The present invention relates to an apparatus for controlling the temperature of a substrate, in particular of a wafer substrate, and to a corresponding manufacturing method.
Although not limited thereto, the present invention and the problem on which it is based will be discussed with reference to integrated circuits at wafer level.
In the manufacturing flow during production of integrated circuits, wafer tests are performed on not yet diced wafers so that faulty integrated circuits can be detected early and removed. To this end, a wafer to be tested is placed into a wafer prober and brought to a desired test temperature using a temperature-controllable chuck located therein (apparatus for controlling the temperature of the wafer substrate). Once the wafer is at the desired test temperature, a contact needle arrangement located on a needle head is used to establish an electrical connection with the contact pads of the integrated circuit to be tested. The needle head having the contact needles is arranged on what is known as a probe card, which forms an interface between a testing system and the wafer via the contact needles of the needle head.
Wafer tests are typically performed in a temperature range between −40° C. and 200° C., in exceptional cases even at more extreme temperatures above or below zero.
Conventional apparatuses for controlling the temperature of a substrate, in particular of a wafer substrate, are provided with a closed cooling circuit, in which a cooling fluid circulates through channels in the substrate holder to a heat exchanger and back to the substrate holder.
EP 1 943 665 B1 discloses an apparatus for controlling the temperature of a substrate, in particular of a wafer, wherein the apparatus has a main body which is temperature-controlled by a first temperature-control device and a second temperature-control device, wherein the first temperature-control device is configured for controlling the temperature of the main body in a first temperature range between a first temperature and a second temperature, with the first temperature being lower than the second temperature, and is temperature-controlled using a first temperature-control fluid, and the second temperature-control device is configured for controlling the temperature of the main body in a second temperature range between a third temperature and a fourth temperature, with the third temperature being lower than the fourth temperature, and the second temperature-control device is temperature-controlled using a second temperature-control fluid, with the second temperature being lower than the fourth temperature and the first temperature-control fluid being different from the second temperature-control fluid. The main body has a substantially planar placement area having an attachment device, for attaching a substrate, which has a multiplicity of suction grooves, wherein one or more first temperature-control means channels for the first temperature-control fluid are provided inside the main body, which is located thereabove, and wherein the second temperature-control device for controlling the temperature of the main body comprises a temperature-control body that has, in its interior, one or more second temperature-control means channels for the second temperature-control fluid.
It has been found disadvantageous in this known apparatus for controlling the temperature of a substrate that it has a high volume due to the temperature-control devices that are located one above the other and that the lower temperature-control device is arranged far remote from the substrate.
It is therefore an object of the present invention to provide an apparatus for controlling the temperature of a substrate which can be designed to be more compact, and a corresponding manufacturing method.
In order to achieve this object, the present invention provides an apparatus for controlling the temperature of a substrate and a corresponding manufacturing method.
The idea on which the present invention is based consists of embedding two different temperature-control devices in the main body in a space-saving and easily connectable manner. In particular, the respective distances of the temperature-control devices from the substrate can be set to be approximately equal in the apparatus for controlling the temperature of a substrate in accordance with the invention.
In accordance with a further preferred development, the main body has a plate-type bottom part and a plate-type top part, which are connected, in particular soldered or adhesively bonded, together in a connection region. This simplifies the manufacturing method.
In accordance with a further preferred embodiment, the first to fourth holes are provided in the bottom part, and the first plurality of separate annular channels and the second plurality of separate annular channels are provided in the top part. The tubes can thus be placed prior to the assembly of the top part and the bottom part.
In accordance with a further preferred embodiment, the first plurality of separate annular channels and the second plurality of separate annular channels are arranged concentrically with respect to a central axis of the main body, preferably circularly.
In accordance with a further preferred embodiment, the first plurality of separate annular channels and the second plurality of separate annular channels are arranged such that they encircle each other in alternation. In this way, it is possible to achieve a homogeneous temperature distribution by way of both temperature-control devices.
In accordance with a further preferred embodiment, the first plurality of separate annular channels and the second plurality of separate annular channels have respective different cross sections. It is possible in this way to take into consideration different viscosities of the two temperature-control fluids, e.g. gas/liquid.
In accordance with a further preferred embodiment, the first to fourth tubes are soldered or adhesively bonded to the main body. This ensures a high tightness of both circuits.
In accordance with a further preferred embodiment, the first to fourth tubes are made from stainless steel, copper or plastics material.
