted above, glass enclosure 220′ is adhesively secured to an upper surface of multilayer circuit board 210, and multilayer circuit board includes embedded tamper-respondent sensors 300, as well as one or more electronic components, such as electronic devices or elements 202 disposed within secure volume 201.


By way of example, glass enclosure 220′ may be a machined, monolithic glass element comprising a multi-sided glass structure defining multiple sides of secure volume 201. In this example, fewer sensors 502 may be employed by tamper-respondent detector 505 to monitor for fragmentation of glass enclosure 220′, since fragmentation of the entire elements would occur upon any attempt to penetrate the stressed glass from any direction, whether mechanically or chemically attaching the stressed glass, thereby triggering detection of the tamper event by monitor circuitry 501. As noted above, a monolithic glass element such as depicted in FIG. 9 could be formed from a single block of glass being hollowed out, for instance, by etching or other machining methods, to create a cavity that allows for the glass enclosure to accommodate the one or more electronic components to be protected within secure volume 201 between, for instance, glass enclosure 220′ and multilayer circuit board 210. As with the embodiments described above, opacity of the glass enclosure may be provided to, for instance, prevent an intruder from having visibility into the secure volume of the tamper-proof electronic package.


As noted, as an enhancement, a separate glass substrate 900 may be provided within secure volume 201. This glass substrate 900 may be formed of stressed glass with a compressively-stressed surface layer, such as described herein for the glass enclosures. Note also that, although depicted in combination with glass enclosure 220′, glass substrate 900 could be employed within the secure volume of any type of tamper-respondent assembly, irrespective of the type of enclosure employed.


One or more electronic components 910, such as one or more memory components, or more particularly, one or more persistent memory components, may be adhesively secured to glass substrate 900. Further, a fragmenting trigger element 912 may be secured to glass substrate 900. In operation, tamper-respondent detector 505 may detect an attempted intrusion event into secure volume 201, and in response, monitor circuitry 501 signals fragmenting trigger element 912 to fragment glass substrate 900. In one or more implementations, fragmenting trigger element 912 may comprise an electromechanical element which initiates fragmenting of the stressed glass substrate 900 with the tamper event. For instance, the electromechanical element could comprise a loaded spring which is released upon detection of a tamper event to push a nail into glass substrate 900, causing the glass substrate to fragment. Alternatively, in one or more implementations, fragmenting trigger element 912 may comprise a laser pointing at the glass substrate 900, which punctually heats the glass substrate to fragment upon detection of a tamper event.


Note that as with the glass enclosure embodiments described above, thickness of stressed glass substrate 900 may be tailored to a desired size for a particular application and a particular desired fragmentation size of fragmenting glass pieces resulting from the attempted tamper intrusion event.


Note also that electronic component(s) 910 adhesively bonded to glass substrate 900 may be thinned to a desired dimension to ensure fragmenting of electronic component(s) with fragmenting of glass substrate 900. For instance, the electronic component(s) may be thinned to a thickness of 100-200 μms, or less, with the thickness of the electronic component depending in part on, for instance, the material employed in fabricating the component. As one specific example, a silicon-on-insulator (SOI) component may be thinned to 150 μms, or less, and direct-chip-attached to glass substrate 900. In such a configuration, fragmenting of the underlying glass substrate, which may have a thickness in the range of the glass enclosure thicknesses described above, ensures physical fragmenting and destruction of the electronic component(s) as well. In operation, the fragmenting glass substrate essentially pulls the electronic component(s) apart in pieces, commensurate with fragmenting of the glass into pieces. Any of various adhesives which bond well to glass may be employed. For instance, the above-referenced Henkel Locktite Hysol EA 9360 AERO epoxy adhesive could be employed to strongly secure electronic component(s) 910 to glass substrate 900.


As noted, by facilitating physical destruction of the electronic component(s) upon detection of a tamper event, persistent memory may be employed within the secure volume, reducing the need for battery power to operate a quick erasure of volatile memory, as in prior approaches.



FIG. 10 depicts an alternate implementation of a tamper-proof electronic package 500′, which is similar to tamper-proof electronic package 500 of FIG. 5, with the exception of one or more electronic component(s) 910, as well as a fragmenting trigger element 912 being added to, for instance, a stressed glass element 520 of glass enclosure 220. As noted, glass enclosure 220 in this example may be formed of a plurality of stressed glass elements 520 adhesively bonded together. Each stressed glass element 520 may include one or more respective, compressively-stressed surface layers, and together, the plurality of stressed glass elements 520 define multiple sides of secure volume 201. Stressed glass elements 520 may be adhesively secured together using, for instance, the same structural adhesive used in securing glass enclosure 220 to, for instance, multilayer circuit board 210, which as noted above, may comprise multiple embedded tamper-respondent sensors 300.


