The present invention relates to a manufacturing method of a semiconductor device, and particularly relates to a field stop reverse conducting insulated gate bipolar transistor, and further relates to a manufacturing method of the field stop reverse conducting insulated gate bipolar transistor.
The insulated gate bipolar transistor (IGBT) is generally used in a manner of a reverse parallel freewheeling diode. However, on one hand, this manner results in waste of the package area; on the other hand, due to the existence of parasitic effects such as a parasitic inductor, the parallel additionally increases the power consumption. Therefore, the technology of integrating the IGBT and the diode in a same chip is increasingly emphasized.
The back side N+ type and the P+ type of the conventional reverse conducting insulated gate bipolar transistor (RC-IGBT) spread the whole back side of the IGBT. When turning on the diode, a large number of holes is injected via the positive pole (the emitter of the IGBT), a part of which come into the cathode through the N-drifting region of the terminal. When recovering reversing of the diode, the holes stored below the terminal cannot be empty and disappear quickly. The recovering characteristic of the diode has to be improved by the controlling technology for the carrier lifetime such as irradiation.
On the basis of this, it is necessary to provide a field stop reverse conducting insulated gate bipolar transistor having a better reverse recovering characteristic.
A field stop reverse conducting insulated gate bipolar transistor includes: a peripheral terminal structure and an active region surrounded by the terminal structure, a substrate of the field stop reverse conducting insulated gate bipolar transistor being an N-type substrate, a back side of the substrate being disposed with an N-type field stop layer, a side of the field stop layer away from the substrate being disposed with a back side P-type structure, a surface of the back side P-type structure away from the substrate being disposed with a back side metal layer; a plurality of notches are formed in the active region extending from the back side metal layer through the back side P-type structure into the field stop layer, a metal of the back side metal layer is filled in the plurality of notches to form a metal structure extending into the field stop layer, the plurality of notches and the metal structure extending into the field stop layer are not disposed in the terminal structure.
In one of embodiments, a field limiting ring is disposed in the terminal structure at a front side of the substrate, a silicon oxide layer is disposed on the field limiting ring; a P well is disposed in the active region at the front side of the substrate, an N-type emitter is disposed in the P well, a gate oxide layer is disposed at the front side of the substrate, a polysilicon gate is disposed at a surface of the gate oxide layer, the polysilicon gate is covered by the silicon oxide layer, an emitter metal structure is disposed on the P well, the silicon oxide layer and the emitter metal structure are covered by a passivation layer.
In one of embodiments, both the field stop layer and the emitter are the N+ type, the back side P-type structure are the P+ type.
In one of embodiments, the back side metal layer and the metal structure extending into the field stop layer are the aluminum-titanium-nickel-silver structures.
In one of embodiments, the field stop reverse conducting insulated gate bipolar transistor is a plane gate insulated gate bipolar transistor.
It is also necessary to provide a manufacturing method of a field stop reverse conducting insulated gate bipolar transistor.
A manufacturing method of a field stop reverse conducting insulated gate bipolar transistor includes the following steps: step A, providing an N-type substrate, regarding a side of the substrate as a back side, forming an N-type field stop layer at the back side; step B, performing a first phrase front side process; which comprising forming a high voltage-resisting structure at a terminal structure peripheral to a front side of the substrate of the field stop reverse conducting insulated gate bipolar transistor, forming a gate oxide layer at a front surface of a substrate of a active region area surrounded by the terminal structure, and forming a polysilicon gate at a surface of the gate oxide layer, forming a P well in the active region area at the front side of the substrate, forming an N-type emitter in the P well, forming a silicon oxide layer covering the front side of the substrate and the polysilicon gate; step C, forming a back side P-type structure at a side of the field stop layer away from the substrate; step D, performing a second phrase front process, which comprising photoetching and etching the silicon oxide layer, forming a contact hole having a part of the P well and the emitter exposing, filling an emitter metal structure in the contact hole, forming a passivation layer covering the silicon oxide layer and the emitter metal structure; step E, forming a plurality of notches in the active region area through the back side P-type structure into the field stop layer, and forming a back side metal layer, wherein the back side metal layer is filled in the notches to form a metal structure extending in the field stop layer.
