Gas delivery apparatus and method for atomic layer deposition

Abstract
One embodiment of the gas delivery assembly comprises a covering member having an expanding channel at a central portion of the covering member and having a bottom surface extending from the expanding channel to a peripheral portion of the covering member. One or more gas conduits are coupled to the expanding channel in which the one or more gas conduits are positioned at an angle from a center of the expanding channel. One embodiment of a chamber comprises a substrate support having a substrate receiving surface. The chamber further includes a chamber lid having a passageway at a central portion of the chamber lid and a tapered bottom surface extending from the passageway to a peripheral portion of the chamber lid. The bottom surface of the chamber lid is shaped and sized to substantially cover the substrate receiving surface. One or more valves are coupled to the passageway, and one or more gas sources are coupled to each valve. In one aspect, the bottom surface of the chamber lid may be tapered. In another aspect, a reaction zone defined between the chamber lid and the substrate receiving surface may comprise a small volume. In still another aspect, the passageway may comprise a tapered expanding channel extending from the central portion of the chamber lid. Another embodiment of the chamber comprises a substrate support having a substrate receiving surface. The chamber further comprises a chamber lid having an expanding channel extending from a central portion of the chamber lid and having a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid. One or more gas conduits are disposed around an upper portion of the expanding channel in which the one or more gas conduits are disposed at an angle from a center of the expanding channel. A choke is disposed on the chamber lid adjacent a perimeter of the tapered bottom surface.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to an apparatus and method for atomic layer deposition. More particularly, embodiments of the present invention relate to an improved gas delivery apparatus and method for atomic layer deposition.


2. Description of the Related Art


Reliably producing sub-micron and smaller features is one of the key technologies for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. However, as the fringes of circuit technology are pressed, the shrinking dimensions of interconnects in VLSI and ULSI technology have placed additional demands on the processing capabilities. The multilevel interconnects that lie at the heart of this technology require precise processing of high aspect ratio features, such as vias and other interconnects. Reliable formation of these interconnects is very important to VLSI and ULSI success and to the continued effort to increase circuit density and quality of individual substrates.


As circuit densities increase, the widths of vias, contacts, and other features, as well as the dielectric materials between them, decrease to sub-micron dimensions (e.g., less than 0.20 micrometers or less), whereas the thickness of the dielectric layers remains substantially constant, with the result that the aspect ratios for the features, i.e., their height divided by width, increase. Many traditional deposition processes have difficulty filling sub-micron structures where the aspect ratio exceeds 4:1, and particularly where the aspect ratio exceeds 10:1. Therefore, there is a great amount of ongoing effort being directed at the formation of substantially void-free and seam-free sub-micron features having high aspect ratios.


Atomic layer deposition is one deposition technique being explored for the deposition of material layers over features having high aspect ratios. One example of atomic layer deposition comprises the sequential introduction of pulses of gases. For instance, one cycle for the sequential introduction of pulses of gases may comprise a pulse of a first reactant gas, followed by a pulse of a purge gas and/or a pump evacuation, followed by a pulse of a second reactant gas, and followed by a pulse of a purge gas and/or a pump evacuation. The term “gas” as used herein is defined to include a single gas or a plurality of gases. Sequential introduction of separate pulses of the first reactant and the second reactant may result in the alternating self-limiting absorption of monolayers of the reactants on the surface of the substrate and, thus, forms a monolayer of material for each cycle. The cycle may be repeated to a desired thickness of the deposited material. A pulse of a purge gas and/or a pump evacuation between the pulses of the first reactant gas and the pulses of the second reactant gas serves to reduce the likelihood of gas phase reactions of the reactants due to excess amounts of the reactants remaining in the chamber.


However, there is a need for new apparatuses to perform gas delivery and to perform deposition of films by atomic layer deposition.


SUMMARY OF THE INVENTION

Embodiments of the present invention relate to an improved gas delivery apparatus adapted for atomic layer deposition or rapid chemical vapor deposition. One embodiment of the gas delivery assembly comprises a covering member having an expanding channel at a central portion of the covering member and having a bottom surface extending from the expanding channel to a peripheral portion of the covering member. One or more gas conduits are coupled to the expanding channel in which the one or more gas conduits are positioned at an angle from a center of the expanding channel.


