With the continued evolution of semiconductor technologies, semiconductor chips/dies are becoming increasingly smaller. In the meantime, more functions are being integrated into the semiconductor dies. Accordingly, the semiconductor dies have increasingly greater numbers of input/output (I/O) pads packed into smaller areas. As a result, the packaging of the semiconductor dies becomes more difficult, which adversely affects the yield of the packaging.
Conventional package technologies can be divided into two categories. In the first category, dies on a wafer are packaged before they are sawed. This packaging technology has some advantageous features, such as a greater throughput and a lower cost. Further, less underfill or molding compound is needed. However, this packaging technology also suffers from drawbacks. As aforementioned, the sizes of the dies are becoming smaller, and the respective packages can only be fan-in type packages, in which the I/O pads of each die are limited to a region directly over the surface of the respective die. With the limited areas of the dies, the number of the I/O pads is limited due to the limitation of the pitch of the I/O pads. If the pitch of the pads is decreased, solder bridging may occur. Additionally, under the fixed ball-size requirement, solder balls must have a predetermined size, which in turn limits the number of solder balls that can be packed on the surface of a die.
In the other category of packaging, dies are sawed from wafers before they are packaged, and only “known-good-dies” are packaged. An advantageous feature of this packaging technology is the possibility of forming fan-out packages, which means that the I/O pads on a die can be redistributed to a greater area than that of the die, and hence the number of I/O pads packed on the surfaces of the dies can be increased.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are illustrative, and do not limit the scope of the disclosure.
A novel embedded wafer-level package structure and methods of forming the same are provided in accordance with one or more embodiments. The intermediate stages of manufacturing the package structure in accordance with the one or more embodiments are illustrated. Variations of the one or more embodiments are also discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
A planarization stop layer 125 is formed over the top surface of dies 120 and covers conductive pads 122, as shown in
Wafer 100 is sawed along scribe lines 129, so that dies 120 are separated from each other. Alignment marks (not shown) may be formed adjacent to the top surface of dies 120, and are visible from top.
Referring to
After dies 120 and 220 are placed on carrier 20, polymer 34 is filled into the spaces between dies 120 and 220, as shown in
Referring to
The hardness of the planarization stop layers 125 and 225 could be significantly lower than the hardness of molding compound 34. For example, the Young's modulus (a measurement of hardness) of molding compound 34 could be in a range from about 10 to about 30 GPa and the Young's modulus of planarization stop layers 125 and 225 are less than about 5 GPa. In some embodiments, the Young's modulus of planarization stop layers 125 and 225 are less than about 0.1 GPa. During planarization of molding compound 34, when one or both of planarization stop layers 125 and 225 is reached, the resistance sensed by the planarization tool, such as a grinder, would be different due to the difference in Young's modulus (reflecting hardness) of layers 125 and/or 225, and molding compound 34. The difference resistance experienced by the planarization tool can be used to determine an endpoint of the planarization process.
During the planarization process, the removal rates of planarization stop layers 125 and/or 225 is substantially lower than the removal rate of molding compound 34, in some embodiments. In some embodiments, the ratio of removal rate of molding compound 34 to planarization stop layer 125 or 225 is in equal to or greater than about 1.3. In some embodiments, the ratio is equal to or greater than about 2. In some embodiments, the ratio is equal to or greater than about 3. The difference in planarization rates of molding compound 34 and planarization stop layers 125 and/or 225 helps the determination of the endpoint of the planarization process.
In some embodiments, the planarization stop layers 125 and 225 are made of polymers, such as epoxy, or the like. In some embodiments, the thickness of planarization stop layer 125 or 225 is in a range from about 5 μm to about 100 μm. In some embodiments, the total thickness H120 (
Next, as shown in
With the removal of planarization stop layers 125 and 225, the surfaces 122a and 222a of conductive pads 122 and 222, respectively, are lower than the surface 34a of molding compound 34, as shown in
Afterwards, as shown in
The process flow described above uses the planarization stop layer(s) 125 or/and 225 to determine the end-point of the planarization process performed on the molding compound 34. In some wafer-level packaging (WLP) technologies, copper plugs (or pillars) are formed in a dielectric layer on wafers prior to sawing the dies. Such copper plugs can be used as planarization stops.
Redistribution lines (RDLs) 40 are then formed over dies 120 and 220, and are connected to conductive plugs 126 and 226, as shown in
In some alternative embodiments, the formation methods of RDLs 40 include damascene processes. RDLs 40 may be formed in dielectric layer(s) 38, and may include metal lines and vias. In some embodiments, RDLs 40 extend beyond edges of the respective dies 120 and 220 and overlapping the portions of molding compound 34 that are filled between dies 120 and 220. Accordingly, the resulting package is a fan-out package. In some embodiments, RDLs 40 include copper and/or copper alloy, in some embodiments. RDLs 40 may also include copper barrier layer to separate copper in the RDLs 40 from directly contacting the surrounding dielectric layer(s).
