Generally, one of the driving factors in the design of modern electronics is the amount of computing power and storage that can be shoehorned into a given space. The well-known Moore's law states that the number of transistors on a given device will roughly double every eighteen months. In order to compress more processing power into ever smaller packages, transistor sizes have been reduced to the point where the ability to further shrink transistor sizes has been limited by the physical properties of the materials and processes. Designers have attempted to overcome the limits of transistor size by packaging ever larger subsystems into one chip (systems on chip), or by reducing the distance between chips, and subsequent interconnect distance.
One method used to reduce the distance between various chips forming a system is to stack chips, with electrical interconnects running vertically. This can involve multiple substrate layers, with chips on the upper and lower surfaces of a substrate. One method for applying chips to the upper and lower side of a substrate is called “flip-chip” packaging, where a substrate has conductive vias disposed through the substrate to provide an electrical connection between the upper and lower surfaces.
Solder ball grid arrays are also a technique sometimes used to joining packages, with an array of solder balls deposited on the bonding pads of a first package, and with a second package joined at its own bonding pad sites to the first pad via the solder balls. The environment with the solder ball grid array is heated to melt the solder balls and the packages compressed to cause the solder balls to contact the pads on both packages.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The making and using of the presented embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the described package, and do not limit the scope of the disclosure.
Embodiments will be described with respect to a specific context, namely making and using bump-on-trace interconnects useful in, for example, package-on-package assemblies. Other embodiments may also be applied, however, to other electrically connected components, including, but not limited to, bare chips, displays, input components, board mounting, die or component mounting, or connection packaging or mounting of combinations of any type of integrated circuit or electrical component.
The embodiments of the present disclosure are described with reference to
The present concepts are directed to providing a system and method for creating interconnections having a solder based bump-on-trace (BoT) connection with an improved pitch. Additionally, the disclosed embodiments are not limited to bump-on-trace applications, but may be applied to lead grid arrays (LGAs) where an array of conductive structures protrudes from a package for attachment to another package. LGA leads may be formed to have flexibility to absorb thermal or physical stress in a package-on-package connection, and solder may be applied to a portion of each LGA lead to attach the lead to a trace or bump.
With BoT connectors having fine pitches (<100 μm), the bump solder tends to not wet the sidewall of a trace under a thermal compression bonding/nonconductive paste (TCB/NCP) process, negatively impacting joint integrity and electro-migration performance. BoT interconnect systems may provide a higher density of interconnects than alternative methods of packaging, and reduce the failure rate of interconnected assemblies. BoT interconnects may be used to attach, or stack multiple packages vertically, connecting the stacked packaged via redirection layer (RDL) contacts, electrical traces, mounting pads or the like.
In general terms, in the illustrated embodiments, a BOT joint can achieve fine pitch assembly with significant trace sidewall solder wetting. In one embodiment, one or both of the trace sidewalls may be wetted, or covered, by solder, at more than half the trace height. Sidewall wetting may provide for advantageous features that include, but are not limited to, improved joint integrity (e.g., reduced trace peeling and TO joint cracking) and improved electro-migration (EM) performance.
Referring to
In one embodiment, a first substrate 102 may be a chip, package, PCB, die, or the like, and may have a die substrate 104 and one or more metallization layers 106. The metallization layer 106 may, in one embodiment, include a conductive land 108, metallic traces, vias, or the like. An oxide or insulating layer 110 and passivation layer 112 may each optionally be disposed on the surface of the first substrate 102, and may define an opening over the conductive land 108 for the bump 122 to contact or attach to the conductive land 108. In such an embodiment, the bump 122 may be disposed covering a portion of, or the entire exposed portion of, the conductive land 108 not covered by the insulating layer 110 and passivation layer 112. Additionally, the bump 122 may be disposed to cover or contact a portion of the insulation layer 110 or passivation layer 112. In such an embodiment, the bump 122 may be disposed over the conductive land 108 and the insulating layer 110 or passivation layer 112. In some embodiments, the bump 122 may be completely cover the conductive land 108 and contact the insulating layer 110 or passivation layer 112 on all sides of the conductive land 108 to seal the conductive land 108 from the environment.