Another embodiment of the gas delivery assembly comprises a first valve and a second valve. The first valve includes a first delivery line and a first purge line. The first delivery line comprises a first reactant gas inlet, a first reactant gas outlet, and a first valve seat assembly. The first purge line comprises a first purge gas inlet and a first purge gas outlet. The first purge gas outlet of the first purge line is in communication with the first delivery line downstream of the first valve seat assembly. The second valve includes a second delivery line and a second purge line. The second delivery line comprises a second reactant gas inlet, a second reactant gas outlet, and a second valve seat assembly. The second purge line comprises a second purge gas inlet and a second purge gas outlet. The second purge gas outlet of the second purge line is in communication with the second delivery line downstream of the second valve seat assembly.


One embodiment of a chamber comprises a substrate support having a substrate receiving surface. The chamber further includes a chamber lid having a passageway at a central portion of the chamber lid and a tapered bottom surface extending from the passageway to a peripheral portion of the chamber lid. The bottom surface of the chamber lid is shaped and sized to substantially cover the substrate receiving surface. One or more valves are coupled to the passageway, and one or more gas sources are coupled to each valve. In one aspect, the bottom surface of the chamber lid may be tapered. In another aspect, a reaction zone defined between the chamber lid and the substrate receiving surface may comprise a small volume. In still another aspect, the passageway may comprise a tapered expanding channel extending from the central portion of the chamber lid.


Another embodiment of the chamber comprises a substrate support having a substrate receiving surface. The chamber further comprises a chamber lid having an expanding channel extending from a central portion of the chamber lid and having a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid. One or more gas conduits are disposed around an upper portion of the expanding channel in which the one or more gas conduits are disposed at an angle from a center of the expanding channel. A choke is disposed on the chamber lid adjacent a perimeter of the tapered bottom surface.


One embodiment of a method of depositing a material layer over a substrate structure comprises delivering a first reactant gas and a first purge gas through a first gas conduit in which the first reactant gas is provided in pulses and the first purge gas is provided in a continuous flow. The method further comprises delivering a second reactant gas and a second purge through a second gas conduit in which the second reactant gas is provided in pulses and the second purge gas is provided in a continuous flow.


One embodiment of a method of delivering gases to a substrate in a substrate processing chamber comprises providing one or more gases into the substrate processing chamber, reducing a velocity of the gases through non-adiabatic expansion, providing the gases to a central portion of the substrate, and directing the gases radially across the substrate from the central portion of the substrate to a peripheral portion of the substrate.


Another embodiment of a method of delivering gases to a substrate in a substrate processing chamber comprises providing one or more gases to a central portion of the substrate and directing the gases radially at a substantially uniform velocity across the substrate from the central portion of the substrate to a peripheral portion of the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.


It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a schematic cross-sectional view of one embodiment of a chamber including a gas delivery apparatus adapted for atomic layer deposition.



FIG. 2 is a top cross-sectional view of one embodiment of the expanding channel of the chamber lid of FIG. 1.



FIG. 3 is a cross-sectional view of the expanding channel of the chamber lid of FIG. 1.



FIG. 4 is a schematic cross-sectional view illustrating the flow of a gas at two different positions between the surface of a substrate and the bottom surface of the chamber lid of FIG. 1.



FIG. 5 is a top cross-sectional view of another embodiment of the expanding channel of the chamber lid which is adapted to receive a single gas flow.



FIG. 6 is a top cross-sectional view of another embodiment of the expanding channel of the chamber lid which is adapted to receive three gas flows.



FIG. 7 is a schematic cross-sectional view of another embodiment of a chamber including a gas delivery apparatus adapted for atomic layer deposition.



FIG. 8 shows another embodiment of a chamber including a gas delivery apparatus adapted for atomic layer deposition.



FIG. 9A is a schematic cross-sectional view of one embodiment of the choke of the chamber lid.



FIG. 9B is a cross-sectional view of another embodiment of the choke of the chamber lid.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 is a schematic cross-sectional view of one embodiment of a chamber 200 including a gas delivery apparatus 230 adapted for atomic layer deposition or rapid chemical vapor deposition. The term “atomic layer deposition” and “rapid chemical vapor deposition” as used herein refer to the sequential introduction of reactants to deposit a thin layer over a substrate structure. The sequential introduction of reactants may be repeated to deposit a plurality of thin layers to form a conformal layer to a desired thickness. The chamber 200 may also be adapted for other deposition techniques.