In accordance with a further preferred embodiment, the main body is made of copper or aluminium. This ensures a high thermal conductivity. For specific applications, highly thermally conductive ceramic materials would also be feasible.
In accordance with a further preferred embodiment, the first openings and the second openings are arranged in pairs such that they communicate with the respective annular channel at two sites that are arranged approximately equidistantly clockwise and anticlockwise along the respective annular channel. This ensures a homogeneous temperature distribution.
In accordance with a further preferred embodiment, the third openings and the fourth openings are arranged in pairs such that they communicate with the respective annular channel at two sites which are arranged approximately equidistantly clockwise and anticlockwise along the respective annular channel. This ensures homogeneous temperature distribution.
In accordance with a further preferred embodiment, the first and/or second and/or third and/or fourth tubes have a first, open end and a second, closed end, wherein the openings have a cross section that increases from the first, open end to the second, closed end. It is thus possible to compensate for the pressure drop occurring across the tubes.
In accordance with a further preferred embodiment, the first and/or second and/or third and/or fourth tubes have a plurality of openings per annular channel. It is thus possible to adjust the respective inflow and outflow directions, in particular to homogenize the temperature distributions.
In accordance with a further preferred embodiment, the plurality of openings are aligned in opposite directions of the associated annular channel. This results in a thermodynamically particularly effective counterflow inflow or outflow.
Exemplary embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.
In the figures, identical reference symbols designate identical components or components having identical functions.
In
Provided inside the plate-type main body 1 is a first temperature-control device for controlling the temperature of the main body using a first temperature-control fluid, for example liquid, having a first plurality of separate encircling annular channels R1F-R4F inside the main body 1 for circulating the first temperature-control fluid, with R1F designating a first channel, R2F designating a second channel, R3F designating a third channel and R4F designating a fourth channel of the first plurality.
Furthermore provided inside the main body 1 is a second temperature-control device for controlling the temperature of the main body 1 using a second temperature-control fluid, for example gas, having a second plurality of separate annular channels R1L-R5L inside the main body 1 for circulating the second temperature-control fluid, with R1L designating a first channel, R2L designating a second channel, R3L designating a third channel, R4L designating a fourth channel and R5L designating a fifth channel of the second plurality.
The first temperature-control fluid is able to be supplied to the first plurality of annular channels R1F-R4F through a first tube K1F and to be removed therefrom through a second tube K2F. The first tube K1F and the second tube K2F are placed in a corresponding first hole B1F and a corresponding second hole B2F of the main body 1 (cf.
The entrance Fi for the first temperature-control fluid is located at a first, open end E1 of the first tube K1F, which furthermore has a second, closed end E2. The exit Fa for the first temperature-control fluid is located at a first, open end E1′″ of the second tube K2F, which furthermore has a second, closed end E2′″.
The entrance Li for the second temperature-control fluid is located at the first, open end E1′ of the third tube K1L, which furthermore has a second, closed end E2′. The exit La for the second temperature-control fluid is located at a first, open end E1″ of the fourth tube K2L, which furthermore has a second, closed end E2″.
The first to fourth tubes K1F, K2F, K1L, K2L are expediently additionally connected in a sealing manner to the main body 1, for example by way of adhesive bonding or soldering.
The first to fourth tubes K1F, K2F, K1L, K2L expediently project laterally out of the main body 1 such that corresponding connections, e.g. flanges (not illustrated), can be attached thereto, which are connected to corresponding sources and sinks for the first and second temperature-control fluid, respectively.
The first to fourth holes B1F, B2F, B1L, B2L, which in the present example are blind holes, in each case communicate with the first plurality of separate annular channels R1F-R4F and the second plurality of separate annular channels R1L-R5L, i.e. they are open towards them.
The first tube K1F, which is placed in the first hole B1F of the main body 1, has respective first openings F1-F4 in the region of the first plurality of separate annular channels R1F-R4F for supplying the first temperature-control fluid, with F1 designating a first opening, F2 designating a second opening, F3 designating a third opening and F4 designating a fourth opening of the first openings F1-F4.
The second tube K2F, which is placed in the second hole B2F of the main body 1, has respective second openings F1′-F4′ in the region of the first plurality of separate annular channels R1F-R4F for removing the first temperature-control fluid, with F1′ designating a first opening, F2′ designating a second opening, F3′ designating a third opening and F4′ designating a fourth opening of the second openings F1′-F4′.