The first substrate 102 may be electrically coupled to a die substrate 114 disposed in the second substrate 120 and having a conductive trace 116 formed thereon. The trace 116, in one embodiment, may be deposited as a blanket surface and patterned, but in other embodiments, may be formed via a damascene process, or the like. Additionally, the trace 116 may, in one embodiment, be copper, or another conductive material, and may optionally have an anticorrosion coating such as an OSP, metallic coating or the like.
Application of a conductive material 124, such as solder, may assist in retaining the electrical connection between the bump 122 and the trace 116. Solder joints avoid electromigration issues, and the use of sidewall wetting creates a stronger joint at the solder joint 124 to trace 116 junction. Such sidewall wetting may prevent cracking of the joint, or delamination of the solder joint 124 from the trace 116, due in part to an increased surface area, but also due to the material wetting the trace 116 sidewall preventing lateral movement of the solder with respect to the trace 116.
Thermal compression bonding is the welding of two metallic structures using heat and pressure. However, imperfections, such a surface irregularities, oxidation or contaminants on the mating surfaces may create voids when two surfaces are brought together for bonding. Electromigration exists where the flow of electrons in a metal causes atoms to move due to the electrons striking the atom and transferring the electrons' momentum to the atom. EM is a particular problem in small PCB joints due to the grain boundary of the like metals forming the joints, as the migration of metal atoms tends to occur around any voids or impurities in the interface between the two structures forming the joint. This atom migration amplifies the imperfections in the joint, eventually leading to physical failure of the joint.
In one embodiment a conductive material is used to form a mechanical and electrical connection between the bump 122 and trace 116. In some embodiments, the conductive material may be solder; however, another fusible conductive material may be used, such as, but not limited to gold, conductive adhesive, solder paste, or the like. The illustrated configuration illustrates one embodiment with wetting of the sidewalls of the trace 116, which will preferably be at least half the height of the trace 116 sidewall. In another embodiment, the sidewalls of the trace 116 will have solder disposed on, or wetting, at least a portion of one trace 116 sidewall. The wetting may be promoted by treating the trace 116 sidewall to more readily accept the solder. In some embodiments, an active plasma treatment may be applied to prepare the surface for application of the solder joint 124. In another embodiment, the trace 116 sidewall may be chemically treated, for example, to remove oxidation or foreign material from the surface of the trace. However, wetting may be promoted by any process, including surface etching, applying a flux, applying a solder preservative, or the like.
Additionally, the region of the trace 116 sidewall wetted by the solder joint 124 will be a contiguous portion of the solder joint 124, with the entirety of the solder joint 124 being applied or formed in a single step. For example, the solder joint 124 may be reflowed and solidified to create a uniform structure over the trace 116. In another embodiment, the solder joint 124 may extend past the face, or surface of the bump 122 opposite the first substrate 102, and may cover a portion of a sidewall of the bump 122.
The embodiment illustrated in
Referring now to
The sidewall height 302 is comprised of the sidewall wetted region height 304 and the sidewall unwetted region height 306. In one embodiment, the sidewall wetted region height 304 may be at least half of the sidewall height 302. In another embodiment, the sidewall wetted region height 304 may be equal to the sidewall height 302, that is, the entire trace 116 sidewall may be wetted by the solder joint 124.
In one embodiment, the joint gap distance 308 may be the same as the height of the trace, or sidewall height 302. In another embodiment, the joint gap distance 308 may be less than the sidewall height 302 of the trace 116. Therefore, the joint gap distance 308 may be sufficient to permit solder to flow into the gap, and less than the sidewall height 302 of the trace 116.