Tamper-respondent detector 505 may be provided, comprising monitor circuitry 501 and multiple sensors 502, with each sensor 502 being associated with a respective, stressed glass element 520 (in one or more embodiments). By way of example, two sensors 502 are depicted in FIG. 10 for clarity. In one or more implementations, sensors 502 may be designed or configured to ensure fragmenting of the sensor with fragmenting of the attached stressed glass element 520, and thereby detection of the tamper event.


In one or more implementations, each stressed glass element 520 comprises, for instance, ion-exchange glass, formed as described above. Where the glass elements are assembled and adhesively secured together as depicted in FIG. 10, they form glass enclosure 220 enclosing, for instance, the electronic devices or elements 202 within secure volume 201 of tamper-proof electronic package 500′.


In this implementation, one or more electronic components 910 are adhesively secured to an inner surface of one or more stressed glass elements 520. As noted above, the electronic component(s) 910 are sized to fragment with fragmenting of the attached glass substrate, or stressed glass element 520. Fragmenting of the stressed glass element 520 supporting electronic component(s) 910 may be ensured by also attaching fragmenting trigger element 912 to an inner surface of the stressed glass element 520 having electronic component(s) 910 secured thereto. In this way, upon monitor circuitry 501 detecting a tamper event through, for instance, a different portion of the tamper-respondent electronic package 500′, the monitor circuitry 501 may signal the trigger element to initiate fragmenting of the stressed glass element 520 supporting electronic component(s) 910, and thereby physical destruction of the electronic component. This advantageously provides a different mechanism for destroying confidential information within the secure volume upon detection of an attempted tamper event into the secure volume. As illustrated, conductive lines may be provided coupling the electronic component(s) 910 mounted to the inner surface of stressed glass element 520 to one or more other electronic components or devices 202 within secure volume 201. Electronic component thicknesses and exemplary adhesives may be as described above.



FIG. 11 depicts another embodiment of a tamper-proof electronic package 700′, in accordance with one or more aspects of the present invention. In this embodiment, the multilayer circuit board of FIG. 9 is replaced by, for instance, a base glass enclosure 701 structurally, adhesively bonded 702 to glass enclosure 220′, which in this assembly, is an upper glass enclosure. Together, the upper and lower glass enclosures 220′, 701 substantially form a 360° glass enclosure about secure volume 201, accommodating the electronic components, including electronic devices or elements 202 to be protected. Base glass enclosure 701 may also comprise stressed glass, with one or more compressively-stressed surface layers, such as described herein. Note that the thickness of the upper and lower glass enclosures 220′, 701 may be the same or different. As with the embodiment of FIG. 7, tamper-respondent detector 505 is provided and may include monitor circuitry 501 and one or more sensors 502. Depending on the implementation, sensors 502 may be optionally provided. When provided, one sensor 502 may be associated with upper glass enclosure 220′, and in one or more embodiments, another sensor (not shown) may be associated with base glass enclosure 701, such that an attempted intrusion event through any portion of the tamper-proof electronic package results in a fragmentation of at least the corresponding upper or base glass enclosure, and thereby detection of the tamper event to allow for one or more actions to be taken to protect any confidential information within secure volume 201. Alternatively, in one or more embodiments, structural adhesive 702 may sufficiently bond upper enclosure 220′ and base glass enclosure 701 such that fragmentation of one, necessarily results in fragmentation of the other, in which case sensors 502 may be omitted.


In addition to structural adhesive 702, tamper-proof electronic package 700′ may include one or more sensors, such as exposed conductive lines or traces on one or both of the upper and base glass enclosures, for instance, where joined via adhesive 702. Thus, any pulling apart of the adhesive would necessarily result in damage to the conductive trace(s) at the interface, and thereby, detection of an attempted intrusion event through the adhesive. Electrical signals may be provided into or from the secure volume 201 via one or more signal lines 703 extending through, for instance, specially-configured exit portals of base glass enclosure 701. For instance, in one or more implementations, Z-shaped, or other angled channels, could be formed in base enclosure 701 through which electrical signal lines 703 may pass. The angled channels may be formed to provide a mechanically-secured egress and ingress of electrical signal line 703 from and to secure volume 201.


In this embodiment, one or more electronic component(s) 910 are adhesively secured to an inner surface of one of the enclosures, for instance, stressed glass enclosure 220′, such that any fragmenting of stressed glass enclosure 220′ also results in fragmenting of electronic component(s) 910, as described herein. If desired, a fragmenting trigger element (not shown) could be provided coupled to glass enclosure 220′ to, for instance, ensure fragmenting of the upper glass enclosure 220′ with an attempted intrusion event through the base glass enclosure 701.


