1. Field of the Invention
The present invention relates to a semiconductor device.
2. Description of Related Art
CSPs (Chip Size Packages) are known as semiconductor chip package structures. The adoption of a CSP makes it possible to make the size of the package substantially the same as the chip cut from the semiconductor wafer.
WCSPs, which constitute one type of CSP, are known. Japanese Patent No. 3313547, for example, is known as a publication that discloses a WCSP.
A WCSP structure comprises a redistribution wiring layer which is provided on the surface on which the integrated circuit is formed. External terminals, that is, input/output pins, are provided on the redistribution wiring layer. The redistribution wiring layer comprises wiring for connecting external terminals to the pads of the integrated circuit. In the above-mentioned publication, solder balls are employed as the external terminals. The surface on which the external terminals are formed is called the ‘mount face’ and a structure in which external terminals are provided on a mount face is known as a ‘fan-in structure’.
The maximum number of external terminals which can be provided on the mount face is determined by the pitch of the external terminals and the size of the mount face. In other words, in order to increase the quantity of external terminals provided on the mount face, the pitch of the external terminals must be reduced or the mount face must be increased in size.
In many cases, the pitch of the external terminals is designated by the user of the semiconductor device. In cases where the pitch is designated beforehand, it is not possible to increase the number of terminals by reducing the pitch. In addition, the reduction in pitch is subject to fabrication technology limitations.
On the other hand, in a case where the size of the mount face is increased, although the chip area is then larger, the maximum number of external terminals which can be provided on the mount face can be optionally set. In order to increase the size of the mount face, the degree of integration of the integrated circuit may be reduced.
In a case where the degree of integration of the integrated circuit formed in the semiconductor chip is reduced, it is undesirable to use this semiconductor chip for fabricating a semiconductor device with a package structure other than a WCSP structure (a wire bonding structure, for example). This is because, when wire bonding structure packaging or other non-WCSP packaging is performed on a semiconductor chip with a small degree of integration, the size of the semiconductor device is then abnormally large. Therefore, even when the logic structure of the integrated circuit is the same, a chip mounted on the WCSP and a chip mounted on another type of package should be designed separately and fabricated by means of a separate process. For this reason the design and fabrication process cannot be shared, and so the fabrication costs are extremely high.
A object of the present invention is to provide a technique for increasing the maximum number of external terminals being provided on the mount face of a semiconductor device that adopts a WCSP structure, without incurring a cost increase.
The semiconductor device according to the first standpoint of the present invention comprises: a semiconductor chip which has a circuit region defined in the central part thereof and a wiring region which surrounds the circuit region; an integrated circuit which is formed on the circuit region; a plurality of electrode pads which are formed on the circuit region and which are connected to the integrated circuit; a plurality of first external terminals which are arranged over the circuit region; a plurality of second external terminals which are arranged over the wiring region; a first redistribution wiring which connects the electrode pad to the first external terminal; a second redistribution wiring which connects the electrode pad to the second external terminal; and a sealing film which covers over the circuit region and the wiring region such that the first and second external terminals are exposed from the sealing film.
The semiconductor device according to the first standpoint of the present invention comprises a wiring region for providing second redistribution wiring and second external terminals. Therefore, the quantity of external terminals can be increased without reducing the rate of integration of the integrated circuit. Moreover, because the rate of integration of the integrated circuit is not reduced, the integrated circuit design can be shared by a chip mounted in a WCSP and a chip mounted in other type of package, and therefore the sharing of part of the fabrication process is then straightforward.
The semiconductor device according to the second standpoint of the present invention comprises: a semiconductor substrate which has a first region that is provided with a plurality of circuit element connection pads, and a second region that surrounds the first region; a plurality of first external terminals which are arranged on the first region; a plurality of second external terminals which are arranged on the second region; a plurality of first wiring structures which are formed on the first region, and electrically and individually connecting a plurality of the first external terminals and a first predetermined number of the circuit element connection pads; a plurality of second wiring structures which are formed ranging from the first region to the second region, and electrically and individually connecting a plurality of the second external terminals and a second predetermined number of the circuit element connection pads; a passive element which is electrically connected to one of the second wiring structures.