Referring now to
The bump pitch 408 is the distance between like elements on adjacent structures, and is comprised of the bump separation distance 402 and the bump width 410, and in one embodiment, the bump pitch 408 may be about 140 μm or less. For the bumps 122 illustrated here, the minimum bump pitch 408 may be determined at least partly by the bump width 410, but also by the solder joint separation width 404 and bump-to-trace separation width 418. The trace separation distance 406 is determined by the bump separation distance 402 in combination with the difference between the trace width 314 and the bump width 410. The solder joint separation width 404 will, in one embodiment, be greater than the bump width 410. This results in a conductive material joint having a width less than the bump width 410.
The solder joint separation width 404 will, in one embodiment, be greater than the bump width 410. In an embodiment with a bump 122 having tapered sidewalls, the solder joint 124 may have a width less than the width of the widest part of the bump 122, or the bump width 410 illustrated herein, and may simultaneously have a width greater than the bump face width 312. Additionally, the solder joint 124 may have a width less than the bump width 410.
The width of the solder joint 124 may be determined by the volume of solder applied to form the solder joint 124. In one embodiment, the volume of solder required to form a solder joint 124 having a predetermined width and trace sidewall wetted region height 304 may be determined by the joint gap distance 308, solder joint separation width 404, bump-to-trace separation distance 416, trace 116 geometry, adjacent trace 414 geometry, and bump 122 geometry. In one embodiment, the volume of solder forming the solder joint 124 will be sufficient to wet the trace 116 sidewalls to a desired height and still provide a solder joint separation width 404 sufficient to prevent bridging of a solder joint 124 to an adjacent solder joint 124 or connection structure.
A method for forming a wetted sidewall trace BoT joint may, in one embodiment, comprise providing a first substrate 102 or other substrate, and forming one or more bumps 122 on the first substrate 102. The volume of a conductive material, such as solder, required for a predetermined width of solder joint 124 may optionally be calculated or optimized using joint parameters including, but not limited to one or more of the joint gap distance 308, a predetermined or desired solder joint width, a predetermined solder joint separation 404, the bump 122 geometry, the trace 116 geometry, the minimum trace 116 sidewall wetting region height or trace separation distance 406. The solder joint 124 may be applied in the calculated volume to the bump 122 as a solder cap.
The first substrate 102 may be singulated or removed from a wafer, singly or in predetermined first substrate 102 strips or groups, and may have final packaging steps performed. A second substrate 120, such as a PCB, chip, package, die, or the like, may be created by placing one or more traces 116 on a die substrate 114, and the first substrate 102 may then be placed on the second substrate 120, with the bump 122 and applied solder caps aligning with traces 116 on the second substrate 120. The assembly of the first substrate 102 and second substrate 120 may be heated for reflow to a temperature where, preferably, the solder reaches at least a eutectic point such that the solder melts or solidifies in a single step, without intermediate phases. The first substrate 102 may be moved towards or held apart from the second substrate 120 at a predetermined distance during reflow so that the bump faces 310 are about a predetermined joint gap distance 308 above the faces of the traces 116, and so that the solder of the solder bump wets the sidewall of the trace 116 to cover about a predetermined portion of the trace 116 sidewall.
In accordance with an embodiment, a method includes providing a first substrate having a bump disposed thereon, and the bump having a volume of conductive material disposed thereon. The method further includes providing a second substrate having a conductive trace, the conductive trace having a sidewall. The method further includes mounting the first substrate on the second substrate. The mounting resulting in an electrical connection from the bump to the conductive trace. The bump is separated from the conductive trace by a distance less than a height of the conductive trace, and the conductive material is at least partially covers a sidewall of the conductive trace.
In accordance with another embodiment, a method includes disposing a solder joint on a bump electrically connected to a conductive land in a first substrate. A first surface of the bump distal to the conductive land has a first width. The method further includes aligning the first substrate to a second substrate by aligning the solder joint to a conductive trace of the second substrate. The method further includes reflowing the solder joint to bond the solder joint with the conductive trace. The solder joint at least partially wets sidewalls of the conductive trace. A lateral surface of the conductive trace contacting the solder joint has a second width less than the first width.
