Apparatus for integration of barrier layer and seed layer

Abstract
A system for processing a substrate is provided which includes at least one atomic layer deposition (ALD) chamber for depositing a barrier layer containing tantalum and at least one physical vapor deposition (PVD) metal seed chamber for depositing a metal seed layer on the barrier layer. The at least one ALD chamber may be in fluid communication with a first precursor source providing a tantalum-containing compound and a second precursor source. In one example, the tantalum-containing compound is an organometallic tantalum precursor, such as PDMAT. In another example, the second precursor source contains a nitrogen precursor, such as ammonia. The PDMAT may have a chlorine concentration of about 100 ppm or less, preferably, about 30 ppm or less, and more preferably, about 5 ppm or less. In some examples, the PVD metal seed chamber is used to deposit a copper-containing metal seed layer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the invention generally relate to an apparatus and method for depositing a barrier layer and a seed layer thereon, and more particularly, to an apparatus and method for depositing a barrier layer containing tantalum and depositing a seed layer containing copper or other metals.


2. Description of the Related Art


Reliably producing sub-micron and smaller features is one of the key technologies for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. However, as the fringes of circuit technology are pressed, the shrinking dimensions of interconnects in VLSI and ULSI technology have placed additional demands on the processing capabilities. The multilevel interconnects that lie at the heart of this technology require precise processing of high aspect ratio features, such as vias and other interconnects. Reliable formation of these interconnects is very important to VLSI and ULSI success and to the continued effort to increase circuit density and quality of individual substrates.


As circuit densities increase, the widths of vias, contacts and other features, as well as the dielectric materials between them, decrease to sub-micron dimensions (e.g., less than 0.20 μm or less), whereas the thickness of the dielectric layers remains substantially constant, with the result that the aspect ratios for the features, i.e., their height divided by width, increase. Many traditional deposition processes have difficulty filling sub-micron structures where the aspect ratio exceeds 4:1, and particularly where the aspect ratio exceeds 10:1. Therefore, there is a great amount of ongoing effort being directed at the formation of substantially void-free and seam-free sub-micron features having high aspect ratios.


Currently, copper and its alloys have become the metals of choice for sub-micron interconnect technology because copper has a lower resistivity than aluminum, (1.7 μΩ-cm compared to 3.1 μΩ-cm for aluminum), and a higher current carrying capacity and significantly higher electromigration resistance. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increased device speed. Further, copper has a good thermal conductivity and is available in a highly pure state.


Copper metallization can be achieved by a variety of techniques. A typical method generally comprises physical vapor depositing a barrier layer over a feature, physical vapor depositing a copper seed layer over the barrier layer, and then electroplating a copper conductive material layer over the copper seed layer to fill the feature. Finally, the deposited layers and the dielectric layers are planarized, such as by chemical mechanical polishing (CMP), to define a conductive interconnect feature.


However, one problem with the use of copper is that copper diffuses into silicon, silicon dioxide, and other dielectric materials which may compromise the integrity of devices. Therefore, conformal barrier layers become increasingly important to prevent copper diffusion. Tantalum nitride has been used as a barrier material to prevent the diffusion of copper into underlying layers. One problem with prior uses of tantalum nitride and other barrier layers, however, is that these barrier layers are poor wetting agents for the deposition of copper thereon which may cause numerous problems. For example, during deposition of a copper seed layer over these barrier layers, the copper seed layer may agglomerate and become discontinuous, which may prevent uniform deposition of a copper conductive material layer (i.e., electroplating of a copper layer) over the copper seed layer. In another example, subsequent processing at high temperatures of a substrate structure having a copper layer deposited over these barrier layers may cause dewetting and the formation of voids in the copper layer. In still another example, thermal stressing of formed devices through use of the devices may cause the generation of voids in the copper layer and device failure.


Thus, there is a need for an improved apparatus and method for depositing barrier and seed materials.


SUMMARY OF THE INVENTION

Embodiments of the invention generally relates to apparatuses and methods for depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof of. The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer. The first seed layer may comprise a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features, advantages, and objects of embodiments of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a schematic cross-sectional view of one embodiment of a processing system that may be used to form one or more barrier layers by atomic layer deposition.



FIG. 2A is a schematic cross-sectional view of one embodiment of a substrate having a dielectric layer deposited thereon.



FIG. 2B is a schematic cross-sectional view of one embodiment of a barrier layer formed over the substrate structure of FIG. 2A.



FIGS. 3A-3C illustrate one embodiment of alternating chemisorption of monolayers of a tantalum containing compound and a nitrogen containing compound on a portion of substrate at a stage of barrier layer formation.



FIG. 4 is a schematic cross-sectional view of one embodiment of a process system capable of physical vapor deposition which may be used to deposit a copper alloy seed layer.



FIGS. 5A-5C are schematic cross-sectional views of embodiments of depositing a seed layer over a barrier layer of FIG. 2B.



FIG. 6 is a schematic top-view diagram of one example of a multi-chamber processing system which may be adapted to perform processes as disclosed herein.





DETAILED DESCRIPTION

Process Chamber Adapted for Depositing a Barrier Layer



FIG. 1 is a schematic cross-sectional view of one exemplary embodiment of a processing system 10 that may be used to form one or more barrier layers by atomic layer deposition in accordance with aspects of the present invention. Of course, other processing systems may also be used.


The process system 10 generally includes a process chamber 100, a gas panel 130, a control unit 110, a power supply 106, and a vacuum pump 102. The process chamber 100 generally houses a support pedestal 150, which is used to support a substrate such as a semiconductor wafer 190 within the process chamber 100.


In the chamber 100, the support pedestal 150 may be heated by an embedded heating element 170. For example, the pedestal 150 may be resistively heated by applying an electric current from an AC power supply to the heating element 170. The wafer 190 is, in turn, heated by the pedestal 150, and may be maintained within a desired process temperature range, for example, between about 20° C. and about 1,000° C. depending on the specific process.


A temperature sensor 172, such as a thermocouple, may be embedded in the wafer support pedestal 150 to monitor the pedestal temperature. For example, the measured temperature may be used in a feedback loop to control electric current applied to the heating element 170 from the power supply 106, such that the wafer temperature can be maintained or controlled at a desired temperature or within a desired temperature range suitable for a certain process application. The pedestal 150 may also be heated using radiant heat (not shown) or other heating methods.


The vacuum pump 102 may be used to evacuate process gases from the process chamber 100 and may be used to help maintain a desired pressure or desired pressure within a pressure range inside the chamber 100. An orifice 120 through a wall of the chamber 100 is used to introduce process gases into the process chamber 100. The size of the orifice 120 conventionally depends on the size of the process chamber 100.


The orifice 120 is coupled to the gas panel 130 in part by a valve 125. The gas panel 130 may be configured to receive and then provide a resultant process gas from two or more gas sources 135, 136 to the process chamber 100 through the orifice 120 and the valve 125. The gas sources 135, 136 may store precursors in a liquid phase at room temperature, which are later heated when in the gas panel 130 to convert them to a vapor-gas phase for introduction into the chamber 100. The gas sources 135, 136 may also be adapted to provide precursors through the use of a carrier gas. The gas panel 130 may be further configured to receive and then provide a purge gas from a purge gas source 138 to the process chamber 100 through the orifice 120 and the valve 125. A showerhead 160 may be coupled to the orifice 120 to deliver a process gas, purge gas, or other gas toward the wafer 190 on the support pedestal 150.


The showerhead 160 and the support pedestal 150 may serve as spaced apart electrodes for providing an electric field for igniting a plasma. A RF power source 162 may be coupled to the showerhead 160, a RF power source 163 may be coupled to the support pedestal 150, or RF power sources 162, 163 may be coupled to the showerhead 160 and the support pedestal 150, respectively. A matching network 164 may be coupled to the RF power sources 162, 163, which may be coupled to the control unit 110 to control the power supplied to the RF power sources 162, 163.