The chamber 200 comprises a chamber body 202 having sidewalls 204 and a bottom 206. A slit valve 208 in the chamber 200 provides access for a robot (not shown) to deliver and retrieve a substrate 210, such as a 200 mm or 300 mm semiconductor wafer or a glass substrate, to and from the chamber 200.


A substrate support 212 supports the substrate 210 on a substrate receiving surface 211 in the chamber 200. The substrate support 212 is mounted to a lift motor 214 to raise and lower the substrate support 212 and a substrate 210 disposed thereon. A lift plate 216 connected to a lift motor 218 is mounted in the chamber 200 and raises and lowers pins 220 movably disposed through the substrate support 212. The pins 220 raise and lower the substrate 210 over the surface of the substrate support 212. The substrate support 212 may include a vacuum chuck (not shown), an electrostatic chuck (not shown), or a clamp ring (not shown) for securing the substrate 210 to the substrate support 212 during processing.


The substrate support 212 may be heated to heat a substrate 210 disposed thereon. For example, the substrate support 212 may be heated using an embedded heating element, such as a resistive heater (not shown), or may be heated using radiant heat, such as heating lamps (not shown) disposed above the substrate support 212. A purge ring 222 may be disposed on the substrate support 212 to define a purge channel 224 which provides a purge gas to a peripheral portion of the substrate 210 to prevent deposition thereon.


A gas delivery apparatus 230 is disposed at an upper portion of the chamber body 202 to provide a gas, such as a process gas and/or a purge gas, to the chamber 200. A vacuum system 278 is in communication with a pumping channel 279 to evacuate any desired gases from the chamber 200 and to help maintain a desired pressure or a desired pressure range inside a pumping zone 266 of the chamber 200.


In one embodiment, the gas delivery apparatus 230 comprises a chamber lid 232. The chamber lid 232 includes an expanding channel 234 extending from a central portion of the chamber lid 232 and a bottom surface 260 extending from the expanding channel 234 to a peripheral portion of the chamber lid 232. The bottom surface 260 is sized and shaped to substantially cover a substrate 210 disposed on the substrate support 212. The expanding channel 234 has gas inlets 236A, 236B to provide gas flows from two similar pairs of valves 242A/252A, 242B/252B, which may be provided together and/or separately.


In one configuration, valve 242A and valve 242B are coupled to separate reactant gas sources but are preferably coupled to the same purge gas source. For example, valve 242A is coupled to reactant gas source 238 and valve 242B is coupled to reactant gas source 239, and both valves 242A, 242B are coupled to purge gas source 240. Each valve 242A, 242B includes a delivery line 243A, 243B having a valve seat assembly 244A, 244B and each valve 252A, 252B includes a purge line 245A, 245B having a valve seat assembly 246A, 246B. The delivery line 243A, 243B is in communication with the reactant gas source 238, 239 and is in communication with the gas inlet 236A, 236B of the expanding channel 234. The valve seat assembly 244A, 244B of the delivery line 243A, 243B controls the flow of the reactant gas from the reactant gas source 238, 239 to the expanding channel 234. The purge line 245A, 245B is in communication with the purge gas source 240 and intersects the delivery line 243A, 243B downstream of the valve seat assembly 244A, 244B of the delivery line 243A, 243B. The valve seat assembly 246A, 246B of the purge line 245A, 245B controls the flow of the purge gas from the purge gas source 240 to the expanding channel 234. If a carrier gas is used to deliver reactant gases from the reactant gas source 238, 239, preferably the same gas is used as a carrier gas and a purge gas (i.e. an argon gas used as a carrier gas and a purge gas).