The semiconductor device according to the second standpoint of the present invention comprises a second region for providing second redistribution wiring structures and second external terminals. Therefore, the quantity of external terminals can be increased without reducing the rate of integration of the integrated circuit. Moreover, because the rate of integration of the integrated circuit is not reduced, the integrated circuit design can be shared by a chip mounted in a WCSP and a chip mounted in other type of package, and therefore the sharing of part of the fabrication process is then straightforward.
The semiconductor device according to the present invention can fabricate using a fabrication described hereinafter.
The semiconductor device fabrication method performs a common process in which an integrated circuit having a plurality of electrode pads is formed in a circuit region established in the central part of each integrated circuit formation region of a semiconductor wafer, and then, in a case where a chip size package semiconductor device is fabricated, the fabrication method performs a first separate process comprising: (a) forming first redistribution wiring, one end of which is connected to the electrode pads, in the circuit region, and forming second redistribution wiring, one end of which is connected to the electrode pads, in a wiring region which is established so as to surround the circuit region; (b) forming first external terminals, which are connected to the other end of the first redistribution wiring, in the circuit region, and forming second external terminals, which are connected to the other end of the second redistribution wiring, in the wiring region; (c) forming a sealing film which covers the circuit region and the wiring region such that the first external terminals and the second external terminals are exposed; and (d) finishing the semiconductor device by dicing the semiconductor wafer along the outer edge of the wiring region, and, in a case where a semiconductor device other than a chip size package semiconductor device is fabricated, the fabrication method performs a second separate process comprising: (e) creating semiconductor chips by dicing the semiconductor wafer along the outer edge of the circuit region; and (f) finishing the semiconductor device by subjecting the semiconductor chip to predetermined packaging.
According to this semiconductor device fabrication method, an integrated circuit is formed in only a circuit region which is established in the central part of a chip region of the semiconductor wafer (a region for a single chip produced by dicing). Further, second redistribution wiring and first external terminals are formed at the perimeter of the circuit region, that is, in the wiring region, only when a chip size package is adopted. Therefore, the integrated circuit design and part of the fabrication process can be shared by the chip mounted in a WCSP and a chip mounted in another type of package.
Regarding this fabrication method, it is desirable that the first separate process comprises forming passive elements for regulating the electrical characteristics of the second redistribution wiring in the wiring region.
Regarding this fabrication method, it is desirable that the passive elements include a capacitor.
Regarding this fabrication method, it is desirable that the passive elements include a plurality of capacitors which are standardized so as to have the same size and the same characteristics.
Regarding this fabrication method, it is desirable that the passive elements include an inductor.
Regarding this fabrication method, it is desirable that the passive elements include a plurality of inductors which are standardized so as to have the same size and the same characteristics.
Regarding this fabrication method, it is desirable that plurality of the passive elements is arranged in the form of an array in the wiring region.
Regarding this fabrication method, it is desirable that the passive elements are formed in the layer in which the second redistribution wiring is provided.
Regarding this fabrication method, it is desirable that the passive elements are formed in a layer that lies beneath the layer in which the second redistribution wiring is provided.
Regarding this fabrication method, it is desirable that the electrode pads are arranged along the boundary between the circuit region and the wiring region.
Other objects and advantages of the present invention are described with reference to the attached drawings below.
Embodiments of the present invention will be described below with reference to the drawings. The drawings merely provide an outline view of the size, shape and dispositional relationship of the constituent components to an extent permitting an understanding of the invention, and the numerical conditions described below are merely a simple illustration.
The first embodiment of the present invention will be described below.
As will be described below, in the fabrication process for a semiconductor device that has a WCSP structure, the semiconductor wafer 100 is diced along the lines L1. On the other hand, in a fabrication process of a semiconductor device for which a package structure other than a WCSP structure is adopted, the semiconductor wafer 100 can be diced along the lines L2.