The control unit 110, such as a programmed personal computer, work station computer, and the like, may also be configured to control flow of various process gases through the gas panel 130 as well as the valve 125 during different stages of a wafer process sequence. Illustratively, the control unit 110 comprises a central processing unit (CPU) 112, support circuitry 114, and memory 116 containing associated control software 113. In addition to control of process gases through the gas panel 130, the control unit 110 may be configured to be responsible for automated control of other activities used in wafer processing-such as wafer transport, temperature control, chamber evacuation, among other activities, some of which are described elsewhere herein.


The control unit 110 may be one of any form of general purpose computer processor that can be used in an industrial setting for controlling various chambers and sub-processors. The CPU 112 may use any suitable memory 116, such as random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote. Various support circuits may be coupled to the CPU 112 for supporting the system 10. Software routines 113 as required may be stored in the memory 116 or executed by a second computer processor that is remotely located (not shown). Bi-directional communications between the control unit 110 and various other components of the wafer processing system 10 are handled through numerous signal cables collectively referred to as signal buses 118, some of which are illustrated in FIG. 1.


Barrier Layer Formation


The exemplary chamber as described in FIG. 1 may be used to implement the following process. Of course, other process chambers may be used. FIGS. 2A-2B illustrate one exemplary embodiment of barrier layer formation for fabrication of an interconnect structure in accordance with one or more aspects of the present invention.



FIG. 2A is a schematic cross-sectional view of one embodiment of a substrate 200 having a dielectric layer 202 deposited thereon. Depending on the processing stage, the substrate 200 may be a silicon semiconductor wafer, or other material layer, which has been formed on the wafer. The dielectric layer 202 may be an oxide, a silicon oxide, carbon-silicon-oxide, a fluoro-silicon, a porous dielectric, or other suitable dielectric formed and patterned to provide a contact hole or via 202H extending to an exposed surface portion 202T of the substrate 200. For purposes of clarity, the substrate 200 refers to any workpiece upon which film processing is performed, and a substrate structure 250 is used to denote the substrate 200 as well as other material layers formed on the substrate 200, such as the dielectric layer 202. It is also understood by those with skill in the art that the present invention may be used in a dual damascene process flow.



FIG. 2B is a schematic cross-sectional view of one embodiment of a barrier layer 204 formed over the substrate structure 250 of FIG. 2A by atomic layer deposition (ALD). Preferably, the barrier layer comprises a tantalum nitride layer. Examples of other barrier layer materials which may be used include titanium (Ti), titanium nitride (TiN), titanium silicon nitride (TiSiN), tantalum (Ta), tantalum silicon nitride (TaSiN), tungsten (W), tungsten nitride (WN), tungsten silicon nitride (WSiN), and combinations thereof.


For clarity reasons, deposition of the barrier layer will be described in more detail in reference to one embodiment of the barrier layer comprising a tantalum nitride barrier layer. In one aspect, atomic layer deposition of a tantalum nitride barrier layer comprises sequentially providing a tantalum containing compound and a nitrogen containing compound to a process chamber, such as the process chamber of FIG. 1. Sequentially providing a tantalum containing compound and a nitrogen containing compound may result in the alternating chemisorption of monolayers of a tantalum containing compound and of monolayers of a nitrogen containing compound on the substrate structure 250.



FIGS. 3A-3C illustrate one embodiment of the alternating chemisorption of monolayers of a tantalum containing compound and a nitrogen containing compound on an exemplary portion of substrate 300 in a stage of integrated circuit fabrication, and more particularly at a stage of barrier layer formation. In FIG. 3A, a monolayer of a tantalum containing compound is chemisorbed on the substrate 300 by introducing a pulse of the tantalum containing compound 305 into a process chamber, such as a process chamber shown in FIG. 1. It is believed that the chemisorption processes used to absorb the monolayer of the tantalum containing compound 305 are self-limiting in that only one monolayer may be chemisorbed onto the surface of the substrate 300 during a given pulse because the surface of the substrate has a finite number of sites for chemisorbing the tantalum containing compound. Once the finite number of sites is occupied by the tantalum containing compound 305, further chemisorption of any tantalum containing compound will be blocked.


The tantalum containing compound 305 typically comprises tantalum atoms 310 with one or more reactive species 315. In one embodiment, the tantalum containing compound may be a tantalum based organometallic precursor or a derivative thereof. Preferably, the organometallic precursor is penta(dimethylamino)-tantalum (PDMAT; Ta(NMe2)5). PDMAT may be used to advantage for a number of reasons. PDMAT is relatively stable. PDMAT has an adequate vapor pressure which makes it easy to deliver. In particular, PDMAT may be produced with a low halide content. The halide content of PDMAT may be produced with a halide content of less than 100 ppm, and may even be produced with a halide content of less than 30 ppm or even less than 5 ppm. Not wishing to be bound by theory, it is believed that an organometallic precursor with a low halide content is beneficial because halides (such as chlorine) incorporated in the barrier layer may attack the copper layer deposited thereover.


The tantalum containing compounds may be other organometallic precursors or derivatives thereof such as, but not limited to penta(ethylmethylamino)-tantalum (PEMAT; Ta(N(Et)Me)5), penta(diethylamino)-tantalum (PDEAT; Ta(NEt2)5), and any and all of derivatives of PEMAT, PDEAT, or PDMAT. Other tantalum containing compounds include without limitation TBTDET (Ta(NEt2)3NC4H9 or C16H39N4Ta) and tantalum halides, for example TaX5 where X is fluorine, bromine, or chlorine, and derivatives thereof.


The tantalum containing compound may be provided as a gas or may be provided with the aid of a carrier gas. Examples of carrier gases which may be used include, but are not limited to, helium (He), argon (Ar), nitrogen (N2), and hydrogen (H2).


After the monolayer of the tantalum containing compound is chemisorbed onto the substrate 300, excess tantalum containing compound is removed from the process chamber by introducing a pulse of a purge gas thereto. Examples of purge gases which may be used include, but are not limited to, helium, argon, nitrogen (N2), hydrogen (H2), and other gases.


Referring to FIG. 3B, after the process chamber has been purged, a pulse of a nitrogen containing compound 325 is introduced into the process chamber. The nitrogen containing compound 325 may be provided alone or may be provided with the aid of a carrier gas. The nitrogen containing compound 325 may comprise nitrogen atoms 330 with one or more reactive species 335. The nitrogen containing compound preferably comprises ammonia gas (NH3). Other nitrogen containing compounds may be used which include, but are not limited to, NxHy with x and y being integers (e.g., hydrazine (N2H4)), dimethyl hydrazine ((CH3)2N2H2), t-butylhydrazine (C4H9N2H3), phenylhydrazine (C6H5N2H3), other hydrazine derivatives, a nitrogen plasma source (e.g., N2, N2/H2, NH3, or a N2H4 plasma), 2,2′-azotertbutane ((CH3)6C2N2), ethylazide (C2H5N3), and other suitable gases. A carrier gas may be used to deliver the nitrogen containing compound if necessary.


A monolayer of the nitrogen containing compound 325 may be chemisorbed on the monolayer of the tantalum containing compound 305. The composition and structure of precursors on a surface during atomic-layer deposition (ALD) is not precisely known. Not wishing to be bound by theory, it is believed that the chemisorbed monolayer of the nitrogen containing compound 325 reacts with the monolayer of the tantalum containing compound 305 to form a tantalum nitride layer 309. The reactive species 315, 335 form by-products 340 that are transported from the substrate surface by the vacuum system. It is believed that the reaction of the nitrogen containing compound 325 with the tantalum containing compound 305 is self-limited since only one monolayer of the tantalum containing compound 305 was chemisorbed onto the substrate surface. In another theory, the precursors may be in an intermediate state when on a surface of the substrate. In addition, the deposited tantalum nitride layer may also contain more than simply elements of tantalum or nitrogen, rather, the tantalum nitride layer may also contain more complex molecules having carbon, hydrogen, and/or oxygen.


After the monolayer of the nitrogen containing compound 325 is chemisorbed on the monolayer of the tantalum containing compound, any excess nitrogen containing compound is removed from the process chamber by introducing another pulse of the purge gas therein. Thereafter, as shown in FIG. 3C, the tantalum nitride layer deposition sequence of alternating chemisorption of monolayers of the tantalum containing compound and of the nitrogen containing compound may be repeated, if necessary, until a desired tantalum nitride thickness is achieved.