In one or more other embodiments, a multilayer circuit board may be provided with, for instance, the upper glass enclosure bonding to an upper surface of the multilayer circuit board, and the base glass enclosure bonding to a lower surface of the multilayer circuit board. For instance, the multilayer circuit board and the upper and base glass enclosures could be sized and configured such that the upper glass enclosure bonds to the multilayer circuit board about a periphery of the multilayer circuit board, and the base glass enclosure bonds to the lower surface of the multilayer circuit board about a periphery of the multilayer circuit board. In this configuration, one or more tamper-respondent sensors may be embedded within the multilayer circuit board about the periphery of the multilayer circuit board, and tied to the monitor circuitry within the secure volume. For instance, the one or more tamper-respondent sensors may include at least one peripheral tamper-detect circuit defined, at least in part, by a plurality of through-substrate vias extending through or within the multilayer circuit board, for instance, between the upper and lower surfaces of the multilayer circuit board. The peripheral tamper-detect circuit(s) could electrically connect to the monitor circuitry of the tamper-respondent detector to facilitate defining the secure volume for accommodating the one or more electronic components.


Note also with respect to FIGS. 9-11, that although depicted with reference to a single electronic component 910 being adhesively secured to a glass substrate 900 (FIG. 9), 520 (FIG. 10), 220′ (FIG. 11), that multiple electronic components could be adhesively secured to the glass substrate. For instance, if more than one persistent memory component is desired within the secure volume, then the multiple persistent memories could be adhesively secured to a common, or different, stressed glass substrates designed to fragment, as discussed herein, with detection of an attempted intrusion event into the secure volume of the tamper-proof electronic package.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of a device that “comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of one or more aspects of the invention and the practical application, and to enable others of ordinary skill in the art to understand one or more aspects of the invention for various embodiments with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A tamper-proof electronic package comprising: a glass substrate, the glass substrate comprising stressed glass with a compressively-stressed surface layer;at least one electronic component adhesively secured to the glass substrate within a secure volume of the tamper-proof electronic package, the at least one electronic component comprising an electronic memory module configured to fragment with fragmenting of the glass substrate;a glass enclosure defining, at least in part, the secure volume, the glass enclosure comprising stressed glass with a compressively-stressed surface layer, and wherein the glass substrate defines a side of the glass enclosure, and the electronic memory module configured to fragment with fragmenting of the glass substrate is adhesively coupled to and covering, in part, an inner surface of the side of the glass enclosure;wherein the glass substrate fragments with an attempted intrusion event into the tamper-proof electronic package, the fragmenting of the glass substrate also fragmenting the at least one electronic component secured thereto, destroying the at least one electronic component; andwherein the glass enclosure is an upper glass enclosure, and the tamper-proof electronic package further comprises a base glass enclosure, the upper glass enclosure and the base glass enclosure being adhesively secured together to define the secure volume, and wherein the base glass enclosure also comprises stressed glass with a compressively-stressed surface layer.