As described above, the mount face of a semiconductor device 200 comprises the circuit region 111 and the wiring region 112. As will be described subsequently using
A plurality of electrode pads 210 is provided in the circuit region 111. These electrode pads 210 are arranged at regular intervals along the outer edge of the circuit region 111. In addition, a plurality of first external terminals 220 is arranged at regular intervals within the arrangement of electrode pads 210. Meanwhile, a plurality of second external terminals 230 is arranged at regular intervals in the wiring region 112. The first and second external terminals 220 and 230 are connected to the circuit substrate (not shown) by using the above-described fan-in method. As shown in
The second wiring pattern 250 is provided with an inductor 260 and a capacitor 270. The inductor 260 and capacitor 270 are formed according to requirements in order to prevent electromagnetic interference of the integrated circuit in the circuit region 111 and the external terminals 220 and 230. In the example in
The redistribution wiring structure according to this embodiment is described below.
As shown in
As shown in
As shown in
As shown in
An upper electrode 512 of the capacitor 510 is formed on the insulation film 630. Within the insulation film 630, a dielectric film 513 of the capacitor 510 is embedded in a region which is sandwiched between the lower electrode 511 and the upper electrode 512. As shown in
Posts 661 to 665 are provided on the post pads 641 to 645. In addition, a sealing film 650 is formed on the surface of the insulation film 630. The upper surfaces of the posts 661 to 665 are exposed via the sealing film 650. Further, the external terminals 223, 224, and 235 to 237 are provided on these exposed surfaces. The external terminals 223, 224, and 235 to 237 are formed by solder, for example.
In this embodiment, the total number of external terminals is the sum of the quantity of the first external terminals and the quantity of the second external terminals. Expressed differently, the present embodiment increases the total number of external terminals by providing the semiconductor chip 200 with the wiring region 112.
Therefore, according to the present embodiment, the structure and integration rate of the integrated circuit formed in the circuit region 111 can be made the same irrespective of the desired number of external terminals. In cases where the number of external terminals is changed, it is acceptable to only change the area of the wiring region 112.
An example of the relationship between the size of the mount face and the total number of external terminals will now be illustrated using
For example, in a case where the size S0 of the mount face is 7 mm and the pitch of the external terminals is 0.5 mm, the total number of external terminals is at most 160. As can be seen from
In addition to WCSPs, known package structures include structures that employ wire bonding (WB) and structures that employ flip chip bonding (FCB). These packaging techniques involve mounting the semiconductor chip on the surface of an interposer substrate. External terminals are provided on the reverse side of the interposer substrate. Therefore, with a package that employs WB or FCB or the like, the reverse side of the interposer substrate is the mount face. Therefore, in a case where there is a desire to increase the number of external terminals without narrowing the pitch, the area of the interposer substrate may be enlarged.
However, with a package that employs WB, when the area of the interposer substrate is enlarged, the inductance rises between the electrode pads of the semiconductor chip and the external terminals of the interposer substrate. A package that employs FCB necessitates the use of a high-cost build-up substrate as the interposer substrate. In addition, the producibility of FCB is poor on account of the long time required for bonding. Therefore, the fabrication costs of packages that employ FCB are high. Also, when WB or FCB is used, the thickness of the package is extremely large. The thicknesses of typical packages are such that, whereas the thickness of a WCSP structure is on the order of 0.45 to 0.7 mm, the thickness of a WB structure is on the order of 1.05 to 1.4 mm, and the thickness of a FCB structure is on the order of 0.8 to 1.00 mm.
The semiconductor device of this embodiment allows the maximum number of external terminals to be regulated by only regulating the area of the wiring region 112. For this reason, the number of external terminals can be increased without harming the above-described virtues of the WCSP structure.
