This application claims the priority benefit of Taiwan application serial no. 99119089, filed on Jun. 11, 2010. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure is related to a semiconductor device, and in particular to, an electrostatic discharge (ESD) protection scheme for a wafer and/or die stacking process.
Three dimensional integrated circuit (3D IC) stacking processes are mainly classified into die-to-wafer, wafer-to-wafer, and die-to-die stacking processes. Generally, when a robot manipulator sucks (or clenches) a top layer wafer (or die) and stacks it above a bottom layer wafer (or die), electrical charges (which are static electricity) are possibly generated on the top layer wafer (or die) due to friction or other factors when the robot manipulator is moving.
Hence during the process of stacking the top and bottom layer wafers (or dies), the electrical charges accumulated on the top layer wafer (or die) are discharged to the grounded bottom layer wafer (or die) through at least a pad of the top layer wafer (or die) and a corresponding bump of the bottom layer wafer (or die). Therefore, ESD current generated by such electrical charges is very likely to damage internal circuits that are located on the top or bottom layer wafer (or die) and electrically connected by through silicon vias (TSV).
On the other hand, since in 3D ICs, different wafers (or dies) are stacked, a result is that the heat resistance of the overall 3D IC structure is increased. Consequently, when a 3D IC is operated, a great amount of heat is generated, thereby increasing the overall operating temperature and decreasing reliability of the 3D IC.
Evidently, an important issue in the development of 3D IC technology is how to effectively release the accumulated charges (i.e., static electricity) when stacking different wafers (or dies) and how to dissipate heat after the wafers (or dies) are stacked.
In light of the above, the disclosure provides a semiconductor device which includes a first active layer that includes a first substrate; a plurality of first TSVs, wherein each of the first TSVs passes through the first substrate; and a first ESD protection cell that has at least a first doping area, so that the first ESD protection cell is embedded in the first substrate and is adjacent and electrically connected to a first specific TSV of the first TSVs.
It should be known that the general description above and the embodiments below are only exemplary and for descriptive purposes, and do not limit the scope of the claims.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
The following refers to the exemplary embodiments in detail and illustrates implementations of the exemplary embodiments in the accompanying drawings. In addition, whenever possible, the same reference numerals in the figures and embodiments represent the same or similar elements.
According to the present embodiment, each of the TSVs T1 passes through the substrate 105, and each of the TSVs T2 also passes through the substrate 107. In addition, the ESD protection cell ESD_P1 includes at least one first doping area (described in detail in the following), so that the ESD protection cell ESD_P1 is embedded in the substrate 105 and is adjacent and electrically connected to a first specific TSV T1′ of (among) the TSVs T1. Similarly, the ESD protection cell ESD_P2 includes at least one second doping area (described in detail in the following), so that the ESD protection cell ESD_P2 is embedded in the substrate 107 and is adjacent and electrically connected to a second specific TSV T2′ of (among) the TSVs T2. Hence the first specific TSV T1′ corresponds to the second specific TSV T2′.
On the other hand, each of the pads PD is located (disposed) outside the substrate 105 and is electrically connected to the corresponding TSV T1. Similarly, each of the bumps BP is located (disposed) outside the substrate 107 and is electrically connected to the corresponding TSV T2. It should be noted that each of the pads PD corresponds to each of the bumps BP, i.e. a one-to-one relationship. Therefore, the first active layer 101 and the second active layer 103 are stacked through the pads PD and the bumps BP, so that the semiconductor device 100 becomes a 3D IC.
The following describes in detail specific implementations of the ESD protection cells ESD_P1 and ESD_P2 according to the present embodiment.
Moreover,
On the other hand,
Moreover,
Hence according to the background disclosure, during the process of stacking the top and bottom layer wafers (or dies), the electrical charges accumulated on the top layer wafer (or die) are discharged to the grounded bottom layer wafer (or die) through the contact between at least a pad of the top layer wafer (or die) and a corresponding bump of the bottom layer wafer (or die). Accordingly, ESD current generated by such electrical charges is very likely to damage internal circuits that are located on the top or bottom layer wafer (or die) and electrically connected by the TSVs.