Each valve seat assembly 244A, 244B, 246A, 246B may comprise a diaphragm (not shown) and a valve seat (not shown). The diaphragm may be biased open or closed and may be actuated closed or open respectively. The diaphragms may be pneumatically actuated or may be electrically actuated. Examples of pneumatically actuated valves include pneumatically actuated valves available from Fujiken, Inc. and Venflow, Corp. Examples of electrically actuated valves include electrically actuated valves available from Fujiken, Inc. Programmable logic controllers 248A, 248B may be coupled to the valves 242A, 242B to control actuation of the diaphragms of the valve seat assemblies 244A, 244B, 246A, 246B of the valves 242A, 242B. Pneumatically actuated valves may provide pulses of gases in time periods as low as about 0.020 seconds. Electrically actuated valves may provide pulses of gases in time periods as low as about 0.005 seconds. An electrically actuated valve typically requires the use of a driver coupled between the valve and the programmable logic controller.


Each valve 242A, 242B may be a zero dead volume valve to enable flushing of a reactant gas from the delivery line 243A, 243B when the valve seat assembly 244A, 244B is closed. For example, the purge line 245A, 245B may be positioned adjacent the valve seat assembly 244A, 244B of the delivery line 243A, 243B. When the valve seat assembly 244A, 244B is closed, the purge line 245A, 245B may provide a purge gas to flush the delivery line 243A, 2436. In the embodiment shown, the purge line 245A, 245B is positioned slightly spaced from the valve seat assembly 244A, 244B of the delivery line 243A, 243B so that a purge gas is not directly delivered into the valve seat assembly 244A, 244B when open. A zero dead volume valve as used herein is defined as a valve which has negligible dead volume (i.e. not necessary zero dead volume.)


Each valve pair 242A/252A, 242B/252B may be adapted to provide a combined gas flow and/or separate gas flows of the reactant gas and the purge gas. In reference to valve pair 242A/252A, one example of a combined gas flow of the reactant gas and the purge gas comprises a continuous flow of a purge gas from the purge gas source 240 through purge line 245A and pulses of a reactant gas from the reactant gas source 238 through delivery line 243A. The continuous flow of the purge gas may be provided by leaving the diaphragm of the valve seat assembly 246A of the purge line 245A open. The pulses of the reactant gas from the reactant gas source 238 may be provided by opening and closing the diaphragm of the valve seat assembly 244A of the delivery line 243A. In reference to valve pair 242A/252A, one example of separate gas flows of the reactant gas and the purge gas comprises pulses of a purge gas from the purge gas source 240 through purge line 245A and pulses of a reactant gas from the reactant gas source 238 through delivery line 243A. The pulses of the purge gas may be provided by opening and closing the diaphragm of the valve seat assembly 246A of the purge line 245A. The pulses of the reactant gas from the reactant gas source 238 may be provided by opening and closing the diaphragm of the valve seat assembly 244A of the delivery line 243A.


The delivery lines 243A, 243B of the valves 242A, 242B may be coupled to the gas inlets 236A, 236B through gas conduits 250A, 250B. The gas conduits 250A, 250B may be integrated or may be separate from the valves 242A, 242B. In one aspect, the valves 242A, 242B are coupled in close proximity to the expanding channel 234 to reduce any unnecessary volume of the delivery line 243A, 243B and the gas conduits 250A, 250B between the valves 242A, 242B and the gas inlets 236A, 236B.


In reference to FIG. 3, each gas conduit 250A, 250B and gas inlet 236A, 236B may be positioned in any relationship to a longitudinal axis 290 of the expanding channel 234. Each gas conduit 250A, 250B and gas inlet 236A, 236B are preferably positioned normal (in which +β,−β=90°) to the longitudinal axis 290 or positioned at an angle +β or an angle −β (in which 0°>+β>90° or 0°>−β>90°) from the centerline 302A, 302B of the gas conduit 250A, 250B to the longitudinal axis 290. Therefore, the gas conduit 250A, 250B may be positioned horizontally normal to the longitudinal axis 290 as shown in FIG. 3, may be angled downwardly at an angle +β, or may be angled upwardly at an angle −β to provide a gas flow toward the walls of the expanding channel 234 rather than directly downward towards the substrate 210 which helps reduce the likelihood of blowing off reactants absorbed on the surface of the substrate 210. In addition, the diameter of the gas conduits 250A, 250B may be increasing from the delivery lines 243A, 243B of the valves 242A, 242B to the gas inlet 236A, 236B to help reduce the velocity of the gas flow prior to its entry into the expanding channel 234. For example, the gas conduits 250A, 250B may comprise an inner diameter which is gradually increasing or may comprise a plurality of connected conduits having increasing inner diameters.


