The invention is in the field of Field-Effect Transistors.
The continuing trend in the fabrication of complementary metal-oxide-semiconductor (CMOS) transistors is to scale the transistors. Examples of transistors having reduced bodies along with tri-gate structures are shown in U.S. 2004/0036127. Other small transistors are delta-doped transistors formed in lightly doped or undoped epitaxial layers grown on a heavily doped substrate. See, for instance, “Metal Gate Transistor with Epitaxial Source and Drain Regions,” application Ser. No. 10/955,669, filed Sep. 29, 2004, assigned to the assignee of the present application.
The ability to continue scaling CMOS transistors to even smaller geometries is hindered by the off-state leakage current. Off-state current reduces the switching efficiency and robs system power. This is particularly significant in planar CMOS transistors, where substrate leakage paths account for most of the current flow in the off state. While three-dimensional structures such as tri-gates and fin-FETs are more scalable, since they have more effective electrostatic control, there still remains a leakage path in the channel.
One structure for providing a more completely wrapped around gate is described in “Nonplanar Semiconductor Device with Partially or Fully Wrapped Around Gate Electrode and Methods of Fabrication,” U.S. patent application Ser. No. 10/607,769, filed Jun. 27, 2003.
A process for fabricating CMOS field-effect transistors and the resultant transistors are described. In the following description, numerous specific details are set forth, such as specific dimensions and chemical regimes, in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known processing steps, such as cleaning steps, are not described in detail, in order to not unnecessarily obscure the present invention. Also, in the description below, the fabrication of a single transistor is described. As will be appreciated in the typical integrated circuit, both n and p channel transistors are fabricated.
In one embodiment, transistors are fabricated on a buried oxide layer (BOX) 20 which is disposed on a silicon substrate 21 shown in
As will be seen, the BOX is seeded through ion implantation beneath the channel region of a transistor to make the oxide more readily etchable than the overlying silicon body. An electrically inactive species is implemented so as to not alter the electrical characteristics of the semiconductor body. Then, after removal of the BOX beneath the channel, a gate insulator and gate are formed entirely around the channel.
Referring to
A protective oxide is disposed on the silicon layer 24 followed by the deposition of a silicon nitride layer (both not shown). The nitride layer acts as a hard mask to define silicon bodies such as the silicon body 25 of
An oxide (not shown) which subsequently acts as an etchant stop is formed over body 25. A polysilicon layer is formed over the structure of
Now, a layer of silicon nitride is conformally deposited over the structure of
Following the implantation of the main source and drain region, the silicon body 25, to the extent that it extends beyond the spacers 38, receives a silicide or salicide layer 39 as is often done on exposed silicon in field-effect transistors.
An annealing step to activate the source and drain dopant is used, also commonly used cleaning steps common in the fabrication of a field-effect transistor are not shown.
A dielectric layer 40 is now conformally deposited over the structure of
After the deposition and planarization of the dielectric layer 40, a wet etch is used to remove the dummy polysilicon gate 30, leaving the opening 45, as shown in
Referring to
First, for instance, the wafer is ion implanted at the angle θ with the wafer rotated to an angle of 90°. Then, implantation occurs again at the angle θ with the wafer rotated to an angle of 270°. The wafer rotation angles of 90° and 270°, shown in
Ions seeded into the upper portion of BOX 20, shown as region 20a, cause BOX 20 to be more readily etched and to provide better selectivity between the region 20a versus the body 25 and the non-implanted regions of BOX 20. The ions alter the crystalline nature of BOX 20, in effect, amorphizing or modifying the structure making it less resistant to selected chemistry without making body 25 or non-implanted regions of the BOX 20 more readily etched. More specifically, by selecting suitable ions and a suitable wet etchant, the implanted region 20a is etched more readily in the presence of the wet etchant compared to the body 25 or unexposed portions of the BOX 20, allowing the implanted portion of the BOX 20 (region 20a), including beneath the body 25 to be removed without substantially affecting the dimensions of the body 25. A discussion of pre-etch implantation may be found in U.S. 2004/0118805. Wet etchant discrimination ratio of 6-1 between implanted silicon dioxide and non-implanted silicon dioxide are achievable.
Ions selected for the implantation shown in
Relatively low implantation energies and dose levels are adequate to sufficiently seed the BOX 20 beneath the body 25 to allow removal of the oxide below the body. For example, energy levels for implanting silicon in the range of 0.5-2.0 KeV, to a dose of 1×1018 atoms/cm2 are sufficient for a silicon body having dimensions of approximately 20×20 nm.