In one of embodiments, the step B comprises: implanting P-type dopant at the front side of the substrate by photoetching, after thermal diffusion forming a field limiting ring as the high voltage-resisting structure; growing a field oxide layer at the front side of the substrate, and photoetching and etching the field oxide layer on the active region area; growing a gate oxide layer at the front side of the substrate, and forming a polysilicon layer at a surface of the gate oxide layer; removing a surplus part of the polysilicon layer and the gate oxide layer by photoetching and etching, for forming a polysilicon gate, and ion-implanting P-type dopant to the substrate by a self-aligning ion implantation process, forming the P well after driving-in; photoetching and implanting N-type dopant ions to the P well to form the emitter; depositing an oxide dielectric layer, the silicon oxide layer covering the front side of the substrate and the polysilicon gate is formed by the field oxide layer and the deposited oxide dielectric layer.
In one of embodiments, in the step B the step of growing the gate oxide layer at the front side of the substrate is to grow a gate oxide layer with a thickness of 600 angstrom to 1500 angstrom.
In one of embodiments, the step E comprises forming a plurality of notches in the active region area extending through the back side P-type structure into the field stop layer by photoetching and etching, and forming the back side metal layer and the metal structure extending in the field stop layer by a sputtering process; both the field stop layer and the emitter are the N+ type, the back side P-type structure is the P+ type.
In one of embodiments, prior to the step C, the method further comprises a step of forming a front side protecting layer on the silicon oxide layer; after the step C but prior to the step D, the method further comprises a step of removing the front side protecting layer.
The field stop reverse conducting insulated gate bipolar transistor described above does not form a metal structure extending in the field stop layer in the terminal structure. Therefore, when turning on the diode, only a few part of holes flow through the drifting region of the terminal structure, reducing the recovering current when the built-in diode is recovered and then improving the reverse recovering capacity of the built-in diode.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
The field stop reverse conducting insulated gate bipolar transistor described above does not form the metal structure extending into the field stop layer 1 in the terminal structure 200. Therefore, when turning on the diode, only a few part of holes flow through the drifting region in the terminal structure 200, reducing the recovering current when the built-in diode is recovered and then improving the reverse recovering capacity of the built-in diode.
The embodiment shown in the
Referring to
A P well 5 is disposed in the active region 100 at the front side of the substrate; an N-type emitter 6 is disposed in the P well 5. A gate oxide layer 3 is disposed at the front side of the substrate, a polysilicon gate 4 is disposed at a surface of the gate oxide layer 3, and the polysilicon gate 4 is also covered by the silicon oxide layer (the oxide dielectric layer 7). The polysilicon gate 4 is disposed between two adjacent P wells 5, and between a P well 5 at boundary of the active region 100 and the terminal structure 200 and a field limiting ring 2. An emitter metal structure 8 is disposed on the P well 5, the silicon oxide layer and the emitter metal structure 8 is covered by a passivation layer 9. The function of the passivation layer 9 is used for preventing the surface of the chip from contaminating of the external ions. In the embodiment, the material of the passivation layer 9 is SiN.
In the embodiment as shown in
As shown in
S310, providing an N-type substrate, forming an N-type field stop layer at the back side of the N-type substrate.
Referring to
S320, performing a first phrase front side process.
In the embodiment shown in the
S330, forming a back side P-type structure at a side of the field stop layer away from the substrate.
Referring to
S340, performing a second phrase front side process.
S350, forming a plurality of notches in the active region through the back side P-type structure into the field stop layer, wherein the back side metal layer is filled in the plurality of notches.
Referring to
The devices manufactured by the manufacturing method of the field stop reverse conducting insulated gate bipolar transistor described above does not form a metal structure extending in the field stop layer 1 in the terminal structure 200. Therefore, when turning on the diode, only a few part of holes flow through the drifting region of the terminal structure 200, reducing the recovering current when the built-in the diode is recovered and then improving the reverse recovering capacity of the built-in diode.