In FIGS. 3A-3C, the tantalum nitride layer formation is depicted as starting with the chemisorption of a monolayer of a tantalum containing compound on the substrate followed by a monolayer of a nitrogen containing compound. Alternatively, the tantalum nitride layer formation may start with the chemisorption of a monolayer of a nitrogen containing compound on the substrate followed by a monolayer of the tantalum containing compound. Furthermore, in an alternative embodiment, a pump evacuation alone between pulses of reactant gases may be used to prevent mixing of the reactant gases.


The time duration for each pulse of the tantalum containing compound, the nitrogen containing compound, and the purge gas is variable and depends on the volume capacity of a deposition chamber employed as well as a vacuum system coupled thereto. For example, (1) a lower chamber pressure of a gas will require a longer pulse time; (2) a lower gas flow rate will require a longer time for chamber pressure to rise and stabilize requiring a longer pulse time; and (3) a large-volume chamber will take longer to fill, longer for chamber pressure to stabilize thus requiring a longer pulse time. Similarly, time between each pulse is also variable and depends on volume capacity of the process chamber as well as the vacuum system coupled thereto. In general, the time duration of a pulse of the tantalum containing compound or the nitrogen containing compound should be long enough for chemisorption of a monolayer of the compound. In general, the pulse time of the purge gas should be long enough to remove the reaction by-products and/or any residual materials remaining in the process chamber.


Generally, a pulse time of about 1.0 second or less for a tantalum containing compound and a pulse time of about 1.0 second or less for a nitrogen containing compound are typically sufficient to chemisorb alternating monolayers on a substrate. A pulse time of about 1.0 second or less for a purge gas is typically sufficient to remove reaction by-products as well as any residual materials remaining in the process chamber. Of course, a longer pulse time may be used to ensure chemisorption of the tantalum containing compound and the nitrogen containing compound and to ensure removal of the reaction by-products.


During atomic layer deposition, the substrate may be maintained approximately below a thermal decomposition temperature of a selected tantalum containing compound. An exemplary heater temperature range to be used with tantalum containing compounds identified herein is approximately between about 20° C. and about 500° C. at a chamber pressure less than about 100 Torr, preferably less than about 50 Torr. When the tantalum containing gas is PDMAT, the heater temperature is preferably between about 100° C. and about 300° C., more preferably between about 175° C. and about 250° C. In other embodiments, it should be understood that other temperatures may be used. For example, a temperature above a thermal decomposition temperature may be used. However, the temperature should be selected so that more than 50 percent of the deposition activity is by chemisorption processes. In another example, a temperature above a thermal decomposition temperature may be used in which the amount of decomposition during each precursor deposition is limited so that the growth mode will be similar to an atomic layer deposition growth mode.


One exemplary process of depositing a tantalum nitride layer by atomic layer deposition in a process chamber, such as the process chamber of FIG. 1, comprises sequentially providing penta(dimethylamino)-tantalum (PDMAT) at a flow rate between about 100 sccm and about 1,000 sccm, and preferably between about 200 sccm and about 500 sccm, for a time period of about 1.0 second or less, providing ammonia at a flow rate between about 100 sccm and about 1,000 sccm, preferably between about 200 sccm and about 500 sccm, for a time period of about 1.0 second or less, and a purge gas at a flow rate between about 100 sccm and about 1,000 sccm, preferably between about 200 sccm and about 500 sccm for a time period of about 1.0 second or less. The heater temperature preferably is maintained between about 100° C. and about 300° C. at a chamber pressure between about 1.0 Torr and about 5.0 Torr. This process provides a tantalum nitride layer in a thickness between about 0.5 Å and about 1.0 Å per cycle. The alternating sequence may be repeated until a desired thickness is achieved.


In one embodiment, the barrier layer, such as a tantalum nitride barrier layer, is deposited to a sidewall coverage of about 50 Å or less. In another embodiment, the barrier layer is deposited to a sidewall coverage of about 20 Å or less. In still another embodiment, the barrier layer is deposited to a sidewall coverage of about 10 Å or less. A barrier layer with a thickness of about 10 Å or less is believed to be a sufficient barrier layer to prevent copper diffusion. In one aspect, a thin barrier layer may be used to advantage in filling sub-micron and smaller features having high aspect ratios. Of course, a barrier layer having a sidewall coverage of greater than 50 Å may be used.


The barrier layer may be further plasma annealed. In one embodiment, the barrier lay may be plasma annealed with an argon plasma or an argon/hydrogen plasma. The RF power supplied to an RF electrode may be between about 100 W and about 2,000 W, preferably between about 500 W and about 1,000 W for a 200 mm diameter substrate and preferably between about 1,000 W and about 2,000 W for a 300 mm diameter substrate. The pressure of the chamber may be less than 100 Torr, preferably between about 0.1 Torr and about 5 Torr, and more preferably between about 1 Torr and 3 Torr. The heater temperature may be between about 20° C. and about 500° C. The plasma anneal may be performed after a cycle, a plurality of cycles, or after formation of the barrier layer.


Embodiments of atomic layer deposition of the barrier layer have been described above as chemisorption of a monolayer of reactants on a substrate. The present invention also includes embodiments in which the reactants are deposited to more or less than a monolayer. The present invention also includes embodiments in which the reactants are not deposited in a self-limiting manner. The present invention also includes embodiments in which the barrier layer 204 is deposited in mainly a chemical vapor deposition process in which the reactants are delivered sequentially or simultaneously. The present invention also includes embodiments in which the barrier layer 204 is deposited in a physical vapor deposition process in which the target comprises the material to be deposited (i.e., a tantalum target in a nitrogen atmosphere for the deposition of tantalum nitride).


Process Chamber Adapted for Depositing a Seed Layer


In one embodiment, the seed layer may be deposited by any suitable technique such as physical vapor deposition, chemical vapor deposition, electroless deposition, or a combination of techniques. Suitable physical vapor deposition techniques for the deposition of the seed layer include techniques such as high density plasma physical vapor deposition (HDP PVD) or collimated or long throw sputtering. One type of HDP PVD is self-ionized plasma physical vapor deposition. An example of a chamber capable of self-ionized plasma physical vapor deposition of a seed layer is a SIP™ chamber, available from Applied Materials, Inc., of Santa Clara, Calif. Exemplary embodiments of chambers capable of self-ionized physical vapor deposition are described in U.S. Pat. No. 6,183,614, which is herein incorporated by reference to the extent not inconsistent with embodiments of the invention.



FIG. 4 is a schematic cross-sectional view of one embodiment of a process system 410 capable of physical vapor deposition which may be used to deposit a seed layer. Of course, other processing systems and other types of physical vapor deposition may also be used.


The process system 410 includes a chamber 412 sealed to a PVD target 414 composed of the material to be sputter deposited on a wafer 416 held on a heater pedestal 418. A shield 420 held within the chamber protects the walls of the chamber 412 from the sputtered material and provides the anode grounding plane. A selectable DC power supply 422 negatively biases the target 414 with respect to the shield 420.


A gas source 424 supplies a sputtering working gas, typically the chemically inactive gas argon, to the chamber 412 through a mass flow controller 426. A vacuum system 428 maintains the chamber at a low pressure. A computer-based controller 430 controls the reactor including the DC power supply 422 and the mass flow controllers 426.


When the argon is admitted into the chamber, the DC voltage between the target 414 and the shield 420 ignites the argon into a plasma, and the positively charged argon ions are attracted to the negatively charged target 414. The ions strike the target 414 at a substantial energy and cause target atoms or atomic clusters to be sputtered from the target 414. Some of the target particles strike the wafer 416 and are thereby deposited on it, thereby forming a film of the target material.


To provide efficient sputtering, a magnetron 432 is positioned in back of the target 414. It has opposed magnets 434, 436 creating a magnetic field within the chamber in the neighborhood of the magnets 434, 436. The magnetic field traps electrons and, for charge neutrality, the ion density also increases to form a high-density plasma region 438 within the chamber adjacent to the magnetron 432. The magnetron 432 usually rotates about a rotational axis 458 at the center of the target 414 to achieve full coverage in sputtering of the target 414.