  • 2. The tamper-proof electronic package of claim 1, wherein the glass substrate has undergone ion-exchange processing to provide the stressed glass with the compressively-stressed surface layer.
  • 3. The tamper-proof electronic package of claim 1, wherein the compressively-stressed surface layer of the stressed glass is compressively stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 μms with the attempted intrusion event.
  • 4. The tamper-proof electronic package of claim 1, wherein the electronic memory module comprises a persistent memory module adhesively secured to the glass substrate.
  • 5. The tamper-proof electronic package of claim 1, further comprising: a tamper-respondent detector monitoring for the attempted intrusion event into the secure volume; anda fragmenting trigger element secured to the glass substrate to trigger fragmentation of the glass substrate with the tamper-respondent detector detecting the attempted intrusion event into the secure volume.
  • 6. A fabrication method comprising: fabricating a tamper-proof electronic package, the fabricating comprising: providing a glass substrate, the glass substrate comprising stressed glass with a compressively-stressed surface layer;adhesively securing at least one electronic component to the glass substrate, and the glass substrate being within a secure volume of the tamper-proof electronic package, the at least one electronic component comprising an electronic memory module configured to fragment with fragmenting of the glass substrate;providing a glass enclosure defining, at least in part, the secure volume, the glass enclosure comprising stressed glass with a compressively-stressed surface layer, and wherein the glass substrate defines a side of the glass enclosure, and the electronic memory module is configured to fragment with fragmenting of the glass substrate being adhesively coupled to and covering, in part, an inner surface of the side of the glass enclosure;wherein the glass enclosure is an upper glass enclosure, and fabricating the tamper-proof electronic package further comprises fabricating a base glass enclosure, the upper glass enclosure and the base glass enclosure being adhesively secured together to define the secure volume, and wherein the base glass enclosure also comprises stressed glass with a compressively-stressed surface layer; andwherein the glass substrate fragments with an attempted intrusion event into the secure volume of the tamper-proof electronic package, the fragmenting of the glass substrate also fragmenting the at least one electronic component secured thereto, destroying the at least one electronic component.
  • 7. The method of claim 6, wherein providing the glass substrate comprises machining the glass substrate to a desired configuration, and then ion-exchange processing the glass substrate to obtain the stressed glass with the compressively-stressed surface layer.
  • 8. The method of claim 6, wherein the compressively-stressed surface layer of the stressed glass is compressively stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 μms with the attempted intrusion event.
  • 9. The method of claim 6, wherein the electronic memory module comprises a persistent memory module, and the method comprises adhesively securing the persistent memory module to the glass substrate.
  • 10. The method of claim 6, further comprising: providing a tamper-respondent detector monitoring for the attempted intrusion event into the secure volume; andproviding a fragmenting trigger element secured to the glass substrate to trigger fragmentation of the glass substrate with the tamper-responding detector detecting the attempted intrusion event into the secure volume.
US Referenced Citations (304)
Number Name Date Kind