On the other hand, since in 3D ICs, different wafers (or dies) are stacked, a result is that the heat resistance of the overall 3D IC structure is increased. Consequently, when a 3D IC is operated, a great amount of heat is generated, thereby increasing the overall operating temperature and decreasing the reliability of the 3D IC.
In light of the above, in order to effectively release the electrical charges (which are static electricity) accumulated on the top layer wafer (or die) when stacking different wafers (or dies) and to dissipate heat after the stacking process, the present embodiment provides a “specific path” (which is described in detail in the following), so as to effectively release the electrical charges accumulated on the top layer wafer (or die) and to provide a heat dissipation path after the stacking process.
To be more specific, according to the above embodiments, since the ESD protection cells ESD_P1 and ESD_P2 which are respectively adjacent to the first and second specific TSVs T1′ and T2′ have the P+ doping areas (
Similarly, when each of the ESD protection cells ESD_P1 and ESD_P2 of the first and second specific TSVs T1′ and T2′ has the N+ doping area, the electrical charges (which are static electricity) accumulated in the N-well NW in the substrate 105 (P-sub) (which is the top layer wafer (or die)) are guided to the grounded substrate 107 (P-sub) (which is the bottom layer wafer (or die)) through the specific path provided by the present embodiment, thereby realizing the goal of ESD protection.
For example,
According to
R
Path-1
=R
sub1
+R
T1′
+R
PD′
+R
PD′
+R
BP′
+R
T2′
+R
T2′
+R
sub2 1
Rsub1 is an equivalent electrical resistance of the substrate 105 (P-sub); RT1′ is an equivalent electrical resistance of the first specific TSV T1′; RPD′ is an equivalent electrical resistance of the pad PD′ (which is the pad corresponding to the specific path) corresponding to the first specific TSV T1′; RBP′ is an equivalent electrical resistance of the bump BP′ (which is the bump corresponding to the specific path) corresponding to the second specific TSV T2′; RT2′ is an equivalent electrical resistance of the second specific TSV T2′; and Rsub2 is an equivalent electrical resistance of the substrate 107 (P-sub).
On the other hand, an equivalent electrical resistance RPath-2 for electrical charges Q accumulated on the substrate 105 (P-sub) (which is the top layer wafer (or die)) through the path Path-2 to ground is represented by the following equation 2:
R
Path-2
=R
sub1
+R
GATE
+R
T1
+R
PD
+R
BP
+R
T2
+R
channel
+R
sub2 2
Rsub1 is the equivalent electrical resistance of the substrate 105 (P-sub); RGATE is an equivalent electrical resistance of a gate of an NMOS transistor M1; RT1 is an equivalent electrical resistance of the TSV T1; RPD is an equivalent electrical resistance of the pad PD (which is the pad corresponding to the conventional path) corresponding to the TSV T1; RBP is an equivalent electrical resistance of the bump BP (which is the bump corresponding to the conventional path) corresponding to the TSV T2; Rchannel is an equivalent electrical resistance of a channel of an NMOS transistor M2 when it is non-conducting; and Rsub2 is the equivalent electrical resistance of the substrate 107 (P-sub).
It is assumed that the TSVs T1 and T1′ have the same structure, the TSVs T2 and T2′ have the same structure, the bumps BP and BP′ have the same structure, and the pads PD and PD′ have the same structure. Under such circumstances, the equivalent electrical resistance RT1 and the equivalent electrical resistance RT1′ of the TSVs T1 and T1′ are equal (i.e. RT1=RT1′), the equivalent electrical resistance RT2 and the equivalent electrical resistance RT2′ of the TSVs T2 and T2′ are equal (i.e. RT2=RT2′), the equivalent electrical resistance RBP and the equivalent electrical resistance RBP′ of the bumps BP and BP′ are equal (i.e. RBP=RBP′), and the equivalent electrical resistance RPD and the equivalent electrical resistance RPD′ of the bumps PD and PD′ are equal (i.e. RPD=RPD′). Hence a difference value between the equivalent electrical resistance RPath-1 and the equivalent electrical resistance RPath-2 of the paths Path-1 and Path-2 to ground is represented by the following equation 3:
R
Path-2
−R
Path-1
=R
GATE
+R
channel 3
Therefore, compared with the path Path-1, the path Path-2 has the equivalent electrical resistance RPath-2 which further includes the equivalent electrical resistance RGATE of the gate of the NMOS transistor M1 and the equivalent electrical resistance Rchannel of the channel of the NMOS transistor M2 when it is non-conducting. The path Path-1 is hence a path which has a smaller equivalent electrical resistance relative to the path Path-2, so that the electrical charges Q (which are static electricity) accumulated on the substrate 105 (P-sub) (which is the top layer wafer (or die)) select the path Path-1 over the path Path-2 to be released to the grounded substrate 107 (P-sub) (which is the bottom layer wafer (or die)).