The pedestal 418 develops a DC self-bias, which attracts ionized sputtered particles from the plasma across the plasma sheath adjacent to the wafer 416. The effect can be accentuated with additional DC or RF biasing of the pedestal electrode 418 to additionally accelerate the ionized particles extracted across the plasma sheath towards the wafer 416, thereby controlling the directionality of sputter deposition.


Seed Layer Formation


The exemplary chamber as described in FIG. 4 may be used to implement the following process. Of course, other process chambers may be used. FIGS. 5A-5C are schematic cross-sectional view of exemplary embodiments of depositing a seed layer over a barrier layer.


One embodiment, as shown in FIG. 5A, comprises depositing a copper alloy seed layer 502 over a barrier layer 204 of FIG. 2B and depositing a copper conductive material layer 506 over the copper alloy seed layer 502 to fill the feature. The term “copper conductive material layer” as used in the specification is defined as a layer comprising copper or a copper alloy. The copper alloy seed layer 502 comprises a copper metal alloy that aids in subsequent deposition of materials thereover. The copper alloy seed layer 502 may comprise copper and a second metal, such as aluminum, magnesium, titanium, zirconium, tin, other metals, and combinations thereof. The second metal preferably comprises aluminum, magnesium, titanium, and combinations thereof, and more preferably comprises aluminum. In certain embodiments, the copper alloy seed layer comprises a second metal in a concentration having the lower limits of about 0.001 atomic percent, about 0.01 atomic percent, or about 0.1 atomic percent and having the upper limits of about 5.0 atomic percent, about 2.0 atomic percent, or about 1.0 atomic percent. The concentration of the second metal in a range from any lower limit to any upper limit is within the scope of the present invention. The concentration of the second metal in the copper alloy seed layer 502 is preferably less than about 5.0 atomic percent to lower the resistance of the copper alloy seed layer 502. The term “layer” as used in the specification is defined as one or more layers. For example, for a copper alloy seed layer 502 comprising copper and a second metal in a concentration in a range between about 0.001 atomic percent and about 5.0 atomic percent, the copper alloy seed layer 502 may comprise a plurality of layers in which the total composition of the layers comprises copper and the second metal in a concentration between about 0.001 atomic percent and about 5.0 atomic percent. For illustration, examples of a copper alloy seed layer 502 comprising a plurality of layers in which the total composition of the layers comprises copper and the second metal in a concentration between about 0.001 atomic percent and about 5.0 atomic percent may comprises a first seed layer comprising the second metal and a second seed layer comprising copper, may comprise a first seed layer comprising a copper/second metal alloy and a second seed layer comprising a copper/second metal alloy, or may comprise a first seed layer comprising a copper/second metal alloy and a second seed layer comprising copper.


The copper alloy seed layer 502 is deposited to a thickness of at least about a 5 Å coverage of the sidewalls of the feature or to a thickness of at least a continuous coverage of the sidewalls of the feature. In one embodiment, the copper alloy seed layer 502 is deposited to a thickness at the field areas between about 10 Å and about 2,000 Å, preferably between about 500 Å and about 1,000 Å for a copper alloy seed layer 502 deposited by physical vapor deposition.


Another embodiment, as shown in FIG. 5B, comprises depositing a copper alloy seed layer 512 over a barrier layer 204 of FIG. 2B, depositing a second seed layer 514 over the copper alloy seed layer 512, and depositing a copper conductive material layer 516 over the second seed layer 514 to fill the feature. The copper alloy seed layer 512 comprises a copper metal alloy that aids in subsequent deposition of materials thereover. The copper alloy seed layer 512 may comprise copper and a second metal, such as aluminum, magnesium, titanium, zirconium, tin, other metals, and combinations thereof. The second metal preferably comprises aluminum, magnesium, titanium, and combinations thereof and more preferably comprises aluminum. In certain embodiments, the copper alloy seed layer comprises a second metal in a concentration having the lower limits of about 0.001 atomic percent, about 0.01 atomic percent, or about 0.1 atomic percent and having the upper limits of about 5.0 atomic percent, about 2.0 atomic percent, or about 1.0 atomic percent. The concentration of the second metal in a range from any lower limit to any upper limit is within the scope of the present invention. In one embodiment, the second seed layer 514 comprises undoped copper (i.e., pure copper). In one aspect, a second seed layer 514 comprising undoped copper is used because of its lower electrical resistivity than a copper alloy seed layer 512 of the same thickness and because of its higher resistance to surface oxidation.


The copper alloy seed layer 512 may be deposited to a thickness of less than a monolayer (e.g., a sub-monolayer thickness or a discontinuous layer) over the sidewalls of the feature. In one embodiment, the combined thickness of the copper alloy seed layer 512 and the second seed layer 514 at the field areas is between about 10 Å and about 2,000 Å, preferably between about 500 Å and about 1,000 Å for a copper alloy seed layer 512 and second seed layer 514 deposited by physical vapor deposition.


Another embodiment, as shown in FIG. 5C, comprises depositing a first seed layer 523 over a barrier layer 204 of FIG. 2B, depositing a second seed layer 524 over the first seed layer 523, and depositing a copper conductive material layer 526 over the second seed layer 524 to fill the feature. The first seed layer 523 comprises a metal selected from the group consisting of aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. Preferably, the first seed layer 523 comprises aluminum. In one embodiment, the second seed layer 514 comprises undoped copper (e.g., pure copper).


The first seed layer 523 may be deposited to a thickness of less than a monolayer (i.e., a sub-monolayer thickness or a discontinuous layer) over the sidewalls of the feature. In one embodiment, the first seed layer is deposited to a thickness of less than about 50 Å sidewall coverage, preferably less than about 40 Å sidewall coverage, in order to lower the total resistance of the combined seed layer. The combined thickness of the first seed layer 523 and the second seed layer 524 at the field areas is between about 10 Å and about 2,000 Å, preferably between about 500 Å and about 1,000 Å for a first seed layer 523 and second seed layer 524 deposited by physical vapor deposition.


The copper alloy seed layer 502, 512, the first seed layer 523, or the second seed layer 514, 524 may be deposited by such techniques including physical vapor deposition, chemical vapor deposition, atomic layer deposition, electroless deposition, or a combination of techniques. In general, if a seed layer is deposited utilizing physical vapor deposition techniques, a chamber, such as the chamber 412 as described in FIG. 4, includes a target, such as target 414, having a composition similar to the metal or metal alloy intended to be deposited. For example, to deposit a copper alloy seed layer 502, 512 the target may comprise copper and a second metal, such as aluminum, magnesium, titanium, zirconium, tin, other metals, and combinations thereof. The second metal preferably comprises aluminum. In certain embodiments, the target comprises a second metal in a concentration having the lower limits of about 0.001 atomic percent, about 0.01 atomic percent, or about 0.1 atomic percent and having the upper limits of about 5.0 atomic percent, about 2.0 atomic percent, or about 1.0 atomic percent. The concentration of the second metal in a range from any lower limit to any upper limit is within the scope of the present invention. In another example, to deposit a first seed layer 523, the target comprises a metal selected from the group consisting of aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. If a seed layer is deposited by chemical vapor deposition or atomic layer deposition, a chamber, such as the chamber as described in FIG. 1, is adapted to deliver suitable metal precursors of the metal or metal alloy to be deposited.


One exemplary process of depositing a seed layer by physical vapor deposition in a process chamber, such as the process chamber of FIG. 4, comprises utilizing a target of the material to be deposited. The process chamber may be maintained at a pressure of between about 0.1 mTorr and about 10 mTorr. The target may be DC-biased at a power between about 5 kW and about 100 kW. The pedestal may be RF-biased at a power between about 0 W and about 1,000 W. The pedestal may be unheated (i.e., room temperature).