3165569 Bright et al. Jan 1965 A
4097894 Tanner et al. Jun 1978 A
4160503 Ohlbach Jul 1979 A
4211324 Ohlback Jul 1980 A
4324823 Ray, III Apr 1982 A
4450504 Severson May 1984 A
4496900 Di Stefano et al. Jan 1985 A
4516679 Simpson et al. May 1985 A
4542337 Rausch Sep 1985 A
4593384 Kleinjne Jun 1986 A
4609104 Kasper et al. Sep 1986 A
4653252 Van de Haar et al. Mar 1987 A
4677809 Long et al. Jul 1987 A
4691350 Kleijne et al. Sep 1987 A
4807284 Kleijne Feb 1989 A
4811288 Kleijne et al. Mar 1989 A
4847139 Wolf et al. Jul 1989 A
4860351 Weingart Aug 1989 A
4865197 Craig Sep 1989 A
5009311 Schenk Apr 1991 A
5027397 Double et al. Jun 1991 A
5060114 Feinberg et al. Oct 1991 A
5075822 Baumler et al. Dec 1991 A
5117457 Comerford et al. May 1992 A
5159629 Double et al. Oct 1992 A
5185717 Mori Feb 1993 A
5201868 Johnson Apr 1993 A
5201879 Steele et al. Apr 1993 A
5211618 Stoltz May 1993 A
5239664 Verrier et al. Aug 1993 A
5243162 Kobayashi Sep 1993 A
5389738 Piosenka et al. Feb 1995 A
5406630 Piosenka et al. Apr 1995 A
5458912 Camilletti et al. Oct 1995 A
5506566 Oldfield et al. Apr 1996 A
5568124 Joyce et al. Oct 1996 A
5594439 Swanson Jan 1997 A
5675319 Rivenberg et al. Oct 1997 A
5715652 Stahlecker Feb 1998 A
5761054 Kuhn Jun 1998 A
5813113 Stewart et al. Sep 1998 A
5858500 MacPherson Jan 1999 A
5880523 Cadelore Mar 1999 A
5975420 Gogami et al. Nov 1999 A
5988510 Tuttle et al. Nov 1999 A
6121544 Petsinger Sep 2000 A
6195267 MacDonald, Jr. et al. Feb 2001 B1
6201296 Fries et al. Mar 2001 B1
6233339 Kawano et al. May 2001 B1
6259363 Payne Jul 2001 B1
6261215 Imer Jul 2001 B1
6301096 Wozniczka Oct 2001 B1
6355316 Miller et al. Mar 2002 B1
6384397 Takiar et al. May 2002 B1
6396400 Epstein, III et al. May 2002 B1
6420971 Leck et al. Jul 2002 B1
6424954 Leon Jul 2002 B1
6438825 Kuhm Aug 2002 B1
6469625 Tomooka Oct 2002 B1
6473995 Miyakawa et al. Nov 2002 B2
6512454 Miglioli et al. Jan 2003 B2
6686539 Farquhar et al. Feb 2004 B2
6746960 Goodman Jun 2004 B2
6798660 Moss et al. Sep 2004 B2
6817204 Bash et al. Nov 2004 B2
6853093 Cohen et al. Feb 2005 B2
6879032 Rosenau et al. Apr 2005 B2
6895509 Clark May 2005 B1
6929900 Farquhar et al. Aug 2005 B2
6946960 Sisson et al. Sep 2005 B2
6957345 Cesana et al. Oct 2005 B2
6970360 Sinha Nov 2005 B2
6982642 Cesana et al. Jan 2006 B1
6985362 Mori et al. Jan 2006 B2
6991961 Hubbard et al. Jan 2006 B2
6996953 Perreault et al. Feb 2006 B2
7005733 Kommerling et al. Feb 2006 B2
7007171 Butturini et al. Feb 2006 B1
7015823 Gillen et al. May 2006 B1
7054162 Benson et al. May 2006 B2
7057896 Matsuo et al. Jun 2006 B2
7094143 Wolm et al. Aug 2006 B2
7094459 Takahashi Aug 2006 B2
7095615 Nichols Aug 2006 B2
7156233 Clark et al. Jan 2007 B2
7180008 Heitmann et al. Feb 2007 B2
7189360 Ho Mar 2007 B1
7214874 Dangler et al. May 2007 B2
7247791 Kulpa Jul 2007 B2
7304373 Taggart et al. Dec 2007 B2
7310737 Patel et al. Dec 2007 B2
7465887 Suzuki et al. Dec 2008 B2
7475474 Heitmann et al. Jan 2009 B2
7515418 Straznicky et al. Apr 2009 B2
7549064 Elbert et al. Jun 2009 B2
7640658 Pham et al. Jan 2010 B1
7643290 Narasimhan et al. Jan 2010 B1
7663883 Shirakami et al. Feb 2010 B2
7671324 Fleischman et al. Mar 2010 B2
7672129 Ouyang et al. Mar 2010 B1
7731517 Lee et al. Jun 2010 B2
7746657 Oprea et al. Jun 2010 B2
7760086 Hunter et al. Jul 2010 B2
7768005 Condorelli et al. Aug 2010 B2
7783994 Ball et al. Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7868411 Eaton et al. Jan 2011 B2
7898413 Hsu et al. Mar 2011 B2
7901977 Angelopoulos et al. Mar 2011 B1
7947911 Pham et al. May 2011 B1
7978070 Hunter Jul 2011 B2
8006101 Crawford Aug 2011 B2
8084855 Lower et al. Dec 2011 B2
8094450 Cole et al. Jan 2012 B2
8101267 Samuels et al. Jan 2012 B2
8133621 Wormald et al. Mar 2012 B2
8199506 Janik et al. Jun 2012 B2
8287336 Dangler et al. Oct 2012 B2
8325486 Arshad et al. Dec 2012 B2
8345423 Campbell et al. Jan 2013 B2