In accordance with yet another embodiment, a method includes disposing a bump on a first package component. The first package component includes a die substrate, a conductive land over the die substrate, and a dielectric layer over and covering edges of the conductive land. The bump is disposed over and electrically connected to the conductive land, and a surface of the bump opposite the conductive land is substantially level, and a sidewall of the bump is substantially straight in a cross-sectional view of the bump. The method further includes disposing a solder ball on the surface of the bump opposite the conductive land; and bonding the first package component to a second package component. After bonding the first package component to the second package component, a portion of the solder ball is disposed on a sidewall of a conductive trace of the second package component.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure that processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a continuation to U.S. patent application Ser. No. 15/065,632, filed on Mar. 9, 2016, entitled “Bump-on-Trace Interconnect Having Varying Widths and Methods of Forming Same,” which is a divisional to U.S. patent application Ser. No. 13/653,618, filed on Oct. 17, 2012, entitled “Bump-on-Trace Interconnect,” now U.S. Pat. No. 9,299,674, which is related to, and claims priority to U.S. Provisional Application No. 61/625,980, titled, “Semiconductor Device Package” filed on Apr. 18, 2012, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4258382 | Harris | Mar 1981 | A |
4536421 | Matsuzawa et al. | Aug 1985 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4830723 | Galvagni et al. | May 1989 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5075965 | Carey et al. | Dec 1991 | A |
5130779 | Agarwala et al. | Jul 1992 | A |
5134460 | Brady et al. | Jul 1992 | A |
5277756 | Dion | Jan 1994 | A |
5334804 | Love et al. | Aug 1994 | A |
5380681 | Hsu | Jan 1995 | A |
5431328 | Chang et al. | Jul 1995 | A |
5440239 | Zappella et al. | Aug 1995 | A |
5470787 | Greer | Nov 1995 | A |
5481133 | Hsu | Jan 1996 | A |
5492266 | Hoebener et al. | Feb 1996 | A |
5508561 | Tago et al. | Apr 1996 | A |
5542601 | Fallon et al. | Aug 1996 | A |
5565379 | Baba | Oct 1996 | A |
5587337 | Idaka et al. | Dec 1996 | A |
5680187 | Nagayama et al. | Oct 1997 | A |
5743006 | Beratan | Apr 1998 | A |
5790377 | Schreiber et al. | Aug 1998 | A |
5796591 | Dalal et al. | Aug 1998 | A |
5816478 | Kaskoun et al. | Oct 1998 | A |
5889326 | Tanaka | Mar 1999 | A |
5922496 | Dalal et al. | Jul 1999 | A |
5977599 | Adrian | Nov 1999 | A |
6002172 | Desai et al. | Dec 1999 | A |
6002177 | Gaynes et al. | Dec 1999 | A |
6025650 | Tsuji et al. | Feb 2000 | A |
6051273 | Dalal et al. | Apr 2000 | A |
6082610 | Shangguan et al. | Jul 2000 | A |
6091141 | Heo | Jul 2000 | A |