Referring to FIG. 1, the expanding channel 234 comprises a channel which has an inner diameter which increases from an upper portion 237 to a lower portion 235 of the expanding channel 234 adjacent the bottom surface 260 of the chamber lid 232. In one specific embodiment, the inner diameter of the expanding channel 234 for a chamber adapted to process 200 mm diameter substrates is between about 0.2 inches and about 1.0 inches, preferably between about 0.3 inches and about 0.9 inches, and more preferably between 0.3 inches and about 0.5 inches at the upper portion 237 of the expanding channel 234 and between about 0.5 inches and about 3.0 inches, preferably between about 0.75 inches and about 2.5 inches, and more preferably between about 1.1 inches and about 2.0 inches at the lower portion 235 of the expanding channel 234. In another specific embodiment, the inner diameter of the expanding channel 234 for a chamber adapted to process 300 mm diameter substrates is between about 0.2 inches and about 1.0 inches, preferably between about 0.3 inches and about 0.9 inches, and more preferably between 0.3 inches and about 0.5 inches at the upper portion 237 of the expanding channel 234 and between about 0.5 inches and about 3.0 inches, preferably between about 0.75 inches and about 2.5 inches, and more preferably between about 1.2 inches and about 2.2 inches at the lower portion 235 of the expanding channel 234. In general, the above dimension apply to an expanding channel adapted to provide a total gas flow of between about 500 sccm and about 3,000 sccm. In other specific embodiments, the dimension may be altered to accommodate a certain gas flow therethough. In general, a larger gas flow will require a larger diameter expanding channel. In one embodiment, the expanding channel 234 may be shaped as a truncated cone (including shapes resembling a truncated cone). Whether a gas is provided toward the walls of the expanding channel 234 or directly downward towards the substrate 210, the velocity of the gas flow decreases as the gas flow travels through the expanding channel 234 due to the expansion of the gas. The reduction of the velocity of the gas flow helps reduce the likelihood the gas flow will blow off reactants absorbed on the surface of the substrate 210.


Not wishing to be bound by theory, it is believed that the diameter of the expanding channel 234, which is gradually increasing from the upper portion 237 to the lower portion 235 of the expanding channel 234, allows less of an adiabatic expansion of a gas through the expanding channel 234 which helps to control the temperature of the gas. For instance, a sudden adiabatic expansion of a gas delivered through the gas inlet 236A, 236B into the expanding channel 234 may result in a drop in the temperature of the gas which may cause condensation of the gas and formation of droplets. On the other hand, a gradually expanding channel 234 according to embodiments of the present invention is believed to provide less of an adiabatic expansion of a gas. Therefore, more heat may be transferred to or from the gas, and, thus, the temperature of the gas may be more easily controlled by controlling the surrounding temperature of the gas (i.e., controlling the temperature of the chamber lid 232). The gradually expanding channel 234 may comprise one or more tapered inner surfaces, such as a tapered straight surface, a concave surface, a convex surface, or combinations thereof or may comprise sections of one or more tapered inner surfaces (i.e. a portion tapered and a portion non-tapered).


In one embodiment, the gas inlets 236A, 236B are located adjacent the upper portion 237 of the expanding channel 234. In other embodiments, one or more gas inlets 236A, 236B may be located along the length of the expanding channel 234 between the upper portion 237 and the lower portion 235.



FIG. 2 is a top cross-sectional view of one embodiment of the expanding section 234 of the chamber lid 232 of FIG. 1. Each gas conduit 250A, 250B may be positioned at an angle α from the center line 302A, 302B of the gas conduit 250A, 250B and from a radius line 304 from the center of the expanding channel 234. Entry of a gas through the gas conduit 250A, 250B preferably positioned at an angle α (i.e., when α>0° ) causes the gas to flow in a circular direction as shown by arrow 310A (or 310B). Providing gas at an angle α as opposed to directly straight-on to the walls of the expanding channel (i.e. when α=0° ) helps to provide a more laminar flow through the expanding channel 234 rather than a turbulent flow. It is believed that a laminar flow through the expanding channel 234 results in an improved purging of the inner surface of the expanding channel 234 and other surfaces of the chamber lid 232. In comparison, a turbulent flow may not uniformly flow across the inner surface of the expanding channel 234 and other surfaces and may contain dead spots or stagnant spots in which there is no gas flow. In one aspect, the gas conduits 250A,250B and the corresponding gas inlets 236A, 236B are spaced out from each other and direct a flow in the same circular direction (i.e., clockwise or counter-clockwise).