On the other hand, the manufacturing process of RC-IGBT in the conventional technology generally performs the back side photoetching in a twice after the front side process is performed. In other words, firstly performing photoetch, implantation and diffusion to form the P+ type area, then again performing photoetch, implantation and diffusion to form the N+ type area. Because forming of the metal layer has been done in the front side process, the following annealing process can only employ a lower temperature, and it is difficult to obtain a better annealing effect.
However, the manufacturing method of a field stop reverse conducting insulated gate bipolar transistor described above employs two steps to perform the front side process, making for the back side P-type structure 10 is in advance of making for the metal layer (i.e. the emitter metal structure) of the front side process, thus prior to forming the emitter metal structure 8, a higher temperature can be applied to an annealing process, obtaining a higher activity ratio of implanting ions at the back side.
Referring to
S321, implanting P-type dopant at the front side of the substrate by photoetching, after thermal diffusion forming a field limiting ring 2 as the high voltage-resisting structure.
In the embodiment the field limiting ring is used as the high voltage-resisting structure. In other embodiments the field plate can be also used as the high voltage-resisting structure. Or it can be the high voltage-resisting structure of the field limiting ring plus the field plate, or the high voltage-resisting structure for other terminals.
S322, growing a field oxide layer 14 at the front side of the substrate, and photoetching and etching the field oxide layer 14 on the active region area.
S323, growing a gate oxide layer at the front side of the substrate, and forming a polysilicon layer at a surface of the gate oxide layer.
S324, removing a surplus part of the polysilicon layer and the gate oxide layer by photoetching and etching, for forming a polysilicon gate, and ion-implanting P-type dopant to the substrate, forming the P well after driving-in.
S325, photoetching and implanting N-type dopant ions to the P well to form the emitter.
S326, forming the oxide dielectric layer covering the front side of the substrate and the polysilicon gate.
In the embodiment, forming the oxide dielectric layer 7 by depositing, and then forming the previous front side protecting layer 13 by using a furnace tube. Therefore, a protecting layer is also formed at the back side of the wafer, it needs to remove that at the back side prior to the step S330 is performed.
The step S330 is performed after the step S326 is performed. Referring to
Referring to
Referring to
The plurality of notches 11 in
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0265445 | Jun 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/079250 | 6/5/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/206189 | 12/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4951110 | Miller et al. | Aug 1990 | A |
5798549 | Blanchard | Aug 1998 | A |
6054748 | Tsukuda et al. | Apr 2000 | A |
6429481 | Sze-Ki et al. | Aug 2002 | B1 |
7659576 | Okada et al. | Feb 2010 | B2 |
8299495 | Inagawa | Oct 2012 | B2 |
9224802 | Hiyoshi | Dec 2015 | B2 |
20070096167 | Francis et al. | May 2007 | A1 |
20080013570 | Kikuo et al. | Jun 2008 | A1 |
20100025820 | Suekawa | Feb 2010 | A1 |
20130005093 | Ogino | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
101026161 | Aug 2007 | CN |
101060133 | Oct 2007 | CN |
103137472 | Jun 2013 | CN |
H02-163973 | Jun 1990 | JP |
2007019518 | Jan 2007 | JP |
2011035322 | Feb 2011 | JP |
2013110373 | Jun 2013 | JP |
WO 2012046329 | Apr 2012 | WO |
Entry |
---|
SIPO, Chinese Office Action, dated Sep. 2, 2016, China, Application No. 201310265445.8 (7 Pages). |
Chinese State Intellectual Property Office, “International Search Report for PCT/CN2014/079250”, dated Dec. 31, 2014, China (5 Pages). |
Chinese State Intellectual Property Office, “International Search Report for PCT/CN2014/079250”, dated Dec. 31, 2014, English (3 Pages). |
Chinese State Intellectual Property Office, “Written Opinion for PCT/CN2014/079250”, dated Dec. 27, 2015, China (3 Pages). |
Chinese State Intellectual Property Office, “Written Opinion for PCT/CN2014/079250”, Sep. 1, 2014, English (7 Pages). |
European Patent Office, “EP Patent Search Report for PCT/CN2014079250”, Dec. 6, 2016, EPO, English (11 Pages). |
Number | Date | Country | |
---|---|---|---|
20160163841 A1 | Jun 2016 | US |