6099935 | Brearley et al. | Aug 2000 | A |
6130476 | LaFontaine, Jr. et al. | Oct 2000 | A |
6137184 | Ikegami | Oct 2000 | A |
6181010 | Nozawa | Jan 2001 | B1 |
6187678 | Gaynes et al. | Feb 2001 | B1 |
6229216 | Ma et al. | May 2001 | B1 |
6229220 | Saitoh et al. | May 2001 | B1 |
6236115 | Gaynes et al. | May 2001 | B1 |
6249051 | Chang et al. | Jun 2001 | B1 |
6250541 | Shangguan et al. | Jun 2001 | B1 |
6259159 | Dalal et al. | Jul 2001 | B1 |
6271059 | Bertin et al. | Aug 2001 | B1 |
6279815 | Correia et al. | Aug 2001 | B1 |
6291891 | Higashi et al. | Sep 2001 | B1 |
6336262 | Dalal et al. | Jan 2002 | B1 |
6344234 | Dalal et al. | Feb 2002 | B1 |
6346469 | Greer | Feb 2002 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6358847 | Li et al. | Mar 2002 | B1 |
6388322 | Goossen et al. | May 2002 | B1 |
6424037 | Ho et al. | Jul 2002 | B1 |
6426556 | Lin | Jul 2002 | B1 |
6434016 | Zeng et al. | Aug 2002 | B2 |
6448661 | Kim et al. | Sep 2002 | B1 |
6461895 | Liang et al. | Oct 2002 | B1 |
6469394 | Wong et al. | Oct 2002 | B1 |
6475897 | Hosaka | Nov 2002 | B1 |
6476503 | Imamura | Nov 2002 | B1 |
6492197 | Rinne | Dec 2002 | B1 |
6498308 | Sakamoto | Dec 2002 | B2 |
6562653 | Ma et al. | May 2003 | B1 |
6565657 | Huthmacher | May 2003 | B2 |
6570248 | Ahn et al. | May 2003 | B1 |
6573598 | Ohuchi et al. | Jun 2003 | B2 |
6578754 | Tung | Jun 2003 | B1 |
6583846 | Yanagawa et al. | Jun 2003 | B1 |
6592019 | Tung | Jul 2003 | B2 |
6592657 | Lee et al. | Jul 2003 | B2 |
6600222 | Levardo | Jul 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6713844 | Tatsuta et al. | Mar 2004 | B2 |
6731003 | Joshi et al. | May 2004 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6790748 | Kim et al. | Sep 2004 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908565 | Kim et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6940169 | Jin et al. | Sep 2005 | B2 |
6940178 | Kweon et al. | Sep 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6946384 | Kloster et al. | Sep 2005 | B2 |
6972490 | Chang et al. | Dec 2005 | B2 |
6975016 | Kellar et al. | Dec 2005 | B2 |
6998216 | He et al. | Feb 2006 | B2 |
7037804 | Kellar et al. | May 2006 | B2 |
7056807 | Kellar et al. | Jun 2006 | B2 |
7087538 | Staines et al. | Aug 2006 | B2 |
7135766 | Costa et al. | Nov 2006 | B1 |
7151009 | Kim et al. | Dec 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7192803 | Lin et al. | Mar 2007 | B1 |
7215033 | Lee et al. | May 2007 | B2 |
7245023 | Lin | Jul 2007 | B1 |
7251484 | Aslanian | Jul 2007 | B2 |
7271483 | Lin et al. | Sep 2007 | B2 |
7271484 | Reiss et al. | Sep 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7279795 | Periaman et al. | Oct 2007 | B2 |
7307005 | Kobrinsky et al. | Dec 2007 | B2 |
7317256 | William et al. | Jan 2008 | B2 |
7320928 | Kloster et al. | Jan 2008 | B2 |
7345350 | Sinha | Mar 2008 | B2 |