Some of electrical connectors 42 may be formed over and aligned to dies 120 and 220, while some other electrical connectors 42 may also be formed over and aligned to molding compound 34, and aligned to the spaces between dies 120 and 220. Forming electrical connectors 42 outside the boundaries of die 120 and 220 is enabled by RDLs 40. As mentioned above, connections beyond the boundaries of dies are part of a fan-out package.
Next, as shown in
The following processing operations to complete formation of packages 50′, as shown in
The embodiments described above include two dies in each package. However, the packaging mechanisms described above may apply to packaging various combinations of dies. For example, there could be only one die in each package. In some alternative embodiments, three or more dies may be included in a package.
The embodiments of mechanisms of wafer-level packaging (WLP) described above utilize a planarization stop layer to indicate an end-point of the removal of excess molding compound prior to formation of redistribution lines (RDLs). Such mechanisms of WLP enable fan-out and multi-chip packaging. The mechanisms also enable chips (or dies) with different types of external connections to be packaged together. For example, a die with pre-formed bumps can be packaged with a die without pre-formed bumps.
One aspect of this description relates to a semiconductor package. The semiconductor package includes a first semiconductor die surrounded by a molding compound. The semiconductor package further includes a first conductive pad on the first semiconductor die, wherein the first conductive pad is at a top metal level of the first semiconductor die. The semiconductor package further includes redistribution lines (RDLs) formed over the first conductive pad, wherein at least one RDL of the RDLs extends beyond the boundaries of the semiconductor die, and a portion of the at least one RDL contacts the first conductive pad, wherein a surface of the first conductive pad contacting the portion of the at least one RDL is at a different level than a surface of the molding compound under the at least one RDL extended beyond the boundaries of the first semiconductor die.
Another aspect of this description relates to a semiconductor package. The semiconductor package includes a molding compound surrounding a first semiconductor die, and a first conductive pad on the first semiconductor die, wherein the first conductive pad is at a top metal level of the first semiconductor die. The semiconductor package further includes a redistribution line (RDL) over the first conductive pad, wherein the RDL extends over a top surface of the molding compound, and a portion of the RDL is electrically connected to the first conductive pad, and a surface of the first conductive pad electrically connected to the portion of the RDL is at a different level from the top surface of the molding compound.
Still another aspect of this description relates to a semiconductor package. The semiconductor package includes a first semiconductor die, and a second semiconductor die spaced from the first semiconductor die. The semiconductor package further includes a first conductive pad on the first semiconductor die, and a second conductive pad on the second semiconductor die. The semiconductor package further includes a dielectric layer surrounding the first semiconductor die and the second semiconductor die. The semiconductor package further includes a redistribution line (RDL) electrically connected to the first conductive pad and to the second conductive pad, wherein the RDL extends over a top surface of the dielectric layer, and a surface of the first conductive pad electrically connected to the portion of the RDL is at a different level from the top surface of the dielectric layer.
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
The present application is a divisional of U.S. application Ser. No. 13/539,229, filed Jun. 29, 2012, which claims the priority of U.S. Provisional Application No. 61/649,174, filed May 18, 2012, both of which are incorporated by reference herein in their entireties. This application relates to the following co-pending and commonly assigned patent applications: Ser. No. 12/880,736, entitled “Embedded Wafer-Level Bonding Approaches” and filed on Sep. 13, 2010, and Ser. No. 13/452,140, entitled “Multi-Chip Fan Out Package and Methods of Forming the Same” and filed on Apr. 20, 2012, both of which are incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5353498 | Fillion | Oct 1994 | A |
7238602 | Yang | Jul 2007 | B2 |
7276783 | Goller | Oct 2007 | B2 |
7863090 | Eichelberger | Jan 2011 | B2 |
8034661 | Lin | Oct 2011 | B2 |
8039303 | Shim | Oct 2011 | B2 |
8294253 | Ihara | Oct 2012 | B2 |
8361842 | Yu et al. | Jan 2013 | B2 |
20020028045 | Yoshimura et al. | Mar 2002 | A1 |
20040232543 | Goller et al. | Nov 2004 | A1 |
20070096306 | Yamagata | May 2007 | A1 |
20110024887 | Chi | Feb 2011 | A1 |
20110204513 | Meyer et al. | Aug 2011 | A1 |
20110241222 | Sezi et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
102347251 | Feb 2012 | CN |
Entry |
---|
Office Action dated Aug. 6, 2014 from corresponding application No. DE 10 2012 112 758.1. |
Number | Date | Country | |
---|---|---|---|
20140197535 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61649174 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13539229 | Jun 2012 | US |
Child | 14211341 | US |