On the other hand, according to
Additionally, to make the electrical charges Q (which are static electricity) accumulated on the substrate 105 (P-sub) choose the path Path-1 over the path Path-2 to be released to the grounded substrate 107 (P-sub) (which is the bottom layer wafer (or die)), the present embodiment may also be implemented by altering the structures of the TSV T1′ and the bump BP′ on the path Path-1.
In further detail,
In addition,
In addition,
On the other hand,
In addition,
Furthermore,
Accordingly, by altering the structure of the TSV T1′ and/or the bump BP′ on the path Path-1, the equivalent electrical resistance RT1′ of the TSV T1′ and/or RBP′ of the bump BP is less than the equivalent electrical resistance RT1 of the other TSVs T1 and/or RBP of the other bumps BP. Hence the difference value between the equivalent electrical resistance RPath-1 and the equivalent electrical resistance RPath-2 through the paths Path-1 and Path-2 to ground is further increased, as represented by the following equation 4:
R
Path-2
−R
Path-1
=R
GATE
+R
channel+(RT1−RT1′)+(RT2−RT2′)+(RBP−RBP′) 4
The path Path-1 is hence a path which has a smaller equivalent electrical resistance relative to the path Path-2, so that the electrical charges Q (which are static electricity) accumulated on the substrate 105 (P-sub) (which is the top layer wafer (or die)) are even more favorable for the path Path-1 over the path Path-2 to be released to the grounded substrate 107 (P-sub) (which is the bottom layer wafer (or die)).
It should be noted that although the above embodiment is described as having the corresponding ESD protection cells ESD_P1 and ESD_P2 in the first active layer 101 and the second active layer 103, the disclosure is not limited to the above configuration. In other words, in other embodiments, a plurality of pairs of the corresponding ESD protection cells ESD_P1 and ESD_P2 may be disposed in the first active layer 101 and the second active layer 103 according to actual design requirements. These alternative embodiments are also within the scope of the disclosure.
In addition, in the embodiment depicted in
In detail,
According to the present embodiment, a second active layer 103′ includes a substrate 107′, a plurality of bumps BP, and at least one ESD protection cell ESD_P2′. Each of the bumps BP is located (disposed) outside the substrate 107′ and corresponds to pads PD on the first active layer 101. Additionally, the ESD protection cell ESD_P2′ includes at least one second doping area (described in detail in the following) so that the ESD protection cell ESD_P2′ is embedded in the substrate 107′ and is electrically connected to a specific bump BP′ of (among) the bumps BP by metal line. Hence the first specific TSV T1′ corresponds to the specific bump BP′.
On the other hand,
Moreover,
In light of the above, in order to effectively release the electrical charges (which are static electricity) accumulated on the top layer wafer (or die) when stacking different wafers (or dies) and to dissipate heat after the stacking process, the present embodiment provides a “specific path” (which is described in detail in the following), so as to effectively release the electrical charges accumulated on the top layer wafer (or die) and to provide a heat dissipation path after the stacking process.