Not wishing to be bound by theory, FIG. 3 is a cross-sectional view of the expanding channel 234 of a chamber lid 232 showing simplifled representations of two gas flows therethrough. Although the exact flow patted through the expanding channel 234 is not known, it is believed that the circular flow 310 (FIG. 2) may travel as a “vortex,” “helix,” or “spiral” flow through the expanding channel 234 as shown by arrows 402A, 402B (hereinafter “vortex” flow 402). As shown in FIG. 3, the circular flow may be provided in a “processing region” as opposed to in a compartment separated from the substrate 210. In one aspect, the vortex flow may help to establish a more efficient purge of the expanding channel 234 due to the sweeping action of the vortex flow pattern across the inner surface of the expanding channel 234.


In one embodiment, the distance 410 between the gas inlets 236A, 236B and the substrate 210 is made long enough that the “vortex” flow 402 dissipates to a downwardly flow as shown by arrows 404 as a spiral flow across the surface of the substrate 210 may not be desirable. It is believed that the “vortex” flow 402 and the downwardly flow 404 proceeds in a laminar manner efficiently purging the surface of the chamber lid 232 and the substrate 210. In one specific embodiment the distance 410 between the upper portion 237 of the expanding channel 234 and the substrate 210 is about 1.0 inches or more, preferably about 2.0 inches or more. In one specific embodiment, the upper limit of the distance 410 is dictated by practical limitations. For example, If the distance 410 is very long, then the residence time of a gas traveling though the expanding channel 234 would be long, then the time for a gas to deposit onto the substrate would be long, and then throughput would be low. In addition, if distance 410 is very long, manufacturing of the expanding channel 234 would be difficult. In general, the upper limit of distance 410 may be 3 inches for a chamber adapted to process 200 mm diameter substrates or 5 inches for a chamber adapted to process 300 mm diameter substrates.


Referring to FIG. 1, at least a portion of the bottom surface 260 of the chamber lid 232 may be tapered from the expanding channel 234 to a peripheral portion of the chamber lid 232 to help provide an improved velocity profile of a gas flow from the expanding channel 234 across the surface of the substrate 210 (i.e., from the center of the substrate to the edge of the substrate). The bottom surface 260 may comprise one or more tapered surfaces, such as a straight surface, a concave surface, a convex surface, or combinations thereof. In one embodiment, the bottom surface 260 is tapered in the shape of a funnel.


Not wishing to be bound by theory, FIG. 4 is schematic view illustrating the flow of a gas at two different positions 502, 504 between the bottom surface 260 of the chamber lid 232 and the surface of a substrate 210. The velocity of the gas at a certain position is theoretically determined by the equation below:

Q/A=V  (1)

In which, “Q” is the flow of the gas, “A” is the area of the flow section, and “V” is the velocity of the gas. The velocity of the gas is inversely proportional to the area “A” of the flow section (H=2π R), in which “H” is the height of the flow section and “2πR” is the circumference of the flow section having a radius “R” . In other words, the velocity of a gas is inversely proportional to the height “H” of the flow section and the radius “R” of the flow section.


Comparing the velocity of the flow section at position 502 and position 504, assuming that the flow “Q” of the gas at all positions between the bottom surface 260 of the chamber lid 232 and the surface of the substrate 210 is equal, the velocity of the gas may be theoretically made equal by having the area “A” of the flow sections equal. For the area of flow sections at position 502 and position 504 to be equal, the height H1 at position 502 must be greater than the height H2 at position 504.


In one aspect, the bottom surface 260 is downwardly sloping to help reduce the variation in the velocity of the gases as it travels between the bottom surface 260 of the chamber lid 232 and the substrate 210 to help provide uniform exposure of the surface of the substrate 210 to a reactant gas. In one embodiment, the ratio of the maximum area of the flow section over the minimum area of the flow section between a downwardly sloping bottom surface 260 of the chamber lid 232 and the surface of the substrate 210 is less than about 2, preferably less than about 1.5, more preferably less than about 1.3, and most preferably about 1.