7382049 | Ho et al. | Jun 2008 | B2 |
7402442 | Condorelli et al. | Jul 2008 | B2 |
7402508 | Kaneko | Jul 2008 | B2 |
7402515 | Arana et al. | Jul 2008 | B2 |
7410884 | Ramanathan et al. | Aug 2008 | B2 |
7432592 | Shi et al. | Oct 2008 | B2 |
7459785 | Daubenspeck et al. | Dec 2008 | B2 |
7470996 | Yoneyama et al. | Dec 2008 | B2 |
7494845 | Hwang et al. | Feb 2009 | B2 |
7495179 | Kubota et al. | Feb 2009 | B2 |
7528494 | Furukawa et al. | May 2009 | B2 |
7531890 | Kim | May 2009 | B2 |
7554201 | Kang et al. | Jun 2009 | B2 |
7557597 | Anderson et al. | Jul 2009 | B2 |
7569935 | Fan | Aug 2009 | B1 |
7576435 | Chao | Aug 2009 | B2 |
7659631 | Kamins et al. | Feb 2010 | B2 |
7714235 | Pedersen et al. | May 2010 | B1 |
7804177 | Lu et al. | Sep 2010 | B2 |
7834450 | Kang | Nov 2010 | B2 |
7939939 | Zeng et al. | May 2011 | B1 |
7946331 | Trezza et al. | May 2011 | B2 |
8026128 | Pendse | Sep 2011 | B2 |
8076232 | Pendse | Dec 2011 | B2 |
8093729 | Trezza | Jan 2012 | B2 |
8120175 | Farooq et al. | Feb 2012 | B2 |
8130475 | Kawamori et al. | Mar 2012 | B2 |
8158489 | Huang et al. | Apr 2012 | B2 |
8207604 | Haba et al. | Jun 2012 | B2 |
8232640 | Tomoda et al. | Jul 2012 | B2 |
8258055 | Hwang et al. | Sep 2012 | B2 |
8313213 | Lin et al. | Nov 2012 | B2 |
8367939 | Ishido | Feb 2013 | B2 |
8435881 | Choi et al. | May 2013 | B2 |
8536458 | Darveaux | Sep 2013 | B1 |
8576368 | Kim et al. | Nov 2013 | B2 |
8823166 | Lin et al. | Sep 2014 | B2 |
9105530 | Lin et al. | Aug 2015 | B2 |
9355980 | Chen et al. | May 2016 | B2 |
9583687 | Hwang | Feb 2017 | B2 |
20010013423 | Dalal et al. | Aug 2001 | A1 |
20010038147 | Higashi et al. | Nov 2001 | A1 |
20020033412 | Tung | Mar 2002 | A1 |
20020084528 | Kim et al. | Jul 2002 | A1 |
20020100974 | Uchiyama | Aug 2002 | A1 |
20020106832 | Hotchkiss et al. | Aug 2002 | A1 |
20020197811 | Sato | Dec 2002 | A1 |
20030049886 | Salmon | Mar 2003 | A1 |
20030092219 | Ohuchi et al. | May 2003 | A1 |
20030094963 | Fang | May 2003 | A1 |
20030166331 | Tong et al. | Sep 2003 | A1 |
20030216025 | Lu et al. | Nov 2003 | A1 |
20030218250 | Kung et al. | Nov 2003 | A1 |
20030233133 | Greenberg et al. | Dec 2003 | A1 |
20040004284 | Lee et al. | Jan 2004 | A1 |
20040007779 | Arbuthnot et al. | Jan 2004 | A1 |
20040140538 | Harvey | Jul 2004 | A1 |
20040159944 | Datta et al. | Aug 2004 | A1 |
20040166661 | Lei | Aug 2004 | A1 |
20040212098 | Pendse | Oct 2004 | A1 |
20040251546 | Lee et al. | Dec 2004 | A1 |
20050017376 | Tsai | Jan 2005 | A1 |
20050062153 | Saito et al. | Mar 2005 | A1 |
20050158900 | Lee et al. | Jul 2005 | A1 |
20050212114 | Kawano et al. | Sep 2005 | A1 |
20050224991 | Yeo | Oct 2005 | A1 |
20050253264 | Aiba et al. | Nov 2005 | A1 |
20050277283 | Lin et al. | Dec 2005 | A1 |
20060012024 | Lin et al. | Jan 2006 | A1 |
20060017160 | Huang | Jan 2006 | A1 |
20060038303 | Sterrett et al. | Feb 2006 | A1 |