8393918 Cheng et al. Mar 2013 B2
8516269 Hamlet et al. Aug 2013 B1
8589703 Lee et al. Nov 2013 B2
8646108 Shiakallis et al. Feb 2014 B2
8659506 Nomizo Feb 2014 B2
8659908 Adams et al. Feb 2014 B2
8664047 Lower et al. Mar 2014 B2
8716606 Kelley et al. May 2014 B2
8797059 Boday et al. Aug 2014 B2
8836509 Lowy Sep 2014 B2
8853839 Gao et al. Oct 2014 B2
8879266 Jarvis et al. Nov 2014 B2
8890298 Buer et al. Nov 2014 B2
8947889 Kelley et al. Feb 2015 B2
8961280 Dangler et al. Feb 2015 B2
9003199 Dellmo et al. Apr 2015 B2
9011762 Seppa et al. Apr 2015 B2
9052070 Davis et al. Jun 2015 B2
9166586 Carapelli et al. Oct 2015 B2
9298956 Wade et al. Mar 2016 B2
9554477 Brodsky et al. Jan 2017 B1
9555606 Fisher et al. Jan 2017 B1
9560737 Isaacs et al. Jan 2017 B2
9578735 Fisher et al. Feb 2017 B2
9578764 Fisher et al. Feb 2017 B1
9586857 Cabral, Jr. et al. Mar 2017 B2
9591776 Brodsky et al. Mar 2017 B1
9661747 Brodsky et al. May 2017 B1
9681649 Busby et al. Jun 2017 B2
9717154 Brodsky et al. Jul 2017 B2
9858776 Busby et al. Jan 2018 B1
9877383 Brodsky et al. Jan 2018 B2
9881880 Busby et al. Jan 2018 B2
9894749 Brodsky et al. Feb 2018 B2
9904811 Campbell et al. Feb 2018 B2
9911012 Brodsky et al. Mar 2018 B2
9913362 Brodsky et al. Mar 2018 B2
9913370 Busby et al. Mar 2018 B2
9913416 Fisher et al. Mar 2018 B2
9916744 Busby et al. Mar 2018 B2
9924591 Brodsky et al. Mar 2018 B2
9930768 Fisher et al. Mar 2018 B2
9936573 Brodsky et al. Apr 2018 B2
9949357 Fisher et al. Apr 2018 B2
9978231 Isaacs May 2018 B2
9999124 Busby et al. Jun 2018 B2
20010049021 Valimont Dec 2001 A1
20010050425 Beroz et al. Dec 2001 A1
20010056542 Cesana et al. Dec 2001 A1
20020002683 Benson Jan 2002 A1
20020068384 Beroz et al. Jun 2002 A1
20020084090 Farquhar Jul 2002 A1
20030009683 Schwenck et al. Jan 2003 A1
20030009684 Schwenck et al. Jan 2003 A1
20030198022 Ye et al. Oct 2003 A1
20040218366 Speigl Nov 2004 A1
20050068735 Fissore et al. Mar 2005 A1
20050111194 Sohn et al. May 2005 A1
20050161253 Heitmann et al. Jul 2005 A1
20050180104 Olesen et al. Aug 2005 A1
20060034731 Lewis et al. Feb 2006 A1
20060049941 Hunter et al. Mar 2006 A1
20060072288 Stewart et al. Apr 2006 A1
20060080348 Cesana et al. Apr 2006 A1
20060196945 Mendels Sep 2006 A1
20060218779 Ooba et al. Oct 2006 A1
20070038865 Oggioni et al. Feb 2007 A1
20070064396 Oman et al. Mar 2007 A1
20070064399 Mandel et al. Mar 2007 A1
20070108619 Hsu May 2007 A1
20070125867 Oberle Jun 2007 A1
20070211436 Robinson et al. Sep 2007 A1
20070223165 Itri et al. Sep 2007 A1
20070230127 Peugh et al. Oct 2007 A1
20070268671 Brandenburg et al. Nov 2007 A1
20070271544 Engstrom Nov 2007 A1
20080036598 Oggioni Feb 2008 A1
20080050512 Lower et al. Feb 2008 A1
20080061972 Hwang et al. Mar 2008 A1
20080086876 Douglas Apr 2008 A1
20080128897 Chao Jun 2008 A1
20080144290 Brandt et al. Jun 2008 A1
20080159539 Huang et al. Jul 2008 A1
20080160274 Dang et al. Jul 2008 A1
20080191174 Ehrensvard et al. Aug 2008 A1
20080251906 Eaton et al. Oct 2008 A1
20080278353 Smith et al. Nov 2008 A1
20090031135 Kothandaraman Jan 2009 A1
20090073659 Peng et al. Mar 2009 A1
20090152339 Hawkins et al. Jun 2009 A1
20090166065 Clayton et al. Jul 2009 A1
20090212945 Steen Aug 2009 A1
20100088528 Sion Apr 2010 A1
20100110647 Hiew et al. May 2010 A1
20100134959 Fife et al. Jun 2010 A1
20100177487 Arshad et al. Jul 2010 A1
20100319986 Bleau et al. Dec 2010 A1
20110001237 Brun et al. Jan 2011 A1
20110038123 Janik et al. Feb 2011 A1
20110103027 Aoki et al. May 2011 A1
20110241446 Tucholski Oct 2011 A1
20110299244 Dede et al. Dec 2011 A1
20120047374 Klum et al. Feb 2012 A1
20120050998 Klum et al. Mar 2012 A1
20120052252 Kohli et al. Mar 2012 A1
20120068846 Dalzell et al. Mar 2012 A1
20120117666 Oggioni et al. May 2012 A1
20120140421 Kirstine et al. Jun 2012 A1
20120319986 Toh et al. Jun 2012 A1
20120170217 Nishikimi et al. Jul 2012 A1
20120185636 Leon et al. Jul 2012 A1