Not wishing to be bound by theory, it is believed that a gas flow traveling at a more uniform velocity across the surface of the substrate 210 helps. provide a more uniform deposition of the gas on the substrate 210. It is believed that the velocity of the gas is directly proportional to the concentration of the gas which is in turn directly proportional to the deposition rate of the gas on the substrate 210 surface. Thus, a higher velocity of a gas at a first area of the surface of the substrate 210 versus a second area of the surface of the substrate 210 is believed to provide a higher deposition of the gas on the first area. It is believed that a chamber lid 232 having a downwardly sloping bottom surface 260 provides for more uniform deposition of the gas across the surface of the substrate 210 because the downwardly sloping bottom surface 260 provides a more uniform velocity and, thus, a more uniform concentration of the gas across the surface of the substrate 210.


Referring to FIG. 1, the chamber lid 232 may have a choke 262 at a peripheral portion of the chamber lid 232 adjacent the periphery of the substrate 210. The choke 262, when the chamber lid 232 is assembled to form a processing zone around the substrate 210, comprises any member restricting the flow of gas therethrough at an area adjacent the periphery of the substrate 210. FIG. 9A is a schematic cross-sectional view of one embodiment of the choke 262. In this embodiment, the choke 262 comprises a circumferential lateral portion 267. In one aspect, the purge ring 222 may be adapted to direct a purge gas toward the lateral portion 267 of the choke 262. FIG. 9B is a schematic cross-sectional view of another embodiment of the choke 262. In this embodiment, the choke 262 comprises a circumferential downwardly extending protrusion 268. In one aspect, the purge ring 222 may be adapted to direct a purge gas toward the circumferential downwardly extending protrusion 268. In one specific embodiment, the thickness of the downwardly extending protrusion 268 is between about 0.01 inches and about 1.0 inch, preferably between 0.01 inches and 0.5 inches.


In one specific embodiment, the spacing between the choke 262 and the substrate support 212 is between about 0.04 inches and about 2.0 inches, and preferably between 0.04 inches and about 0.2 inches. The spacing may vary depending on the gases being delivered and the process conditions during deposition. The choke 262 helps provide a more uniform pressure distribution within the volume or a reaction zone 264 defined between the chamber lid 232 and the substrate 210 by isolating the reaction zone 264 from the non-uniform pressure distribution of the pumping zone 266 (FIG. 1).


Referring to FIG. 1, in one aspect, since the reaction zone 264 is isolated from the pumping zone 266, a reactant gas or purge gas needs only adequately fill the reaction zone 264 to ensure sufficient exposure of the substrate 210 to the reactant gas or purge gas. In conventional chemical vapor deposition, prior art chambers are required to provide a combined flow of reactants simultaneously and uniformly to the entire surface of the substrate in order to ensure that the co-reaction of the reactants occurs uniformly across the surface of the substrate 210. In atomic layer deposition, the present chamber 200 sequentially introduces reactants to the substrate 210 surface to provide absorption of alternating thin layers of the reactants onto the surface of the substrate 210. As a consequence, atomic layer deposition does not require a flow of a reactant which reaches the surface of the substrate 210 simultaneously. Instead, a flow of a reactant needs to be provided in an amount which is sufficient to absorb a thin layer of the reactant on the surface of the substrate 210.


Since the reaction zone 264 may comprise a smaller volume when compared to the inner volume of a conventional CVD chamber, a smaller amount of gas is required to fill the reaction zone 264 for a particular process in an atomic layer deposition sequence. For example, in one embodiment, the volume of the reaction zone 264 is about 1000 cm3 or less, preferably 500 cm3 or less, and more preferably 200 cm3 or less for a chamber adapted to process 200 mm diameter substrates. In one embodiment, the volume of the reaction zone 264 is about 3,000 cm3 or less, preferably 1,500 cm3 or less, and more preferably 600 cm3 or less for a chamber adapted to process 300 mm diameter substrates. In one embodiment, the substrate support 212 may be raised or lowered to adjust the volume of the reaction zone 264 for deposition. Because of the smaller volume of the reaction zone 264, less gas, whether a deposition gas or a purge gas, is necessary to be flowed into the chamber 200. Therefore, the throughput of the chamber 200 is greater and the waste may be minimized due to the smaller amount of gas used reducing the cost of operation.


