This invention relates to impedance matching, and particularly though not exclusively to impedance matching of power amplifiers.
In the field of this invention it is known that for optimum transfer of energy, from devices such as power amplifiers, the output impedance of the power amplifier should match the input impedance of circuitry driven by the power amplifier. In practice, the output impedance of a power amplifier such as an integrated circuit (IC) power amplifier (PA) is typically matched by use of an electrical/electronic network including components such as inductors and capacitors mounted externally to the IC and connected to the IC by wires. Wire-bonding is typically used to connect the wires. Capacitors may be metal-oxide-semiconductor capacitors (MOSCAPs) or Surface Mounted Device (SMD) capacitors. Inductors are generally made with transmission lines, such as microstrip or coplanar lines, shunted to ground at a precise position by the abovementioned capacitors.
However, this approach has the disadvantage(s) that the SMD capacitors have, for cost purpose, a poor quality factor which results in losses and a non-negligable series parasitic inductance that narrows the bandwidth, as well as a large tolerance which degrades the PA RF performance deviation over a number of performance parameters. In addition, such SMD capacitors, as they are automatically picked and placed, have minimum spacing specifications in order to fit the assembling machine constraints, thus contributing to increase the overall Power Amplifier application size.
A need therefore exists for impedance matching wherein the abovementioned disadvantage(s) may be alleviated.
In accordance with a first aspect of the present invention there is provided an arrangement for impedance matching as claimed in claim 1.
In accordance with a second aspect of the present invention there is provided a method for impedance matching as claimed in claim 13.
Four arrangements and methods for impedance matching incorporating the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring firstly to
In this arrangement it will be appreciated that the inductor (Llin+1wire) is realised with the printed transmission line 110, the length of which determines the inductance value Lline, and the inductance from the wires which determines the inductance value 1wire. The length of the printed transmission line 110 is defined by the precise position of the SMD capacitor 112. Such an arrangement constitutes a matching cell that increases the output impedance of the RF power transistor 108. Typically in practice, the use of only one impedance matching cell does not allow the output impedance to reach a typical desired value of 50 Ohms (from an unmatched of typically 3 Ohms) without degrading the RF performance of the Power Amplifier 102. An additional matching cell is then needed and a second SMD capacitor is connected between earth/ground and a second precise position on the printed transmission line 110 remote from the first. For a dual-band power amplifier application, one so-described arrangement is needed for each band.
In this approach, it will be appreciated that the length of the printed transmission lines, that have a low inductivity due to their width, as well as the use of SMD capacitors, that need to meet the component-to-component spacing required by the automatic pick-and-place machine, contribute to increase drastically the size and then the cost of the power amplifier application.
Moreover, SMD capacitors have, for cost reasons, a poor quality factor which results in losses and a non-negligible series parasitic inductance that narrows the bandwidth, as well as a large tolerance which degrades the PA RF performance deviation over a number of performance parameters.
Referring now to
The printed transmission line 210, the first bonding zone pad 212 and the second bonding zone pad 214 are each connected to the IC 204 (at respective layers 204a, 204b, 204c thereof) by two wires 202: the printed transmission line 210 (which may be a coplanar or microstrip transmission line) being connected to the integrated capacitor 208 at the IC layer 204c by two wires 202a and 202b, the first bonding zone pad 212 being connected to the RF power transistor 206 at the IC layer 204a by a wire 202c and to the integrated capacitor 208 at IC layer 204b by a wire 202d, and the second bonding zone pad 214 being connected to the integrated capacitor 208 at the IC layer 204b by a wire 202e and to the RF power transistor 206 at the IC layer 204a by a wire 202f. As will be explained in greater detail below, in the pairs of wires (202c & 202d, 202e & 202f) one wire (202c, 202f) carries RF current from the RF power transistor 206 on the IC 204, and the other wire (202d, 202e) carries RF current to the integrated capacitor 208 on the IC 204. It will be understood that in practice, for increased current carrying capacity, the wires described individually as 202a, 202b,202c, 202d, 202e and 202f may actually be groups of wires, with each group having two individual wires or more.
In the impedance matching arrangement 200 it will be appreciated that the pairs of wires (202c & 202d, 202e & 202f) carry RF current in anti-parallel, and so create a mutual inductance therebetween which adds negatively to the self-inductance of the wires to produce the resultant inductance of the coupling. It will be appreciated that the effect of this negative addition results in a lowering of the resultant inductance of each pair of wires (compared to the known arrangement of
It will be appreciated that although the invention has been described above with reference to matching the output impedance of a power amplifier, the invention could alternatively be used in interstage matching networks in the case of multi-stage amplifiers.
Referring now to
Referring now to
Referring now to
The first bonding zone pad 514 and the second bonding zone pad 516 are each connected to receive RF current from the IC 504 at IC layer 504a by wires 502c and 502j respectively; the first bonding zone pad 514 and the second bonding zone pad 516 are each connected to send RF current by wires 502d and 502i respectively to the layer 504b of the IC 504 incorporating the integrated capacitor 508. The third bonding zone pad 518 and the fourth bonding zone pad 520 are each connected to receive RF current by wires 502e and 502h respectively from the layer 504b of the IC 504 incorporating the integrated capacitor 508; the third bonding zone pad 518 and the fourth bonding zone pad 520 are each connected to send RF current by wires 502f and 502g respectively to the layer 504c of the IC 504 incorporating the integrated capacitor 509, which is connected by wires 502a and 502b to the printed transmission line 522.
In the impedance matching arrangement 500 it will be appreciated that the pairs of wires (202c & 202d, 202e & 202f, 202g & 202h, 202i & 202j) carry RF current in anti-parallel, and so create a mutual inductance therebetween which adds negatively to the self-inductance of the wires to produce the resultant inductance of the coupling, as in the arrangement 200 of
Referring now to
It will be appreciated that the impedance matching arrangement 600 of
Referring now to
It will be appreciated that the impedance matching arrangement 700 of
It will be appreciated that although the invention has been described above in relation to an RF power amplifier, the invention could alternatively be used at higher or lower frequencies or in other applications requiring impedance transformation, e.g., voltage controlled oscillators (VCOs) or low noise amplifiers (LNAs). It will also be appreciated that the invention can be used in telecommunication applications involving standard modulations such as GSM, CDMA, TDMA, W-CDMA, GPRS, EDGE, UMTS, or other modulation schemes as may be desired.
It will be understood that the arrangement and method for impedance matching described above provides the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
01400528 | Feb 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/01040 | 7/28/2002 | WO | 00 | 8/18/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/069403 | 9/6/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3555375 | Hilbers | Jan 1971 | A |
3784883 | Duncan | Jan 1974 | A |
3893459 | Martin | Jul 1975 | A |
5805023 | Fukuden | Sep 1998 | A |
5969929 | Kleveland et al. | Oct 1999 | A |
Number | Date | Country |
---|---|---|
0578108 | Jan 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20040085152 A1 | May 2004 | US |