As described above, according to the present embodiment, grooves 411 or 611 are formed between the circuit region 111 and the wiring region 112 (See
As described above, according to this embodiment, passive elements (the inductor 260 and capacitor 270) which serve to prevent electromagnetic interference are formed in the wiring region 112. As a result, the number of parts of the substrate on which the semiconductor device is mounted can be reduced and therefore down-sizing of the mount substrate can be implemented. In addition, by providing the wiring region 112 with the capacitor 270, the wiring pattern connecting the electrode pads and the external terminals is shortened. For this reason, the parasitic inductance that is caused by the wiring pattern is smaller than for a case where the same capacitor is provided on the mount substrate (that is, a case where the capacitor 270 is not provided in the wiring region 112), and, as a result, the noise generated by the capacitor is reduced.
Next, the semiconductor device fabrication method according to this embodiment will now be described using
First of all, as shown in
Next, a passivation film 410 formed from SiN, for example, is formed over the whole surface of the semiconductor wafer 100. An ordinary thin-film deposition technique can be employed in the formation of the passivation film 410. The film thickness of the passivation film 410 is 0.5 to 1.0 μm, for example. Grooves 411 and openings 412 are formed in the passivation film 410 by employing an ordinary photolithographic technique. The grooves 411 are formed at the boundary between the circuit region 111 and the wiring region 112. The openings 412 are formed above the electrode pads 211 and 212. With the exception of the outer edge parts, the surfaces of the electrode pads 211 and 212 are exposed by openings 412.
As shown in
As shown in
As shown in
In addition, posts 461 to 466 are formed on the electrically conductive patterns 241, 251 and 441 to 446 (See
As shown in
In addition, as shown in
Thereafter, a multiplicity of semiconductor chips 200 is formed by dicing the semiconductor wafer 100.
Next, another fabrication method for the semiconductor device according to the present embodiment will be described.
First of all, as per the earlier example (See
Next, as shown in
Next, as shown in
Next, as shown in
According to the fabrication process of this embodiment, although the second insulation film 630 is formed after forming the dielectric film 513, the dielectric film 513 can also be formed after forming the second insulation film 630. When the second insulation film 630 is formed first, an opening for forming the dielectric film 513 is provided in the second insulation film 630, and the dielectric material is embedded in this opening.
Next, as shown in
In addition, as shown in
As shown in
In addition, as shown in
Thereafter, a multiplicity of semiconductor chips 200 is formed by dicing the semiconductor wafer 100.
According to the fabrication method of this embodiment which was described above, the semiconductor chip 200 can be fabricated inexpensively by means of a simple process and therefore fabrication costs are low.
The present embodiment was described taking, as an example, a case where the present invention is applied to a semiconductor device that adopts a WCSP structure. Correspondingly, in a semiconductor device that adopts a package structure other than a WCSP structure (a structure in which wire bonding is performed on the electrode pads of the circuit region, for example), external terminals are not required and hence the wiring region 112 is not necessary. In this case, dicing may be performed along the grooves 411 after forming the electrode pads 211 and 212 in the circuit region 111 (See
The second embodiment of the present invention will be described next.
According to the first embodiment described above, a capacitor and an inductor are formed in the redistribution wiring layer (the layer sandwiched between the insulation layers 620 and 630 in
The overall constitution of the semiconductor wafer according to this embodiment is the same as that of the semiconductor wafer of the first embodiment (
As shown in
A plurality of electrode pads 210 is provided in the circuit region 111 as per the first embodiment (See
Two capacitors 1311, 1312 and two inductors 1321, 1322 are formed in the wiring region 112. The capacitor 1311 is connected to the electrode pads 1331 and 1332, and the capacitor 1312 is connected to the electrode pads 1333 and 1334. The inductor 1321 is connected to the electrode pads 1335 and 1336 and the inductor 1322 is connected to the electrode pads 1337 and 1338.
The constitution of the capacitors and inductors will be described in more detail below by using
Electrode pads 1401 and 1402 are provided in the circuit region 111. A capacitor 1410, an inductor 1420, and electrode pads 1431 to 1434 are provided in the wiring region 112.