Following the implantation, a wet etch is used to remove the region 20a including the region 20a under the body 25. Many wet chemical etchants are known to be effective and controllable on such thin film materials. As would be apparent to one skilled in the art, they may be appropriately matched with substrate and thin film materials, such as those above, to provide desirable selective etching. Suitable etchants include but are not limited to phosphoric acid (H3PO4), hydrofluoric acid (HF), buffered HF, hydrochloric acid (HCl), nitric acid (HNO3), acetic acid (CH3COOH), ammonium hydroxide (NH4OH), alcohols, potassium permanganate (KMnO4), ammonium fluoride (NH4F), and others, as would be listed in known wet chemical etching references such as Thin Film Processes, Academic Press (1978), edited by John L. Vossen and Werner Kern. Mixtures of these and other etchant chemicals are also conventionally used.
The wet etchant of the region 20a of layer 20 defines a trench aligned with the opening 45 which extends beneath the body 25. This trench is best seen in
A gate dielectric 62 may now be formed on exposed surfaces which includes the sides, top and bottom of the body 25. The gate dielectric has a high dielectric constant (k), such as a metal oxide dielectric, for instance, HfO2 or ZrO2 or other high k dielectrics, such as PZT or BST. The gate dielectric may be formed by any well-known technique such as atomic layer deposition (ALD) or chemical vapor deposition (CVD). Alternately, the gate dielectric may be a grown dielectric. For instance, the gate dielectric 62, may be a silicon dioxide film grown with a wet or dry oxidation process to a thickness between 5-50 Å.
Following this a gate electrode (metal) layer 63 is formed over the gate dielectric layer 62. The gate electrode layer 62 may be formed by blanket deposition of a suitable gate electrode material. In one embodiment, a gate electrode material comprises a metal film such as tungsten, tantalum, titanium and/or nitrides and alloys thereof. For the n channel transistors, a work function in the range of 3.9 to 4.6 eV may be used. For the p channel transistors, a work function of 4.6 to 5.2 eV may be used. Accordingly, for substrates with both n channel and p channel transistors, two separate metal deposition processes may need to be used. Only approximately 100 Å of the metal needs to be formed through ALD to set the work function. The remainder of the gate may be formed of polysilicon.
Standard processing is now used to complete the transistor of
The formation of the gate beneath the body 25 may not be as well defined as the gate on the sides and top of the body 25. For instance, as shown in
The above described method may also be used on other three dimensional (3D) semiconductor bodies such as semiconducting carbon nanotubes, Group 3-5 nanowires and silicon nanowires. The surface upon which the 3D semiconductor nanostructure rests is ion implanted to alter its etching rate to make it more etchable than the nanostructure.
Thus, a method has been described for forming a gate entirely around a silicon body in a replacement gate process. Ion implantation damages the insulation beneath the semiconductor body in the channel region allowing it to be more readily etched. ALD is then used to form a dielectric and gate entirely around the semiconductor body for one embodiment.
