1. Field of the Invention
The present invention relates to a fabrication method of a semiconductor package, and, more especially, to the fabrication method of the semiconductor package with a lead frame structure.
2. Background of the Related Art
In the traditional package processes, a tape is required to arrange on the SMT mounting surface of the lead frame before proceeding the molding process, in order to prevent the molding flow over to the SMT pads and affect the follow-up manufacturing process. However, the tape will remain the viscose on the SMT mounting surface to pollute the SMT pads. Besides, the processes of mounting the tape, removing the tape and purging the viscose will increase the fabrication cost and decrease the yield. Therefore, how to prevent the molding flow over to the SMT mounting surface without using any taps is a characteristic of the present invention.
On the other hand, during the traditional package processes, a tin-plating process is required to applied on the SMT mounting surface after moving the tape, in order to proceeding the following SMT manufacturing process. But the tin-plating process does not satisfy the unleaded demand of the restriction of the use of certain hazardous substrate in EEE (ROHS). Beside, the row material of the traditional lead frame is the copper plate or the iron plate having the established thickness, so that the manufacturing scale of the lead frame will be limited, such that it is hard to reduce the height of whole package effectively.
In order to solve the foregoing problems, one object of this invention is to provide a fabrication method of a semiconductor package without using any tape, so that the conventional processes of mounting the tape, removing the tape and purging the viscose will be abridged, to have the advantages of decreasing the fabrication cost and raising the yield.
One object of this invention is to provide a fabrication method of the semiconductor package, wherein the bonding surface of the metal-stack layer is made of the soldering material, so that the bonding surface can be directly used in the following SMT manufacturing process without doing any tin-plating process, so as to reduce the fabrication cost, raise the yield and satisfy the unleaded demand of ROHS.
One object of this invention is to provide a fabrication method of the semiconductor package, wherein the thickness of the metal-stacked layers can be changed according to the demand to construct different lead frame structures with different thicknesses, so as to improve the conventional defect, wherein the scale of the lead frame is limited due to the row material, such as the copper plate or the iron plate, which have the established thickness
One object of this invention is to provide a fabrication method of the semiconductor package, wherein the thickness of the metal-stacked layers can be controlled in very thin, not only to reduce the height of whole package, but also to provide a suitable thickness for the lead frame structure to proceed the following package process by using the existed equipment, so as to have the advantages of reducing the additional expenditure on equipment to promote the competitiveness.
Accordingly, one embodiment of the present invention provides a fabrication method of a semiconductor package, which includes: providing a carrier having a first surface and a second surface; performing a surface treatment on the first surface; covering a patterned insulating layer on the first surface and covering an insulating layer on the second surface, wherein the patterned insulating layer has a plurality of openings to expose portions of the first surface; forming a plurality of metal-stacked layers on the exposed first surface, wherein every metal-stack layer at least includes a bonding surface and a welding surface; and removing the patterned insulating layer and the insulating layer to construct a lead frame structure; performing a chip bonding step; forming a molding compound on the carrier; removing the carrier; and performing a dicing step to form a plurality of semiconductor packages.
Another embodiment of the present invention provides a fabrication method of a semiconductor package, which includes: providing a carrier having a first surface and a second surface; performing a surface treatment on the first surface; forming a plurality cavities on the first surface; and depositing a plurality of metal-stacked layers on the cavities respectively to construct a lead frame structure, wherein every metal-stack layer includes at least a bonding surface and a welding surface; performing a chip bonding step; forming a molding compound on the carrier; removing the carrier to make the metal-stack layers stick out of the molding compound; and performing a dicing step to form a plurality of semiconductor packages.