The copper conductive material layer 506, 516, 526 may be deposited by electroplating, physical vapor deposition, chemical vapor deposition, electroless deposition or a combination of techniques. Preferably, the copper conductive material layer 506, 516, 526 is deposited by electroplating because of the bottom-up growth which may be obtained in electroplating processes. An exemplary electroplating method is described in U.S. Pat. No. 6,113,771, which is incorporated herein by reference to the extent not inconsistent with embodiments of the invention.


It has been observed that a copper alloy seed layer, such as a copper-aluminum seed layer, has improved adhesion over a barrier layer when compared to an undoped copper seed layer over the barrier layer. Because the copper alloy seed layer has good adhesion over a barrier layer, the copper alloy seed layer acts as a good wetting agent to materials deposited thereon. Not wishing to be bound by theory, it is believed that the concentration of the copper and other metals of the copper seed layer provides a seed layer with good wetting properties and good electrical characteristics. It is further believed that a copper alloy seed layer having a total thickness of less than a monolayer may be used as long as a second seed layer, such as an undoped seed layer, is deposited thereover to provide at least a combined continuous seed layer since the copper alloy seed layer provides an improved interface for adhesion of materials thereon.


Similarly, it has been observed that a metal seed layer, such as an aluminum seed layer, has improved adhesion over a barrier layer when compared to an undoped copper seed layer over the barrier layer. Because the metal seed layer has good adhesion over a barrier layer, the metal seed layer acts as a good wetting agent to materials deposited thereon. Not wishing to bound by theory, it is believed that a metal seed layer, such as an aluminum seed layer, having a total thickness of less than a monolayer may be used since the metal layer provides an improved interface for adhesion of materials thereon, such as an undoped copper seed layer deposited over the metal layer.


The seed layers as disclosed herein have improved adhesion over barrier layers and have good wetting properties for materials deposited thereover, such as a copper conductive material layer deposited thereover. Therefore, the seed layers increase device reliability by reducing the likelihood of agglomeration, dewetting, or the formation of voids in the copper conductive material layer during deposition of the copper conductive material layer, during subsequent processing at high temperatures, and during thermal stressing of the devices during use of the devices.


In one aspect, the seed layers may be used with any barrier layer and may be used with barrier layers deposited by any deposition technique. The seed layers also may be deposited by any deposition technique. Furthermore, a conductive material layer, such as a copper conductive material layer, may be deposited over the seed layers by any deposition technique.


The present process may be used to advantage in filling apertures having less than about 0.2 micron opening width and having an aspect ratio of greater than about 4:1, about 6:1, or about 10:1.


The processes as disclosed herein may be carried out in separate chambers or may be carried out in a multi-chamber processing system having a plurality of chambers. FIG. 6 is a schematic top-view diagram of one example of a multi-chamber processing system 600 which may be adapted to perform processes as disclosed herein. The apparatus is an ENDURA® system and is commercially available from Applied Materials, Inc., of Santa Clara, Calif. A similar multi-chamber processing system is disclosed in U.S. Pat. No. 5,186,718, which is hereby incorporated by reference to the extent not inconsistent with embodiments of the invention. The particular embodiment of the system 600 is provided to illustrate the invention and should not be used to limit the scope of the invention.


The system 600 generally includes load lock chambers 602, 604 for the transfer of substrates into and out from the system 600. Typically, since the system 600 is under vacuum, the load lock chambers 602, 604 may “pump down” the substrates introduced into the system 600. A first robot 610 may transfer the substrates between the load lock chambers 602, 604, processing chambers 612, 614, transfer chambers 622, 624, and other chambers 616, 618. A second robot 630 may transfer the substrates between processing chambers 632, 634, 636, 638 and the transfer chambers 622, 624. Processing chambers 612, 614, 632, 634, 636, 638 may be removed from the system 600 if not necessary for the particular process to be performed by the system 600.


In one embodiment, the system 600 is configured so that processing chamber 634 is adapted to deposit a copper alloy seed layer 502. For example, the processing chamber 634 for depositing a copper alloy seed layer 502 may be a physical vapor deposition chamber, a chemical vapor deposition chamber, or an atomic layer deposition chamber. The system 600 may be further configured so that processing chamber 632 is adapted to deposit a barrier layer 204 in which the copper alloy seed layer 502 is deposited over the barrier layer. For example, the processing chamber 632 for depositing the barrier layer 204 may be an atomic layer deposition chamber, a chemical vapor deposition chamber, or a physical vapor deposition chamber. In one specific embodiment, the processing chamber 632 may be an atomic layer deposition chamber, such as the chamber shown in FIG. 1, and the processing chamber 634 may be a physical vapor deposition chamber, such as the chamber shown in FIG. 4.


In another embodiment, the system 600 is configured so that processing chamber 634 is adapted to deposit a copper alloy seed layer 512 and so that processing chamber 636 is adapted to deposit a second seed layer 514 over the copper alloy seed layer 512. For example, the processing chamber 634 for depositing a copper alloy seed layer 512 and/or the processing chamber 636 for depositing a second seed layer may be a physical vapor deposition chamber, a chemical vapor deposition chamber, or an atomic layer deposition chamber. The system 600 may be further configured so that processing chamber 632 is adapted to deposit a barrier layer 204 in which the copper alloy seed layer 512 is deposited over the barrier layer. For example, the processing chamber 632 for depositing the barrier layer 204 may be an atomic layer deposition chamber, a chemical vapor deposition chamber, or a physical vapor deposition chamber. In one specific embodiment, processing chamber 632 may be an atomic layer deposition chamber, such as the chamber shown in FIG. 1, and processing chambers 634, 636 may be physical vapor deposition chambers, such as the chamber shown in FIG. 4.


In another embodiment, the system 600 is configured so that processing chamber 634 is adapted to deposit a metal seed layer 523 and so that processing chamber 636 is adapted to deposit a second seed layer 524 over the metal seed layer 523. For example, the processing chamber 634 for depositing a metal seed layer 523 and/or the processing chamber 636 for depositing a second seed layer 524 may be a physical vapor deposition chamber, a chemical vapor deposition chamber, or an atomic layer deposition chamber. The system may be further configured so that processing chamber 632 is adapted to deposit a barrier layer 204 in which the metal seed layer 523 is deposited over the barrier layer. For example, the processing chamber 632 for depositing the barrier layer 204 may be an atomic layer deposition chamber, a chemical vapor deposition chamber, or a physical vapor deposition chamber. In one specific embodiment, processing chamber 632 may be an atomic layer deposition chamber, such as the chamber shown in FIG. 1, and processing chambers 634, 636 may be physical vapor deposition chambers, such as the chamber shown in FIG. 4.


In one aspect, deposition of a barrier layer 204 and a seed layer (such as a copper alloy seed layer 502, a copper alloy seed layer 512 and a second seed layer 514, or a metal seed layer 523 and a second seed layer 524) may be performed in a multi-chamber processing system under vacuum to prevent air and other impurities from being incorporated into the layers and to maintain the seed structure over the barrier layer 204.


Other embodiments of the system 600 are within the scope of the present invention. For example, the position of a particular processing chamber on the system may be altered. In another example, a single processing chamber may be adapted to deposit two different layers.


EXAMPLES
Example 1

A TaN layer was deposited over a substrate by atomic layer deposition to a thickness of about 20 Å. A seed layer was deposited over the TaN layer by physical vapor deposition to a thickness of about 100 Å. The seed layer comprised either 1) undoped copper deposited utilizing a target comprising undoped copper, 2) a copper alloy comprising aluminum in a concentration of about 2.0 atomic percent deposited utilizing a copper-aluminum target comprising aluminum in a concentration of about 2.0 atomic percent, 3) a copper alloy comprising tin in a concentration of about 2.0 atomic percent deposited utilizing a copper-tin target comprising tin in a concentration of about 2.0 atomic percent, or 4) a copper alloy comprising zirconium in a concentration of about 2.0 atomic percent deposited utilizing a copper-zirconium target comprising zirconium in a concentration of about 2.0 atomic percent. The resulting substrate was annealed at a temperature of about 380° C. for a time period of about 15 minutes in a nitrogen (N2) and hydrogen (H2) ambient.