20120244742 Wertz et al. Sep 2012 A1
20120256305 Kaufmann et al. Oct 2012 A1
20120320529 Loong et al. Dec 2012 A1
20130021758 Bernstein et al. Jan 2013 A1
20130033818 Hosoda et al. Feb 2013 A1
20130058052 Arshad et al. Mar 2013 A1
20130104252 Yanamadala et al. Apr 2013 A1
20130141137 Krutzik et al. Jun 2013 A1
20130154834 Busca et al. Jun 2013 A1
20130158936 Rich et al. Jun 2013 A1
20130208422 Hughes et al. Aug 2013 A1
20130235527 Wagner et al. Sep 2013 A1
20130283386 Lee Oct 2013 A1
20140022733 Lim et al. Jan 2014 A1
20140027159 Salle et al. Jan 2014 A1
20140028335 Salle et al. Jan 2014 A1
20140033331 Salle et al. Jan 2014 A1
20140151320 Chang et al. Jun 2014 A1
20140160679 Kelty et al. Jun 2014 A1
20140184263 Ehrenpfordt et al. Jul 2014 A1
20140204533 Abeyasekera et al. Jul 2014 A1
20140206800 Wu et al. Jul 2014 A1
20140233165 Farkas et al. Aug 2014 A1
20140296410 Cheng et al. Oct 2014 A1
20140306014 Salle et al. Oct 2014 A1
20140321064 Bose et al. Oct 2014 A1
20140325688 Cashin et al. Oct 2014 A1
20150007427 Dangler et al. Jan 2015 A1
20150120072 Marom et al. Apr 2015 A1
20150143551 Tiemeijer May 2015 A1
20150161415 Kreft Jun 2015 A1
20150163933 Steiner Jun 2015 A1
20150213243 Hughes et al. Jul 2015 A1
20150235053 Lee et al. Aug 2015 A1
20150244374 Hadley Aug 2015 A1
20150307250 Sokol Oct 2015 A1
20160005262 Hirato et al. Jan 2016 A1
20160012693 Sugar Jan 2016 A1
20160262270 Isaacs et al. Sep 2016 A1
20170006712 Matsushima et al. Jan 2017 A1
20170019987 Dragone et al. Mar 2017 A1
20170068881 Camper et al. Mar 2017 A1
20170089729 Brodsky et al. Mar 2017 A1
20170089977 Warnock et al. Mar 2017 A1
20170091491 Dangler et al. Mar 2017 A1
20170094783 Dangler et al. Mar 2017 A1
20170094803 Dangler et al. Mar 2017 A1
20170094804 Brodsky et al. Mar 2017 A1
20170094805 Dangler et al. Mar 2017 A1
20170094808 Brodsky et al. Mar 2017 A1
20170103683 Yazdi et al. Apr 2017 A1
20170108543 Brodsky et al. Apr 2017 A1
20170111998 Brodsky et al. Apr 2017 A1
20170156223 Fisher et al. Jun 2017 A1
20170171999 Fisher et al. Jun 2017 A1
20170286725 Lewis Oct 2017 A1
20180061196 Busby et al. Mar 2018 A1
20180070444 Brodsky et al. Mar 2018 A1
20180082556 Dragone et al. Mar 2018 A1
20180092203 Dragone et al. Mar 2018 A1
20180092204 Dragone et al. Mar 2018 A1
20180096173 Brodsky et al. Apr 2018 A1
20180098423 Brodsky et al. Apr 2018 A1
20180098424 Busby et al. Apr 2018 A1
20180102329 Busby et al. Apr 2018 A1
20180103537 Brodsky et al. Apr 2018 A1
20180103538 Brodsky et al. Apr 2018 A1
20180107848 Campbell et al. Apr 2018 A1
20180108229 Busby et al. Apr 2018 A1
20180110142 Fisher et al. Apr 2018 A1
20180110165 Fisher et al. Apr 2018 A1
20180235081 Brodsky et al. Aug 2018 A1
20190127121 Salcido Pinera May 2019 A1
Foreign Referenced Citations (31)
Number Date Country
2014-30639 Mar 2010 CN
10-4346587 Feb 2015 CN
19816571 Oct 1999 DE
19816572 Oct 1999 DE
10-2012-203955 Sep 2013 DE
0 056 360 Oct 1993 EP
0 629 497 Dec 1994 EP
1 734 578 Dec 2006 EP
1 968 362 Sep 2008 EP
2 104 407 Sep 2009 EP
1 672 464 Apr 2012 EP
2 560 467 Feb 2013 EP
61-297035 Dec 1986 JP
2000-238141 Sep 2000 JP
2007-173416 Jul 2007 JP
2007-305761 Nov 2007 JP
2013-125807 Jun 2013 JP
2013-140112 Jul 2013 JP
WO 1999003675 Jan 1999 WO
WO 1999021142 Apr 1999 WO
WO 2001063994 Aug 2001 WO
WO 2003012606 Feb 2003 WO
WO 2003025080 Mar 2003 WO
WO 2004040505 May 2004 WO
WO 2009042335 Apr 2009 WO
WO 2009092472 Jul 2009 WO
WO 2010128939 Nov 2010 WO
WO 2013004292 Jan 2013 WO
WO 2013189483 Dec 2013 WO
WO 2014086987 Jun 2014 WO
WO 2014158159 Oct 2014 WO
Non-Patent Literature Citations (26)
Entry
Holm, Ragnar, “Electric Contacts: Theory and Application”, Spinger-Verlag, New York, 4th Edition, 1981 (pp. 10-19).
Clark, Andrew J., “Physical Protection of Cryptographic Devices”, Advanced in Cyprtology, Eurocrypt '87, Springer, Berlin Heidelberg (1987) (11 pages).