Number | Name | Date | Kind |
---|---|---|---|
4487652 | Almgren | Dec 1984 | A |
4818715 | Chao | Apr 1989 | A |
4906589 | Chao | Mar 1990 | A |
4907048 | Huang | Mar 1990 | A |
4994873 | Madan | Feb 1991 | A |
4996574 | Shirasaki | Feb 1991 | A |
5124777 | Lee | Jun 1992 | A |
5179037 | Seabaugh | Jan 1993 | A |
5216271 | Takagi et al. | Jun 1993 | A |
5308999 | Gotou | May 1994 | A |
5338959 | Kim et al. | Aug 1994 | A |
5346839 | Sundaresan | Sep 1994 | A |
5391506 | Tada et al. | Feb 1995 | A |
5466621 | Hisamoto et al. | Nov 1995 | A |
5482877 | Rhee | Jan 1996 | A |
5514885 | Myrick | May 1996 | A |
5521859 | Ema et al. | May 1996 | A |
5543351 | Hirai et al. | Aug 1996 | A |
5545586 | Koh | Aug 1996 | A |
5563077 | Ha et al. | Oct 1996 | A |
5578513 | Maegawa | Nov 1996 | A |
5658806 | Lin et al. | Aug 1997 | A |
5682048 | Shinohara et al. | Oct 1997 | A |
5698869 | Yoshimi et al. | Dec 1997 | A |
5701016 | Burroughes et al. | Dec 1997 | A |
5716879 | Choi et al. | Feb 1998 | A |
5739544 | Yuki et al. | Apr 1998 | A |
5770513 | Okaniwa | Jun 1998 | A |
5804848 | Mukai | Sep 1998 | A |
5811324 | Yang | Sep 1998 | A |
5814895 | Hirayama | Sep 1998 | A |
5821629 | Wen et al. | Oct 1998 | A |
5827769 | Aminzadeh et al. | Oct 1998 | A |
5844278 | Mizuno et al. | Dec 1998 | A |
5880015 | Hata | Mar 1999 | A |
5888309 | Yu | Mar 1999 | A |
5889304 | Watanabe et al. | Mar 1999 | A |
5899710 | Mukai | May 1999 | A |
5905285 | Gardner et al. | May 1999 | A |
5908313 | Chau et al. | Jun 1999 | A |
5952701 | Bulucea et al. | Sep 1999 | A |
5965914 | Miyamoto | Oct 1999 | A |
5976767 | Li | Nov 1999 | A |
6013926 | Oku et al. | Jan 2000 | A |
6018176 | Lim | Jan 2000 | A |
6054355 | Inumiya et al. | Apr 2000 | A |
6066869 | Noble et al. | May 2000 | A |
6087208 | Krivokapic et al. | Jul 2000 | A |
6093621 | Tseng | Jul 2000 | A |
6117741 | Chatterjee et al. | Sep 2000 | A |
6120846 | Hintermaier et al. | Sep 2000 | A |
6153485 | Pey et al. | Nov 2000 | A |
6163053 | Kawashima | Dec 2000 | A |
6165880 | Yaung et al. | Dec 2000 | A |
6174820 | Habermehl et al. | Jan 2001 | B1 |
6218309 | Miller et al. | Apr 2001 | B1 |
6251729 | Montree et al. | Jun 2001 | B1 |
6251763 | Inumiya et al. | Jun 2001 | B1 |
6252284 | Muller et al. | Jun 2001 | B1 |
6261921 | Yen et al. | Jul 2001 | B1 |
6294416 | Wu | Sep 2001 | B1 |
6317444 | Chakrabarti | Nov 2001 | B1 |
6335251 | Miyano et al. | Jan 2002 | B2 |
6359311 | Colinge et al. | Mar 2002 | B1 |
6376317 | Forbes et al. | Apr 2002 | B1 |
6391782 | Yu | May 2002 | B1 |
6396108 | Krivokapic et al. | May 2002 | B1 |
6403981 | Yu | Jun 2002 | B1 |
6407442 | Inoue et al. | Jun 2002 | B2 |
6413802 | Hu et al. | Jul 2002 | B1 |
6413877 | Annapragada | Jul 2002 | B1 |
6424015 | Ishibashi et al. | Jul 2002 | B1 |
6437550 | Andoh et al. | Aug 2002 | B2 |
6459123 | Enders et al. | Oct 2002 | B1 |
6472258 | Adkisson et al. | Oct 2002 | B1 |
6475869 | Yu | Nov 2002 | B1 |
6475890 | Yu | Nov 2002 | B1 |
6483156 | Adkisson et al. | Nov 2002 | B1 |
6495403 | Skotnicki et al. | Dec 2002 | B1 |
6498096 | Bruce et al. | Dec 2002 | B2 |
6506692 | Andideh | Jan 2003 | B2 |
6525403 | Inaba et al. | Feb 2003 | B2 |
6534807 | Mandelman et al. | Mar 2003 | B2 |