Scanning electron microscope photographs showed agglomeration of the undoped copper layer after the anneal. The copper-zirconium alloy showed less agglomeration than the undoped copper layer. The copper-tin alloy showed less agglomeration than the copper-zirconium alloy. The copper-aluminum alloy showed no significant agglomeration.


Example 2

Copper-aluminum alloy films comprising about 2.0 atomic percent of aluminum were deposited on different substrates by physical vapor deposition utilizing a copper-aluminum target comprising aluminum in a concentration of 2.0 atomic percent. The resulting substrates included 1) a copper-aluminum layer deposited to a thickness of about 50 Å over an ALD TaN layer, 2) a copper-aluminum layer deposited to a thickness of about 50 Å over about a 100 Å Ta layer, 3) a copper-aluminum layer deposited to a thickness of about 100 Å over an ALD TaN layer, 4) a copper-aluminum layer deposited to a thickness of about 100 Å over a silicon nitride (SiN) layer, and 5) a copper-aluminum layer deposited to a thickness of about 100 Å over a silicon oxide layer. The resulting substrates were annealed at a temperature of about 380° C. for a time period of about 15 minutes in a nitrogen (N2) and hydrogen (H2) ambient. Scanning electron microscope photographs showed that there was no significant agglomeration of the copper-aluminum alloy over the various substrates.


Example 3

Copper-aluminum alloy films comprising about 2.0 atomic percent of aluminum were deposited by physical vapor deposition utilizing a copper-aluminum target comprising aluminum in a concentration of 2.0 atomic percent to either a 50 Å or 100 Å thickness over an ALD TaN layer. The resulting substrates were annealed at a temperature of about 380° C., about 450° C., or about 500° C. for a time period of about 15 minutes in a nitrogen (N2) and hydrogen (H2) ambient. Scanning electron microscope photographs showed that there was no significant agglomeration of the copper-aluminum alloy for substrates annealed at temperatures of about 380° C. or about 450° C. The copper-aluminum alloy showed some dewetting began to occur for substrates annealed at a temperature of about 500° C.


Example 4

Copper-aluminum alloy films comprising about 2.0 atomic percent of aluminum were deposited by physical vapor deposition utilizing a copper-aluminum target comprising aluminum in a concentration of about 2.0 atomic percent to either about a 50 Å or about a 100 Å thickness over an ALD TaN layer. The resulting substrates were annealed at a temperature of about 450° C. for a time period of about 30 minutes in an ambient of nitrogen (N2) and hydrogen (H2) ambient. Scanning electron microscope photographs showed that there was no significant agglomeration of the copper-aluminum alloy for substrates annealed at a temperature of about 450° C. for a time period of about 30 minutes.


While foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A system for processing a substrate, comprising: at least one atomic layer deposition chamber for depositing a barrier layer comprising tantalum, wherein the at least one atomic layer deposition chamber is in fluid communication with a first precursor source providing a tantalum-containing compound and a second precursor source; andat least one physical vapor deposition metal seed chamber for depositing a copper-containing seed layer on the barrier layer.
  • 2. A system for processing a substrate, comprising: at least one atomic layer deposition chamber for depositing a barrier layer comprising tantalum, wherein the at least one atomic layer deposition chamber is in fluid communication with a first precursor source providing a tantalum-containing compound and a second precursor source; andat least one physical vapor deposition metal seed chamber for depositing a metal seed layer on the barrier layer.
  • 3. The system of claim 2, wherein the metal seed layer comprises a metal selected from the group consisting of copper, titanium, zirconium, tin, alloys thereof, and combinations thereof.
  • 4. The system of claim 3, wherein the at least one physical vapor deposition metal seed chamber is a high density plasma physical vapor deposition metal seed chamber.
  • 5. The system of claim 4, further comprising one or more transfer chambers for transferring a substrate between the at least one atomic layer deposition chamber and the at least one physical vapor deposition metal seed chamber.
  • 6. The system of claim 2, wherein the tantalum-containing compound is an organometallic tantalum precursor.
  • 7. The system of claim 6, wherein the organometallic tantalum precursor is PDMAT.
  • 8. The system of claim 7, wherein the PDMAT has a chlorine concentration of about 100 ppm or less.
  • 9. The system of claim 8, wherein the chlorine concentration is about 30 ppm or less.
  • 10. The system of claim 9, wherein the chlorine concentration is about 5 ppm or less.
  • 11. The system of claim 2, wherein the second precursor source comprises a nitrogen precursor.
  • 12. The system of claim 11, wherein the nitrogen precursor is ammonia.
  • 13. The system of claim 2, wherein the tantalum-containing compound is a tantalum halide precursor.
  • 14. The system of claim 13, wherein the tantalum halide precursor comprises chlorine.
  • 15. A system for processing a substrate, comprising: at least one atomic layer deposition chamber for depositing a barrier layer comprising tantalum, wherein the at least one atomic layer deposition chamber is in fluid communication with a first precursor source providing a tantalum-containing compound and a second precursor source; andat least one deposition chamber is a physical vapor deposition chamber or an electroless deposition chamber for depositing a metal seed layer on the barrier layer.
  • 16. The system of claim 15, wherein the metal seed layer comprises a metal selected from the group consisting of copper, titanium, zirconium, tin, alloys thereof, and combinations thereof.
  • 17. The system of claim 16, wherein the at least one deposition chamber is a physical vapor deposition chamber.
  • 18. The system of claim 17, wherein the physical vapor deposition chamber is a high density plasma physical vapor deposition metal seed chamber.
  • 19. The system of claim 18, further comprising one or more transfer chambers for transferring a substrate between the at least one atomic layer deposition chamber and the physical vapor deposition chamber.
  • 20. The system of claim 15, wherein the tantalum-containing compound is an organometallic tantalum precursor.
  • 21. The system of claim 20, wherein the organometallic tantalum precursor is PDMAT.
  • 22. The system of claim 21, wherein the PDMAT has a chlorine concentration of about 100 ppm or less.
  • 23. The system of claim 22, wherein the chlorine concentration is about 30 ppm or less.
  • 24. The system of claim 23, wherein the chlorine concentration is about 5 ppm or less.
  • 25. The system of claim 15, wherein the second precursor source comprises a nitrogen precursor.
  • 26. The system of claim 25, wherein the nitrogen precursor is ammonia.
  • 27. The system of claim 15, wherein the tantalum-containing compound is a tantalum halide precursor.
  • 28. The system of claim 27, wherein the tantalum halide precursor comprises chlorine.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 11/064,274 (APPM/006303.C1), filed Feb. 22, 2005, now U.S. Pat. No. 7,352,048 which is a continuation of U.S. Ser. No. 09/965,373 (APPM/006303.02), filed Sep. 26, 2001, and issued as U.S. Pat. No. 6,936,906, which are herein incorporated by reference in their entirety.