The capacitor 1410 is constituted by a lower electrode 1411, a dielectric film 1412, and an upper electrode 1432. That is, the electrode pad 1432 is also employed as an upper electrode. The lower electrode 1411 is connected to the electrode pad 1431 by a wiring pattern 1501.
The inductor 1420 has a coil shape. The inner terminal of the inductor 1420 is connected to an electrode pad 1433 by a wiring pattern 1502. The outer terminal of the inductor 1420 is formed integrally with an electrode pad 1434.
As shown in
As shown in
As shown in
Next, the fabrication method for the semiconductor device according to this embodiment will be described by using
First, as shown in
The electrode pads 1401, 1402, and 1411 to 1414 are then formed along the outer edge of the integrated circuit 401. An ordinary thin-film deposition technique and photolithographic technique, for example, are employed in the formation of the electrode pads 1401, 1402, and 1411 to 1414. An aluminum alloy or gold alloy or similar, for example, can be employed for the electrode pads 1401, 1402, and 1411 to 1414.
Next, a passivation film 1560 formed from SiN, for example, is formed over the whole surface of the semiconductor wafer 100. An ordinary thin-film deposition technique can be employed in the formation of the passivation film 1560. The film thickness of the passivation film 1560 is 0.5 to 1.0 μm, for example. The above-described grooves 1561 and openings 1562 to 1567 are formed in the passivation film 1560 by employing an ordinary photolithographic technique (See
An insulation film 1710 of polyimide or similar, for example, is formed on the passivation film 1560. Spin-coating, for example, is employed as the technique for forming the insulation film 1710. The thickness of the insulation film 1710 is on the order of 10 μm, for example. Openings 1562 to 1567 are formed in the insulation film 1710 by using an ordinary photolithography technique, for example.
As shown in
In addition, the posts 1641 to 1645 are formed on the post pads 1621 to 1625 as per the first embodiment. The diameter of the posts is on the order of 100 to 250 μm, for example.
Thereafter, a sealing film 1650 and the external terminals 1661 to 1665 are formed as per the first embodiment (See
Finally, a multiplicity of semiconductor chips 200 is formed by dicing the semiconductor wafer 100.
Because, according to this embodiment, the capacitor and inductor of the wiring region 112 are formed beneath the redistribution wiring layer, the fabrication process from the redistribution wiring layer onward is straightforward.
Next, the third embodiment of the present invention will be described.
The semiconductor device according to this embodiment differs from those of the first and second embodiments above in that the capacitor and inductor are formed in the wiring region 112 in the form of an array.
The capacitors 1910 and inductors 1920 are formed in a layer beneath the redistribution wiring layer as per the second embodiment (See
The size and characteristics of the capacitors 1910 and inductors 1920 can be standardized. The passive element array can be standardized among semiconductor chips in which the constitution of the integrated circuit 401 differs. Because the passive element array is standardized, a common mask can be employed and therefore development costs are reduced.
Number | Date | Country | Kind |
---|---|---|---|
2002-346256 | Nov 2002 | JP | national |
This is a Divisional of U.S. Application Ser. No. 10/722,561, filed Nov. 28, 2003, now U.S. Pat. No. 7,012,339 issued Mar. 14, 2006.
Number | Name | Date | Kind |
---|---|---|---|
5557148 | Cain | Sep 1996 | A |
6228684 | Maruyama | May 2001 | B1 |
6391685 | Hikita et al. | May 2002 | B1 |
6504096 | Okubora | Jan 2003 | B2 |
20010042901 | Maruyama | Nov 2001 | A1 |
20020074146 | Okubora | Jun 2002 | A1 |
20020149086 | Aoki | Oct 2002 | A1 |
20030189251 | Terui et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
9-64049 | Mar 1997 | JP |
2000-243900 | Sep 2000 | JP |
2000-299406 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20060157845 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10722561 | Nov 2003 | US |
Child | 11368614 | US |