The third tube K1L, which is placed in the third hole B1L of the main body 1, has respective third openings L1-L5 in the region of the second plurality of separate annular channels R1L-R5L for supplying the second temperature-control fluid, with L1 designating a first opening, L2 designating a second opening, L3 designating a third opening, L4 designating a fourth opening and L5 designating a fifth opening of the third openings L1-L5.
The fourth tube K2L, which is placed in the fourth hole B2L of the main body 1, has respective fourth openings L1′-L5′ in the region of the second plurality of separate annular channels R1L-R5L for removing the second temperature-control fluid, with L1′ designating a first opening, L2′ designating a second opening, L3′ designating a third opening, L4′ designating a fourth opening and L5′ designating a fifth opening of the fourth openings L1′-L5′.
In the present example, the first plurality of separate annular channels R1F-R4F and the second plurality of separate annular channels R1L-R5L are arranged circularly concentrically with respect to a central axis M of the main body 1. The first plurality of separate annular channels R1F-R4F and the second plurality of separate annular channels R1L-R5L are here arranged such that they encircle each other in alternation, with the result that a temperature distribution that is as homogeneous as possible is achievable.
The first to fourth tubes K1F, K2F, K1L, K2L are preferably made of stainless steel, copper or a plastics material, wherein the main body 1 is preferably made of copper or aluminium.
The first openings F1-F4 and the second openings F1′-F4′ are arranged in pairs such that they communicate with the respective annular channel R1F-R4F at two sites which are arranged approximately equidistantly clockwise and anticlockwise along the respective annular channel R1F-R4F, i.e. they are approximately diametrically opposite in the present circular geometry. The third openings L1-L5 and the fourth openings L1′-L5′ are arranged in pairs such that they communicate with the respective annular channel R1L-R5L at two sites which are arranged approximately equidistantly clockwise and anticlockwise along the respective annular channel R1L-R5L, i.e. they are approximately diametrically opposite in the present annular geometry.
This gives an inverse, substantially symmetric flow profile of the first and second temperature-control fluids.
As can be seen in
As can furthermore be seen from
In corresponding fashion,
An analogous illustration is shown in
Finally,
This is correspondingly true for the remaining third openings L1′-L5′, which are each connected to the associated channel R1L-R4L of the second plurality of annular channels R1L-R4L, whereas the second tube K2F in these regions likewise passes through in a sealing fashion.
The second embodiment illustrates in accordance with
The third embodiment illustrates in accordance with
In the present example, the openings F11 and F12 are aligned in opposite directions of the associated annular channel.
To produce the embodiments shown of the apparatus for controlling the temperature of a substrate, in particular of a wafer substrate, preferably first the holes B1F, B2F, B1L, B2L are made in the bottom part 1a of the main body, and subsequently the first to fourth tubes K1F, K2F, K1L, K4L are placed, aligned and sealed therein accordingly.
The first and second plurality of annular channels R1F-R4F and R1L-R5L are furthermore milled into the top part 1b. Subsequently, alignment and assembly and adhesive bonding or soldering are performed in the connection region V, which ultimately results in the above-described apparatus.
An alternative production method would be for the main body to be produced using a three-dimensional printing method, wherein the first to fourth tubes K1F, K2F, K1L, K2L are placed for example in an intermediate step after finishing the bottom part 1a.
Although the present invention has been explained here with reference to preferred embodiments, it is not limited thereto, but is modifiable in various ways.
The first to fourth holes B1F, B2F, B1L, B2L in the present case are blind holes, although the invention is not limited thereto and instead, these holes can also be configured to pass through, and the tubes K1F, K2F, K1L, K2L can be either open on both sides with two connections in each case, or open on only one side, as above.
In particular, the geometric shape of the apparatus for controlling the temperature of a substrate is not limited to a round shape either, but can have any desired geometry. The stated materials are also only examples and can be widely varied. The geometric configuration of the channel system is also modifiable as desired.
Number | Date | Country | Kind |
---|---|---|---|
102017200588.2 | Jan 2017 | DE | national |
This application is a continuation of pending application Ser. No. 16/477,976, filed on Jul. 15, 2019, which is a 35 U.S.C. 371 National Stage application of PCT/EP2018/050874, filed Jan. 15, 2018, which claims priority to German Application No. DE 10 2017 200 588.2 filed on Jan. 16, 2017. The entire contents of the above-mentioned PCT and European patent applications are incorporated herein by reference as part of the disclosure of this U.S. application.
Number | Date | Country | |
---|---|---|---|
Parent | 16477976 | Jul 2019 | US |
Child | 18149755 | US |