US Referenced Citations (661)
Number Name Date Kind
3594216 Charles et al. Jul 1971 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4415275 Dietrich Nov 1983 A
4486487 Skarp Dec 1984 A
4761269 Conger et al. Aug 1988 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Matsumoto Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5027746 Frijlink Jul 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173327 Sandhu et al. Dec 1992 A
5173474 Connell et al. Dec 1992 A
5178681 Moore et al. Jan 1993 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5261959 Gasworth Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338362 Imahashi Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5464666 Fine et al. Nov 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5526244 Bishop Jun 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5558717 Zhao et al. Sep 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5654232 Gardner Aug 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5744394 Iguchi et al. Apr 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5804488 Shih et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5834372 Lee Nov 1998 A
5835677 Li et al. Nov 1998 A
5846332 Zhao et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882411 Zhao et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5906683 Chen et al. May 1999 A
5913147 Dubin et al. Jun 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
6001420 Mosely et al. Dec 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6037257 Chiang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6066892 Ding et al. May 2000 A
6071572 Mosely et al. Jun 2000 A
6071808 Merchant et al. Jun 2000 A
6079356 Umotoy et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099904 Mak et al. Aug 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143082 McInerney et al. Nov 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6156382 Rajagopalan et al. Dec 2000 A
6158446 Mohindra et al. Dec 2000 A
6160315 Chiang et al. Dec 2000 A
6162715 Mak et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6181012 Edelstein et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6218298 Hoinkis Apr 2001 B1
6231672 Choi et al. May 2001 B1
6242808 Shimizu et al. Jun 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6249055 Dubin Jun 2001 B1
6251190 Mak et al. Jun 2001 B1
6251759 Guo et al. Jun 2001 B1
6268291 Andricacos et al. Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6271591 Dubin et al. Aug 2001 B1
6274484 Tsai et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6309713 Mak et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6326297 Vijayendran Dec 2001 B1
6333260 Kwon et al. Dec 2001 B1
6335240 Kim et al. Jan 2002 B1
6335280 van der Jeugd Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348376 Lim et al. Feb 2002 B2
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6372598 Kang et al. Apr 2002 B2
6379748 Bhandari et al. Apr 2002 B1
6387806 Wang et al. May 2002 B1
6391163 Pavate et al. May 2002 B1
6391785 Satta et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B2
6399496 Edelstein et al. Jun 2002 B1
6416577 Suntola et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6433314 Mandrekar et al. Aug 2002 B1
6447607 Soininen et al. Sep 2002 B2
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6454860 Metzner et al. Sep 2002 B2
6458701 Chae et al. Oct 2002 B1
6464779 Powell et al. Oct 2002 B1
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6482740 Soininen et al. Nov 2002 B2
6489214 Kim et al. Dec 2002 B2
6498091 Chen et al. Dec 2002 B1
6511539 Raaijmakers Jan 2003 B1
6520218 Gregg et al. Feb 2003 B1
6524952 Srinivas et al. Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6534404 Danek et al. Mar 2003 B1
6548112 Hillman et al. Apr 2003 B1
6548424 Putkonen Apr 2003 B2
6551406 Kilpi Apr 2003 B2
6551929 Kori et al. Apr 2003 B1
6558509 Kraus May 2003 B2
6561498 Tompkins et al. May 2003 B2
6569501 Chiang et al. May 2003 B2
6572705 Suntola et al. Jun 2003 B1
6578287 Aswad Jun 2003 B2
6579372 Park Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6593484 Yasuhara et al. Jul 2003 B2
6596602 Iizuka et al. Jul 2003 B2
6596643 Chen et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607976 Chen et al. Aug 2003 B2
6610151 Cohen Aug 2003 B1
6620670 Song et al. Sep 2003 B2
6620723 Byun et al. Sep 2003 B1
6620956 Chen et al. Sep 2003 B2
6630030 Suntola et al. Oct 2003 B1
6630201 Chiang et al. Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6635965 Lee et al. Oct 2003 B1
6660126 Nguyen et al. Dec 2003 B2
6660622 Chen et al. Dec 2003 B2
6660660 Haukka et al. Dec 2003 B2
6686271 Raaijmakers et al. Feb 2004 B2
6716287 Santiago et al. Apr 2004 B1
6718126 Lei Apr 2004 B2
6720027 Yang et al. Apr 2004 B2
6734020 Lu et al. May 2004 B2
6740585 Yoon et al. May 2004 B2
6772072 Ganguli et al. Aug 2004 B2
6773507 Jallepally et al. Aug 2004 B2
6777352 Tepman et al. Aug 2004 B2
6778762 Shareef et al. Aug 2004 B1
6784096 Chen et al. Aug 2004 B2
6790773 Drewery et al. Sep 2004 B1
6797108 Wendling Sep 2004 B2
6797340 Fang et al. Sep 2004 B2
6800173 Chiang et al. Oct 2004 B2
6803272 Halliyal et al. Oct 2004 B1
6809026 Yoon et al. Oct 2004 B2
6814087 Chandran et al. Nov 2004 B2
6815285 Choi et al. Nov 2004 B2
6818094 Yudovsky Nov 2004 B2
6821563 Yudovsky Nov 2004 B2
6827815 Hytros et al. Dec 2004 B2
6827978 Yoon et al. Dec 2004 B2
6831004 Byun et al. Dec 2004 B2
6833161 Wang et al. Dec 2004 B2
6838125 Chung et al. Jan 2005 B2
6841200 Kraus et al. Jan 2005 B2
6846516 Yang et al. Jan 2005 B2
6849545 Mak et al. Feb 2005 B2
6855368 Kori et al. Feb 2005 B1
6866746 Lei et al. Mar 2005 B2
6868859 Yudovsky Mar 2005 B2
6875271 Glenn et al. Apr 2005 B2
6878206 Tzu et al. Apr 2005 B2
6881437 Ivanov et al. Apr 2005 B2
6893915 Park et al. May 2005 B2
6902624 Seidel et al. Jun 2005 B2
6905541 Chen et al. Jun 2005 B2
6905737 Verplancken et al. Jun 2005 B2
6911093 Stacey et al. Jun 2005 B2
6911391 Yang et al. Jun 2005 B2
6915592 Guenther Jul 2005 B2
6916398 Chen et al. Jul 2005 B2
6921062 Gregg et al. Jul 2005 B2
6932871 Chang et al. Aug 2005 B2
6936538 Byun Aug 2005 B2
6936906 Chung et al. Aug 2005 B2
6939804 Lai et al. Sep 2005 B2
6946033 Tsuei et al. Sep 2005 B2
6951804 Seutter et al. Oct 2005 B2
6953742 Chen et al. Oct 2005 B2
6955211 Ku et al. Oct 2005 B2
6958174 Klaus et al. Oct 2005 B1
6958296 Chen et al. Oct 2005 B2
6983892 Noorbakhsh et al. Jan 2006 B2
6994319 Yudovsky Feb 2006 B2
6998014 Chen et al. Feb 2006 B2
7005372 Levy et al. Feb 2006 B2
7026238 Xi et al. Apr 2006 B2
7033922 Kori et al. Apr 2006 B2
7041335 Chung May 2006 B2
7049226 Chung et al. May 2006 B2
7066194 Ku et al. Jun 2006 B2
7085616 Chin et al. Aug 2006 B2
7094680 Seutter et al. Aug 2006 B2
7094685 Yang et al. Aug 2006 B2
7101795 Xi et al. Sep 2006 B1
7115494 Sinha et al. Oct 2006 B2
7115499 Wang et al. Oct 2006 B2
7141494 Lee et al. Nov 2006 B2
7175713 Thakur et al. Feb 2007 B2
7186385 Ganguli et al. Mar 2007 B2
7201803 Lu et al. Apr 2007 B2
7204886 Chen et al. Apr 2007 B2
7208413 Byun et al. Apr 2007 B2
7211144 Lu et al. May 2007 B2
7211508 Chung et al. May 2007 B2
7220673 Xi et al. May 2007 B2
7222636 Nguyen et al. May 2007 B2
7228873 Ku et al. Jun 2007 B2
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven Nov 2001 A1
20010042523 Kasala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010050039 Park Dec 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020004293 Soininen et al. Jan 2002 A1
20020005168 Kraus et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020009896 Sandhu et al. Jan 2002 A1
20020017242 Hamaguchi et al. Feb 2002 A1
20020019121 Pyo Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020048880 Lee Apr 2002 A1
20020052097 Park May 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020060363 Xi et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee et al. Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020092584 Soininen et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020098685 Sophie et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106451 Skarp et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020108570 Lindfors Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Nguyen et al. Sep 2002 A1
20020121697 Marsh Sep 2002 A1
20020122884 Chen et al. Sep 2002 A1
20020127336 Chen et al. Sep 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020135071 Kang et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020145210 Tompkins et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020173130 Pomerede et al. Nov 2002 A1