To be more specific, according to the above embodiments, since the ESD protection cells ESD_P1 and ESD_P2′ which are adjacent to the first TSV T1′ and connected to the specific bump BP′ have the P+ doping areas (
Similarly, when each of the ESD protection cells ESD_P1 and ESD_P2′ of the specific TSV T1′ and the specific bump BP′ has an N+ doping area, the electrical charges (which are static electricity) accumulated in the N-well NW in the substrate 105 (P-sub) (which is the top layer wafer (or die)) are guided to the grounded substrate 107′ (P-sub) (which is the bottom layer wafer (or die)) through the specific path provided by the present embodiment, thereby realizing the goal of ESD protection.
For example,
According to
R
Path-1
′=R
sub1
+R
T1′
+R
PD′
+R
BP′
+R
sub2 5
The items in equation 5 are described in the description for equation 1 and are hence not repeatedly described.
On the other hand, an equivalent electrical resistance RPath-2′ for the electrical charges Q accumulated on the substrate 105 (P-sub) (which is the top layer wafer (or die)) through the path Path-2′ to ground is represented by the following equation 6:
R
Path-2
′=R
sub1
+R
GATE
+R
T1
+R
PD
+R
BP
+R
channel
+R
sub2 6
The items in equation 6 are described in the description for equation 2 and are hence not repeatedly described.
It is assumed that the TSVs T1 and T1′ have the same structure, the bumps BP and BP′ have the same structure, and the pads PD and PD′ have the same structure. Under such circumstances, the equivalent electrical resistance RT1 and the equivalent electrical resistance RT1′ of the TSVs T1 and T1′ are equal (i.e. RT1=RT1′), the equivalent electrical resistance RBP and the equivalent electrical resistance RBP′ of the bumps BP and BP′ are equal (i.e. RBP=RBP′), and the equivalent electrical resistance RPD and the equivalent electrical resistance RPD′ of the pads PD and PD′ are equal (i.e. RPD=RPD′). Hence a difference value between the equivalent electrical resistance RPath-1′ and the equivalent electrical resistance RPath-2′ through the paths Path-1′ and Path-2′ to ground is represented by the following equation 7:
R
Path-2
′−R
Path-1
′=R
GATE
+R
channel 7
Therefore, compared with the path Path-1′, the path Path-2′ has the equivalent electrical resistance RPath-2′ which further includes the equivalent electrical resistance RGATE of the gate of the NMOS transistor M1 and the equivalent electrical resistance Rchannel of the channel of the NMOS transistor M2 when it is non-conducting. The path Path-1′ is hence a path which has a smaller equivalent electrical resistance relative to the path Path-2′, so that the electrical charges Q (which are static electricity) accumulated on the substrate 105 (P-sub) choose the path Path-1′ over the path Path-2′ to be released to the grounded substrate 107′ (P-sub) (which is the bottom layer wafer (or die)).
On the other hand, according to
Similarly, to further ensure that the electrical charges Q (which are static electricity) accumulated on the substrate 105 (P-sub) choose the path Path-1′ over the path Path-2′ so as to be released to the grounded substrate 107′ (P-sub) (which is the bottom layer wafer (or die)), the present embodiment may also be implemented by altering the structures of the TSV T1′ and the bump BP′ on the path Path-1′. In other words, the present embodiment may be implemented by referring to the embodiments shown in
Moreover, in actual application, if the ESD protection scheme according to the above embodiments and a 2D charged device model (CDM) ESD protection scheme are combined, a CDM ESD protection scheme for a whole 3D IC is constructed.
In summary, in the ESD protection scheme according to the above embodiments, the equivalent electrical resistance of the specific path is designed to be less than that of the other paths. Hence when the first and second active layers in the semiconductor device are stacked, if suitable ESD protection units/devices (i.e. the ESD protections cells ESD_P1 and ESD_P2/ESD_P2′) are designed on these types of specific paths, the electrical charges (which are static electricity) accumulated on the top layer wafer (or die) choose these specific paths over other paths to be released to the grounded bottom layer wafer (or die), so as to achieve ESD protection effects. Furthermore, since such a specific path also functions as a heat dissipation path of the 3D IC, the overall heat resistance of the 3D IC is reduced, thereby enhancing heat dissipation effects.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
99119089 | Jun 2010 | TW | national |