Halperin et al., “Latent Open Testing of Electronic Packaging”, MCMC-194, IEEE (1994) (pp. 83-33).
Simek, Bob, “Tamper Restrictive Thermal Ventilation System for Enclosures Requiring Ventilation and Physical Security”, IBM Publication No. IPCOM000008607D, Mar. 1, 1998 (2 pages).
NIST, “Security Requirements for Cryptographic Modules”, FIPS Pub. 140-2, Issued May 25, 2001.
Pamula et al., “Cooling of Integrated Circuits Using Droplet-Based Microfluidics”, Association for Computing Machinery (ACM), GLSVLSI'03, Apr. 28-29, 2003 (pp. 84-87).
Saran et al., “Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates”, Journal of the American Chemical Society, vol. 126, No. 14 (Mar. 23, 2004) (pp. 4462-4463).
Khanna P.K. et al., “Studies on Three-Dimensional Moulding, Bonding and Assembling of Low-Temperature-Cofired Ceramics MEMS and MST Applications.” Materials Chemistry and Physics, vol. 89, No. 1 (2005) (pp. 72-79).
Drimer et al., “Thinking Inside the Box: System-Level Failures of Tamper Proofing”, 2008 IEEE Symposium on Security and Privacy, (Feb. 2008) (pp. 281-295).
Loher et al., “Highly Integrated Flexible Electronic Circuits and Modules”, 3rd International IEEE on Microsystems, Packaging, Assembly & Circuits Technology Conference (Oct. 22-24, 2008) (Abstract Only) (1 page).
Sample et al., “Design of an RFID-Based Battery-Free Programmable Sensing Platform”, IEEE Transactions on Instrumentation and Measurement, vol. 57, No. 11, Nov. 2008 (pp. 2608-2615).
Jhang et al., “Nonlinear Ultrasonic Techniques for Non-Destructive Assessment of Micro Damage in Material: A Review”, International Journal of Prec. Eng. & Manuf., vol. 10, No. 1, Jan. 2009 (pp. 123-135).
Anonymous, “Consolidated Non-Volatile Memory in a Chip Stack”, IBM Technical Disclosure: IP.com No. IPCOM000185250, Jul. 16, 2009 (6 pages).
Isaacs et al., “Tamper Proof, Tamper Evident Encryption Technology”, Pan Pacific Symposium SMTA Proceedings (2013) (9 pages).
Wikipedia, “Toughened Glass”, http://web.archive.org/web/20140605093019/https://en.wikipedia.org/wiki/toughened_glass, downloaded/printed Jun. 5, 2014 (4 pages).
Anonymous, “Selective Memory Encryption”, IBM Technical Disclosure: IP.com IPCOM000244183, Nov. 20, 2015 (6 pages).
Zhou et al., “Nonlinear Analysis for Hardware Trojan Detection”, ICSPCC2015, IEEE (2015) (4 pages).
Harting Mitronics, “Saftey Caps for Payment Terminals”, http://harting-mitronics.ch/fileadmin/hartingmitronics/case_studies/Saftey_caps_for_payment_terminals.pdf, downloaded Aug. 2016 (2 pages).
Gold Phoenix Printed Circuit Board, “Why multilayer pcb is used so widely?”, May 7, 2012, accessed online @ [http://www.goldphoenixpcb.com/html/Support_Resource/others/arc_110.html] on Feb. 15, 2017.
Busby et al., “Enclosure-to-Board Interface with Tamper-Detect Circuit(s)”, U.S. Appl. No. 15/901,985, filed Feb. 22, 2018 (59 pages).
Brodsky et al., “Tamper-Respondent Sensors with Liquid Crystal Polymer Layers”, U.S. Appl. No. 15/944,898, filed Apr. 4, 2018 (59 pages).
Busby et al., “Tamper-Proof Electronic Packages with Stressed Glass Component Substrate(s)”, U.S. Appl. No. 16/045,880, filed Jul. 26, 2018 (55 pages).
Busby et al., “Multi-Layer Stack with Embedded Tamper-Detect Protection”, U.S. Appl. No. 16/048,622, filed Jul. 30, 2018 (64 pages).
Busby et al., “Multi-Layer Stack with Embedded Tamper-Detect Protection”, U.S. Appl. No. 16/048,634, filed Jul. 30, 2018 (65 pages).
Busby et al., “Multi-Layer Stack with Embedded Tamper-Detect Protection”, U.S. Appl. No. 16/048,650, filed Jul. 30, 2018 (68 pages).
Busby et al., “List of IBM Patents and Patent Applications Treated as Related”, U.S. Appl. No. 16/045,868, filed Jul. 26, 2018, dated Sep. 19, 2018 (2 pages).
Related Publications (1)
Number Date Country
20180358311 A1 Dec 2018 US
Continuations (2)
Number Date Country
Parent 15831554 Dec 2017 US
Child 16045868 US
Parent 15154088 May 2016 US
Child 15831554 US