a to
a to
a to
a to
Furthermore, the patterned insulating layer 16 is formed on and covers the first surface 12 by the image transfer process, the printing process or the laser direct imaging process. In another embodiment, the chips 26 are electrically connected to the metal-stack layers 22 by the flip chip technique, and the constructed semiconductor package 30 is shown in
In another embodiment, after the lead frame structure 24 is constructed, the chip bonding step may include the following processes as shown in
In the present invention, the metal-stack layers are formed on the carrier by electroplating, sputtering, evaporation or electroless plating, wherein the bonding surfaces of the metal-stack layers are combined with the gaps from the rough structure or the reticular structure, or the atoms of the bonding surfaces are filled in the gaps between the atoms of the carrier, so that the metal-stack layers are connected with the carrier by the physical bonding strength from the electroplating process. Therefore, the metal-stack layers will combine with the carrier without using any adhesion material. Because the gaps between the atoms of the carrier and the atoms of the bonding surfaces are very small, the other atoms, which are bigger than the atoms of the carrier and the bonding surfaces, can not permeate into the gap to form the intercept effect. It will prevent the following macromolecular compounds of the molding compound from permeating to the mounting surface between the carrier and the bonding surfaces, and avoid the macromolecular compounds polluting the mounting surface. Therefore, the present invention can abridge the processes of mounting the tape, removing the tape and purging the viscose to have the advantage of decreasing the fabrication cost. On the other hand, because the bonding surface of the metal-stack layer is made of the soldering material, so that the bonding surface can directly be used to the following SMT manufacturing process without doing any tin-plating process, so as to reduce the fabrication cost, raise the yield and satisfy the unleaded demand of ROHS.
Accordingly, the metal-stack layer further includes a middle layer between the bonding surface and the welding surface, and the material of the middle layer is nickel (Ni), palladium (Pd), silver (Ag), copper (Cu) or combinations thereof. Therefore, the whole metal-stack layer may be one of the following stack structures including: Au—Ni—Au, Au—Pd—Ni—Pd—Au, Au—Ni—Pd—Au, Au—Pd—Ni—Au, Ag—Ni—Pd—Au, Au—Pd—Ni—Ag, Ag—Ni—Au, Au—Ni—Ag, Ag—Ni—Ag, Pd—Ag—Ni—Ag, Pd—Ag—Ni—Ag—Pd, Au—Ni—Ag—Pd, Pd—Ag—Ni—Au, Pd—Ag—Ni—Sn, Ag—Ni—Sn, Au—Ni—Sn, Ag—Pd—Ni—Sn, Au—Ni—Cu—Ni—Au, Au—Pd—Ni—Cu—Ni—Pd—Au, Au—Ni—Cu—Ni—Pd—Au, Au—Pd—Ni—Cu—Ni—Au, Ag—Ni—Cu—Ni—Pd—Au, Au—Pd—Ni—Cu—Ni—Ag, Ag—Ni—Cu—Ni—Au, Au—Ni—Cu—Ni—Ag, Ag—Ni—Cu—Ni—Ag, Pd—Ag—Ni—Cu—Ni—Ag, Pd—Ag—Ni—Cu—Ni—Ag—Pd, Au—Ni—Cu—Ni—Ag—Pd, Pd—Ag—Ni—Cu—Ni—Au, Pd—Ag—Ni—Cu—Ni—Sn, Ag—Ni—Cu—Ni—Sn, Au—Ni—Cu—Ni—Sn, Au—Pd—Ni—Cu—Ni—Sn, Pd—Ag—Ni—Cu—Sn, Ag—Ni—Cu—Sn, Au—Ni—Cu—Sn, Ag—Pd—Ni—Cu—Sn, and Ag.
In the present invention, the thickness of the metal-stacked layers can be changed according to the demand of constructing different lead frame structures with different thicknesses. It can improve the conventional defect that the scale of the lead frame is limited due to the row material, such as the copper plate or the iron plate, which have the established thickness. Furthermore, the thickness of the metal-stacked layers can be controlled in very thin to reduce the height of whole package. Besides, the thickness of the lead frame structure can be manufactured to satisfy the following package process, so that the package can be manufactured by using the existed equipment but has the advantages of reducing the additional expenditure on equipment to raise the competitiveness.
In the foregoing embodiment, the lead frame structure includes the carrier and the metal-stacked layers on the surface of the carrier. The lead frame structure according to another embodiment is disclosed, and the fabrication method is shown in
Continuously, because the metal-stack layers are arranged in the cavities, the molding compound will not flow into the intervals among the metal-stack layers, so that a height difference (h) will exist between the molding compound and the bonding surface of the metal-stack layer. Please refer to
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that other modifications and variation can be made without departing the spirit and scope of the invention as hereafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
96102973 | Jan 2007 | TW | national |