20060051954 | Lin et al. | Mar 2006 | A1 |
20060055032 | Chang et al. | Mar 2006 | A1 |
20060076677 | Daubenspeck et al. | Apr 2006 | A1 |
20060209245 | Mun et al. | Sep 2006 | A1 |
20060223313 | Yoon et al. | Oct 2006 | A1 |
20060279881 | Sato | Dec 2006 | A1 |
20060292824 | Beyne et al. | Dec 2006 | A1 |
20070001280 | Hua | Jan 2007 | A1 |
20070012337 | Hillman et al. | Jan 2007 | A1 |
20070018294 | Sutardja | Jan 2007 | A1 |
20070020906 | Chiu et al. | Jan 2007 | A1 |
20070023483 | Yoneyama et al. | Feb 2007 | A1 |
20070045840 | Vamau | Mar 2007 | A1 |
20070057022 | Mogami et al. | Mar 2007 | A1 |
20070114663 | Brown et al. | May 2007 | A1 |
20070200234 | Gerber et al. | Aug 2007 | A1 |
20080003402 | Haba et al. | Jan 2008 | A1 |
20080003715 | Lee et al. | Jan 2008 | A1 |
20080087998 | Kamins et al. | Apr 2008 | A1 |
20080128911 | Koyama | Jun 2008 | A1 |
20080150135 | Oyama et al. | Jun 2008 | A1 |
20080169544 | Tanaka et al. | Jul 2008 | A1 |
20080194095 | Daubenspeck et al. | Aug 2008 | A1 |
20080217047 | Hu | Sep 2008 | A1 |
20080218061 | Chao et al. | Sep 2008 | A1 |
20080277785 | Hwan et al. | Nov 2008 | A1 |
20090025215 | Murakami et al. | Jan 2009 | A1 |
20090042144 | Kitada et al. | Feb 2009 | A1 |
20090045499 | Kim et al. | Feb 2009 | A1 |
20090075469 | Furman et al. | Mar 2009 | A1 |
20090087143 | Jeon et al. | Apr 2009 | A1 |
20090096092 | Patel | Apr 2009 | A1 |
20090108443 | Jiang | Apr 2009 | A1 |
20090146316 | Jadhav et al. | Jun 2009 | A1 |
20090149016 | Park et al. | Jun 2009 | A1 |
20090166861 | Lehr et al. | Jul 2009 | A1 |
20090174067 | Lin | Jul 2009 | A1 |
20090218702 | Beyne et al. | Sep 2009 | A1 |
20090233436 | Kim et al. | Sep 2009 | A1 |
20090250814 | Pendse et al. | Oct 2009 | A1 |
20100007019 | Pendse | Jan 2010 | A1 |
20100044860 | Haba et al. | Feb 2010 | A1 |
20100052473 | Kimura et al. | Mar 2010 | A1 |
20100084763 | Yu | Apr 2010 | A1 |
20100141880 | Koito et al. | Jun 2010 | A1 |
20100193944 | Castro et al. | Aug 2010 | A1 |
20100200279 | Kariya et al. | Aug 2010 | A1 |
20100252926 | Kato et al. | Oct 2010 | A1 |
20100258950 | Li et al. | Oct 2010 | A1 |
20100270458 | Lake et al. | Oct 2010 | A1 |
20100276787 | Yu et al. | Nov 2010 | A1 |
20100314745 | Masumoto et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110001250 | Lin et al. | Jan 2011 | A1 |
20110024902 | Lin et al. | Feb 2011 | A1 |
20110038147 | Lin et al. | Feb 2011 | A1 |
20110074022 | Pendse | Mar 2011 | A1 |
20110084386 | Pendse | Apr 2011 | A1 |
20110101519 | Hsiao et al. | May 2011 | A1 |
20110101526 | Hsiao et al. | May 2011 | A1 |
20110169158 | Vamasi | Jul 2011 | A1 |
20110177686 | Zeng et al. | Jul 2011 | A1 |
20110186986 | Chuang et al. | Aug 2011 | A1 |
20110193220 | Kuo et al. | Aug 2011 | A1 |
20110227219 | Alvarado et al. | Sep 2011 | A1 |
20110244675 | Huang et al. | Oct 2011 | A1 |