6537862 | Song | Mar 2003 | B2 |
6537885 | Kang et al. | Mar 2003 | B1 |
6537901 | Cha et al. | Mar 2003 | B2 |
6562665 | Yu | May 2003 | B1 |
6583469 | Fried et al. | Jun 2003 | B1 |
6605498 | Murthy et al. | Aug 2003 | B1 |
6610576 | Nowak | Aug 2003 | B2 |
6611029 | Ahmed et al. | Aug 2003 | B1 |
6630388 | Sekigawa et al. | Oct 2003 | B2 |
6635909 | Clark et al. | Oct 2003 | B2 |
6642090 | Fried et al. | Nov 2003 | B1 |
6642114 | Nakamura | Nov 2003 | B2 |
6645797 | Buynoski et al. | Nov 2003 | B1 |
6645826 | Yamazaki et al. | Nov 2003 | B2 |
6656853 | Ito | Dec 2003 | B2 |
6657259 | Fried et al. | Dec 2003 | B2 |
6664160 | Park et al. | Dec 2003 | B2 |
6680240 | Maszara | Jan 2004 | B1 |
6689650 | Gambino et al. | Feb 2004 | B2 |
6693324 | Maegawa et al. | Feb 2004 | B2 |
6696366 | Morey et al. | Feb 2004 | B1 |
6706571 | Yu et al. | Mar 2004 | B1 |
6709982 | Buynoski et al. | Mar 2004 | B1 |
6713396 | Anthony | Mar 2004 | B2 |
6716684 | Krivokapic et al. | Apr 2004 | B1 |
6716690 | Wang et al. | Apr 2004 | B1 |
6730964 | Horiuchi | May 2004 | B2 |
6744103 | Snyder | Jun 2004 | B2 |
6756657 | Zhang et al. | Jun 2004 | B1 |
6764884 | Yu et al. | Jul 2004 | B1 |
6770516 | Wu et al. | Aug 2004 | B2 |
6774390 | Sugiyama et al. | Aug 2004 | B2 |
6780694 | Doris et al. | Aug 2004 | B2 |
6787402 | Yu | Sep 2004 | B1 |
6787406 | Hill et al. | Sep 2004 | B1 |
6787439 | Ahmed et al. | Sep 2004 | B2 |
6787845 | Deleonibus | Sep 2004 | B2 |
6787854 | Yang et al. | Sep 2004 | B1 |
6790733 | Natzle et al. | Sep 2004 | B1 |
6794313 | Chang | Sep 2004 | B1 |
6794718 | Nowak et al. | Sep 2004 | B2 |
6798000 | Luyken et al. | Sep 2004 | B2 |
6800885 | An et al. | Oct 2004 | B1 |
6800910 | Lin-Ming et al. | Oct 2004 | B2 |
6803631 | Dakshina-Murthy et al. | Oct 2004 | B2 |
6812075 | Fried et al. | Nov 2004 | B2 |
6812111 | Cheong et al. | Nov 2004 | B2 |
6815277 | Fried et al. | Nov 2004 | B2 |
6821834 | Ando | Nov 2004 | B2 |
6831310 | Mathew et al. | Dec 2004 | B1 |
6833588 | Yu et al. | Dec 2004 | B2 |
6835614 | Hanafi et al. | Dec 2004 | B2 |
6835618 | Dakshina-Murthy et al. | Dec 2004 | B1 |
6838322 | Pham et al. | Jan 2005 | B2 |
6844238 | Yeo et al. | Jan 2005 | B2 |
6849884 | Clark et al. | Feb 2005 | B2 |
6852559 | Kwak et al. | Feb 2005 | B2 |
6855606 | Chen et al. | Feb 2005 | B2 |
6855990 | Yeo et al. | Feb 2005 | B2 |
6858478 | Chau et al. | Feb 2005 | B2 |
6867433 | Yeo et al. | Mar 2005 | B2 |
6867460 | Anderson et al. | Mar 2005 | B1 |
6869868 | Chiu et al. | Mar 2005 | B2 |
6884154 | Mizushima et al. | Apr 2005 | B2 |
6885055 | Lee | Apr 2005 | B2 |
6890811 | Hou et al. | May 2005 | B2 |
6897527 | Dakshina-Murthy et al. | May 2005 | B2 |
6902947 | Chinn et al. | Jun 2005 | B2 |
6909147 | Aller et al. | Jun 2005 | B2 |
6919238 | Bohr | Jul 2005 | B2 |
6921691 | Li et al. | Jul 2005 | B1 |
6921702 | Ahn et al. | Jul 2005 | B2 |
6921963 | Krivokapic et al. | Jul 2005 | B2 |
6921982 | Joshi et al. | Jul 2005 | B2 |
6924190 | Dennison | Aug 2005 | B2 |
6960517 | Rios et al. | Nov 2005 | B2 |
6967351 | Fried et al. | Nov 2005 | B2 |
6969878 | Coronel et al. | Nov 2005 | B2 |
6970373 | Datta et al. | Nov 2005 | B2 |
6974738 | Hareland et al. | Dec 2005 | B2 |
7018551 | Beintner et al. | Mar 2006 | B2 |
7045401 | Lee et al. | May 2006 | B2 |