20020177282 Song et al. Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020196591 Hujanen et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20020197863 Mak et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013300 Byun Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030022338 Ruben et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030022507 Chen et al. Jan 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030038369 Layadi et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030054631 Raaijmakers et al. Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072913 Chou et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082300 Todd et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030087520 Chen et al. May 2003 A1
20030089308 Raajimakers May 2003 A1
20030089942 Bhattacharyya et al. May 2003 A1
20030096468 Soininen et al. May 2003 A1
20030097013 Chen et al. May 2003 A1
20030101927 Raaijmakers et al. Jun 2003 A1
20030101938 Ronsse et al. Jun 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030123216 Yoon et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030127043 Lu et al. Jul 2003 A1
20030129308 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030134508 Raaijmakers et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030153177 Tepman et al. Aug 2003 A1
20030153181 Yoon et al. Aug 2003 A1
20030157760 Xi et al. Aug 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030161952 Wang et al. Aug 2003 A1
20030165615 Aaltonen et al. Sep 2003 A1
20030167612 Kraus et al. Sep 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030181035 Yoon Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030194825 Law et al. Oct 2003 A1
20030198740 Wendling Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030203616 Chung et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224107 Lindfors et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030232497 Xi et al. Dec 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009336 Marcada et al. Jan 2004 A1
20040011404 Ku et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040014315 Lai et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016404 Gregg et al. Jan 2004 A1
20040016866 Huang et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040025370 Guenther Feb 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040041320 Hodumi Mar 2004 A1
20040043630 Vaarstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040065255 Yang et al. Apr 2004 A1
20040067641 Yudovsky Apr 2004 A1
20040069227 Ku et al. Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077183 Chung Apr 2004 A1
20040105934 Chang et al. Jun 2004 A1
20040143370 Lu et al. Jul 2004 A1
20040144308 Yudovsky Jul 2004 A1
20040144309 Yudovsky Jul 2004 A1
20040144311 Chen et al. Jul 2004 A1
20040144431 Chen et al. Jul 2004 A1
20040170403 Lei Sep 2004 A1
20040187304 Chen et al. Sep 2004 A1
20040197492 Chen et al. Oct 2004 A1
20040202786 Wongsenakhum Oct 2004 A1
20040203254 Conley, Jr. et al. Oct 2004 A1
20040209460 Xi et al. Oct 2004 A1
20040209465 Xi et al. Oct 2004 A1
20040211665 Yoon et al. Oct 2004 A1
20040214354 Conley, Jr. et al. Oct 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Choi et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20040241321 Ganguli et al. Dec 2004 A1
20040247788 Fang et al. Dec 2004 A1
20040253375 Ivanov et al. Dec 2004 A1
20040256351 Chung et al. Dec 2004 A1
20050006799 Gregg et al. Jan 2005 A1
20050008779 Yang et al. Jan 2005 A1
20050009325 Chung et al. Jan 2005 A1
20050031786 Lee et al. Feb 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050059241 Kori et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050074968 Chen et al. Apr 2005 A1
20050095859 Chen et al. May 2005 A1
20050104142 Narayanan et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050115675 Tzu et al. Jun 2005 A1
20050118804 Byun et al. Jun 2005 A1
20050139160 Lei et al. Jun 2005 A1
20050139948 Chung et al. Jun 2005 A1
20050153571 Senzaki Jul 2005 A1
20050164487 Seutter et al. Jul 2005 A1
20050173068 Chen et al. Aug 2005 A1
20050176240 Wang et al. Aug 2005 A1
20050189072 Chen et al. Sep 2005 A1
20050208763 Byun et al. Sep 2005 A1
20050220998 Chang et al. Oct 2005 A1
20050229969 Nuyen et al. Oct 2005 A1
20050233156 Senzaki et al. Oct 2005 A1
20050252449 Nguyen et al. Nov 2005 A1
20050255243 Senzaki Nov 2005 A1
20050255690 Chen et al. Nov 2005 A1
20050257735 Guenther et al. Nov 2005 A1
20050260357 Olsen et al. Nov 2005 A1
20050271812 Myo et al. Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050271814 Chang et al. Dec 2005 A1
20050277290 Yang et al. Dec 2005 A1
20050287807 Lai et al. Dec 2005 A1
20060009034 Lai et al. Jan 2006 A1
20060018639 Ramamurthy et al. Jan 2006 A1
20060019033 Muthukrishman et al. Jan 2006 A1
20060030148 Seutter et al. Feb 2006 A1
20060035025 Verplancken et al. Feb 2006 A1
20060040052 Feng et al. Feb 2006 A1
20060062917 Muthukrishman et al. Mar 2006 A1
20060075966 Chen et al. Apr 2006 A1
20060128132 Sinha et al. Jun 2006 A1
20060128150 Gandikota et al. Jun 2006 A1
20060148253 Chung et al. Jul 2006 A1
20060153973 Chang et al. Jul 2006 A1
20060153995 Narwanker et al. Jul 2006 A1
20060156979 Thakur et al. Jul 2006 A1
20060199372 Chung et al. Sep 2006 A1
20060213557 Ku et al. Sep 2006 A1
20060213558 Ku et al. Sep 2006 A1
20060216928 Chung et al. Sep 2006 A1
20060223286 Chin et al. Oct 2006 A1
20060257295 Chen et al. Nov 2006 A1
20060264031 Xi et al. Nov 2006 A1
20060276020 Yoon et al. Dec 2006 A1
20060292864 Yang et al. Dec 2006 A1
20060292874 Kori et al. Dec 2006 A1
20070003698 Chen et al. Jan 2007 A1
20070009658 Yoo et al. Jan 2007 A1
20070020890 Thakur et al. Jan 2007 A1
20070020924 Wang et al. Jan 2007 A1
20070026147 Chen et al. Feb 2007 A1
20070067609 Chen et al. Mar 2007 A1
20070079759 Lee et al. Apr 2007 A1
20070095285 Thakur et al. May 2007 A1
20070099415 Chen et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070128862 Ma et al. Jun 2007 A1
20070128863 Ma et al. Jun 2007 A1
20070128864 Ma et al. Jun 2007 A1
Foreign Referenced Citations (221)
Number Date Country
1 233 856 Nov 1999 CN
196 27 017 Jan 1997 DE
198 20 147 Jul 1999 DE
0 344 352 Jun 1988 EP
0 442 290 Feb 1991 EP
0 429 270 May 1991 EP
0 497 267 Jan 1992 EP
0 799 641 Oct 1997 EP
0 954 027 Nov 1999 EP
1 142 894 Oct 2001 EP
1 167 569 Jan 2002 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-236657 Sep 1989 JP
01-245512 Sep 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Sep 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04-151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-291916 Sep 1992 JP
04-285167 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-132236 May 1994 JP
06-224138 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
07-300649 Nov 1995 JP
05-047666 Feb 1996 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-188840 Jul 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-178735 Jun 2000 JP
2000-218445 Aug 2000 JP
2001-020075 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-62244 Mar 2001 JP
2001-111000 Apr 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-189312 Jul 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
2000-212752 Nov 2002 JP
WO 9002216 Mar 1990 WO
WO 9110510 Jul 1991 WO
WO 9302111 Feb 1993 WO
WO 9617107 Jun 1996 WO
WO 9618756 Jun 1996 WO
WO 9806889 Feb 1998 WO
WO 9851838 Nov 1998 WO
WO 9901595 Jan 1999 WO
WO 9913504 Mar 1999 WO
WO 9929924 Jun 1999 WO
WO 9941423 Aug 1999 WO
WO 9965064 Dec 1999 WO
WO 0011721 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 0015881 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0063957 Oct 2000 WO
WO 0075964 Dec 2000 WO
WO 0079019 Dec 2000 WO
WO 0079576 Dec 2000 WO
WO 0115220 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0188972 Nov 2001 WO
WO 0201628 Jan 2002 WO
WO 0208485 Jan 2002 WO
WO 0208488 Jan 2002 WO
WO 0231875 Apr 2002 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 0245871 Jun 2002 WO
WO 0246489 Jun 2002 WO
WO 02065525 Aug 2002 WO
WO 02067319 Aug 2002 WO
WO 03023835 Mar 2003 WO
WO 03044242 May 2003 WO
WO 2004008491 Jan 2004 WO
WO 2004106584 Dec 2004 WO
WO 2005027211 Mar 2005 WO
Related Publications (1)
Number Date Country
20070283886 A1 Dec 2007 US
Continuations (2)
Number Date Country
Parent 11064274 Feb 2005 US
Child 11749064 US
Parent 09965373 Sep 2001 US
Child 11064274 US