20110248399 | Pendse | Oct 2011 | A1 |
20110260317 | Lu et al. | Oct 2011 | A1 |
20110285011 | Hwang et al. | Nov 2011 | A1 |
20110285023 | Shen et al. | Nov 2011 | A1 |
20120007230 | Hwang et al. | Jan 2012 | A1 |
20120007231 | Chang | Jan 2012 | A1 |
20120012997 | Shen et al. | Jan 2012 | A1 |
20120025365 | Haba | Feb 2012 | A1 |
20120040524 | Kuo et al. | Feb 2012 | A1 |
20120049346 | Lin et al. | Mar 2012 | A1 |
20120091577 | Hwang et al. | Apr 2012 | A1 |
20120098120 | Yu et al. | Apr 2012 | A1 |
20120098124 | Wu et al. | Apr 2012 | A1 |
20120145442 | Gupta | Jun 2012 | A1 |
20120146168 | Hsieh et al. | Jun 2012 | A1 |
20120223428 | Pendse | Sep 2012 | A1 |
20120306080 | Yu et al. | Dec 2012 | A1 |
20130026622 | Chuang et al. | Jan 2013 | A1 |
20130026629 | Nakano | Jan 2013 | A1 |
20130087920 | Jeng et al. | Apr 2013 | A1 |
20130093079 | Tu et al. | Apr 2013 | A1 |
20130181340 | Uehling et al. | Jul 2013 | A1 |
20130252418 | Arvin et al. | Sep 2013 | A1 |
20130270699 | Kuo et al. | Oct 2013 | A1 |
20130277830 | Yu et al. | Oct 2013 | A1 |
20130288473 | Chuang et al. | Oct 2013 | A1 |
20130341785 | Fu et al. | Dec 2013 | A1 |
20140048929 | Cha et al. | Feb 2014 | A1 |
20140054764 | Lu et al. | Feb 2014 | A1 |
20140054769 | Yoshida et al. | Feb 2014 | A1 |
20140054770 | Yoshida et al. | Feb 2014 | A1 |
20140061897 | Lin et al. | Mar 2014 | A1 |
20140061924 | Chen et al. | Mar 2014 | A1 |
20140077358 | Chen et al. | Mar 2014 | A1 |
20140077359 | Tsai et al. | Mar 2014 | A1 |
20140077360 | Lin et al. | Mar 2014 | A1 |
20140077365 | Lin et al. | Mar 2014 | A1 |
20140117533 | Lei et al. | May 2014 | A1 |
20140264890 | Breuer et al. | Sep 2014 | A1 |
20140346669 | Wang et al. | Nov 2014 | A1 |
20140353820 | Yu et al. | Dec 2014 | A1 |
20150091160 | Reber | Apr 2015 | A1 |
20150325542 | Lin et al. | Nov 2015 | A1 |
20160190090 | Yu | Jun 2016 | A1 |
20160254240 | Chen | Sep 2016 | A1 |
20160329293 | Cha et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
101080138 | Nov 2007 | CN |
101188219 | May 2008 | CN |
102254871 | Nov 2011 | CN |
102386158 | Mar 2012 | CN |
102468197 | May 2012 | CN |
1387402 | Feb 2004 | EP |
1020110002816 | Jan 2011 | KR |
1020110128532 | Nov 2011 | KR |
200826265 | Jun 2008 | TW |
200915452 | Apr 2009 | TW |
201133662 | Oct 2011 | TW |
201143007 | Dec 2011 | TW |
2009140238 | Nov 2009 | WO |
Entry |
---|
Garrou, Phil, “IFTLE 58 Fine Pitch Microjoints, Cu Pillar Bump-on-Lead, Xillinx Interposer Reliability,” Solid State Technology, Insights for Electronic Manufacturing, Jul. 18, 2011, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20180286830 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
61625980 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13653618 | Oct 2012 | US |
Child | 15065632 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15065632 | Mar 2016 | US |
Child | 15997124 | US |