7060539 | Chidambarrao et al. | Jun 2006 | B2 |
7061055 | Sekigawa et al. | Jun 2006 | B2 |
7071064 | Doyle et al. | Jul 2006 | B2 |
7074623 | Lochtefeld et al. | Jul 2006 | B2 |
7074656 | Yeo et al. | Jul 2006 | B2 |
7074662 | Lee et al. | Jul 2006 | B2 |
7105390 | Brask et al. | Sep 2006 | B2 |
7105891 | Visokay et al. | Sep 2006 | B2 |
7112478 | Grupp et al. | Sep 2006 | B2 |
7122463 | Ohuchi | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7138320 | Bentum et al. | Nov 2006 | B2 |
7141480 | Adam et al. | Nov 2006 | B2 |
7141856 | Lee et al. | Nov 2006 | B2 |
7154118 | Lindert | Dec 2006 | B2 |
7163851 | Adadeer et al. | Jan 2007 | B2 |
7172943 | Yeo et al. | Feb 2007 | B2 |
7183137 | Lee et al. | Feb 2007 | B2 |
7187043 | Arai et al. | Mar 2007 | B2 |
7238564 | Ko et al. | Jul 2007 | B2 |
7241653 | Hareland et al. | Jul 2007 | B2 |
7247578 | Brask | Jul 2007 | B2 |
7250367 | Vaartstra et al. | Jul 2007 | B2 |
7250645 | Wang et al. | Jul 2007 | B1 |
7268024 | Yeo et al. | Sep 2007 | B2 |
7291886 | Doris et al. | Nov 2007 | B2 |
7297600 | Oh et al. | Nov 2007 | B2 |
7304336 | Cheng et al. | Dec 2007 | B2 |
7323710 | Kim et al. | Jan 2008 | B2 |
7329913 | Brask et al. | Feb 2008 | B2 |
20020011612 | Hieda | Jan 2002 | A1 |
20020166838 | Nagarajan | Nov 2002 | A1 |
20030067017 | Ieong et al. | Apr 2003 | A1 |
20030085194 | Hopkins, Jr. | May 2003 | A1 |
20030098488 | O'Keeffe et al. | May 2003 | A1 |
20030151077 | Mathew et al. | Aug 2003 | A1 |
20040029345 | Deleonibus et al. | Feb 2004 | A1 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040063286 | Kim et al. | Apr 2004 | A1 |
20040094807 | Chau et al. | May 2004 | A1 |
20040121531 | Wieczorek et al. | Jun 2004 | A1 |
20040126975 | Ahmed et al. | Jul 2004 | A1 |
20040191980 | Rios et al. | Sep 2004 | A1 |
20040195624 | Liu et al. | Oct 2004 | A1 |
20040203254 | Conley et al. | Oct 2004 | A1 |
20040238887 | Nihey | Dec 2004 | A1 |
20040262683 | Bohr et al. | Dec 2004 | A1 |
20050093154 | Kottantharayil et al. | May 2005 | A1 |
20050104055 | Kwak et al. | May 2005 | A1 |
20050127362 | Zhang et al. | Jun 2005 | A1 |
20050139860 | Snyder et al. | Jun 2005 | A1 |
20050145941 | Bedell et al. | Jul 2005 | A1 |
20050156202 | Rhee et al. | Jul 2005 | A1 |
20050156227 | Jeng | Jul 2005 | A1 |
20050167766 | Yagishita | Aug 2005 | A1 |
20050224797 | Ko et al. | Oct 2005 | A1 |
20050227498 | Furukawa et al. | Oct 2005 | A1 |
20050230763 | Huang et al. | Oct 2005 | A1 |
20050233156 | Senzaki et al. | Oct 2005 | A1 |
20060014338 | Doris et al. | Jan 2006 | A1 |
20060040054 | Pearlstein et al. | Feb 2006 | A1 |
20060086977 | Shah et al. | Apr 2006 | A1 |
20060154478 | Hsu et al. | Jul 2006 | A1 |
20060172479 | Furukawa et al. | Aug 2006 | A1 |
20060211184 | Boyd et al. | Sep 2006 | A1 |
20060286755 | Brask et al. | Dec 2006 | A1 |
20070093010 | Mathew et al. | Apr 2007 | A1 |
20070108514 | Inoue et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
102 03 9978 | Aug 2003 | DE |
0 623963 | Nov 1994 | EP |
1 202 335 | May 2002 | EP |
1 566 844 | Aug 2005 | EP |
2 156 149 | Oct 1985 | GB |
59 145538 | Aug 1984 | JP |
02-303048 | Dec 1990 | JP |
06177089 | Jun 1994 | JP |
2003-298051 | Oct 2003 | JP |
WO 0243151 | May 2002 | WO |
WO 2004059726 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060068591 A1 | Mar 2006 | US |