The chamber lid 232 has been shown in FIGS. 1-4 as comprising a cap portion 272 and a chamber plate portion 270 in which the cap portion 272 and the chamber plate portion 270 form the expanding channel 234. An additional plate may be optionally disposed between the chamber lid portion 270 and the cap portion 272. In other embodiments, the expanding channel 234 may be made integrally from a single piece of material.


The chamber lid 232 may include cooling elements and/or heating elements depending on the particular gas being delivered therethrough. Controlling the temperature of the chamber lid 232 may be used to prevent gas decomposition, deposition, or condensation on the chamber lid 232. For example, water channels (not shown) may be formed in the chamber lid 232 to cool the chamber lid 232. In another example, heating elements (not shown) may be embedded or may surround components of the chamber lid 232 to heat the chamber lid 232. In one embodiment, components of the chamber lid 232 may be individually heated or cooled. For example; referring to FIG. 1, the chamber lid 232 may comprise a chamber plate portion 270 and a cap portion 272 in which the chamber plate portion 270 and the cap portion 272 form the expanding channel 234. The cap portion 272 may be maintained at one temperature range and the chamber plate portion 270 may be maintained at another temperature range. For example, the cap 272 may be heated by being wrapped in heater tape or by using another heating device to prevent condensation of reactant gases and the chamber plate portion 270 may be maintained at ambient temperature. In another example, the cap 272 may be heated and the chamber plate portion 270 may be cooled with water channels formed therethrough to prevent thermal decomposition of reactant gases on the chamber plate portion 270.


The chamber lid 232 may be made of stainless steel, aluminum, nickel-plated aluminum, nickel, or other suitable materials compatible with the processing to be performed. In one embodiment, the cap portion 272 comprises stainless steel and the chamber plate portion 270 comprises aluminum. In one embodiment, the optional additional plate disposed therebetween comprises stainless steel. In one embodiment, the expanding channel 234 and the bottom surface 260 of the chamber lid 232 may comprise a mirror polished surface to help produce a laminar flow of a gas along the expanding channel 234 and the bottom surface 260 of the chamber lid 232. In another embodiment, the inner surface of the gas conduits 250A, 250B may be electropolished to help produce a laminar flow of a gas therethrough.


Returning to FIG. 1, a control unit 280, such as a programmed personal computer, work station computer, or the like, may be coupled to the chamber 200 to control processing conditions. For example, the control unit 280 may be configured to control flow of various process gases and purge gases from gas sources 238, 239, 240 through the valves 242A, 242B during different stages of a substrate process sequence. Illustratively, the control unit 280 comprises a central processing unit (CPU) 282, support circuitry 284, and memory 286 containing associated control software 283.


The control unit 280 may be one of any form of general purpose computer processor that can be used in an industrial setting for controlling various chambers and sub-processors. The CPU 282 may use any suitable memory 286, such as random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote. Various support circuits may be coupled to the CPU 282 for supporting the chamber 200. The control unit 280 may be coupled to another controller that is located adjacent individual chamber components, such as the programmable logic controllers 248A, 248B of the valves 242A, 242B. Bi-directional communications between the control unit 280 and various other components of the chamber 200 are handled through numerous signal cables collectively referred to as signal buses 288, some of which are illustrated in FIG. 1. In addition to control of process gases and purge gases from gas sources 238, 239, 240 and from the programmable logic controllers 248A, 248B of the valves 242A, 242B, the control unit 280 may be configured to be responsible for automated control of other activities used in wafer processing—such as wafer transport, temperature control, chamber evacuation, among other activities, some of which are described elsewhere herein.


Referring to FIGS. 1-4, in operation, a substrate 210 is delivered to the chamber 200 through the opening 208 by a robot (not shown). The substrate 210 is positioned on the substrate support 212 through cooperation of the lift pins 220 and the robot. The substrate support 212 raises the substrate 210 into close opposition to the bottom surface 260 of the chamber lid 232. A first gas flow may be injected into the expanding channel 234 of the chamber 200 by valve 242A together or separately (i.e. pulses) with a second gas flow injected into the chamber 200 by valve 242B. The first gas flow may comprise a continuous flow of a purge gas from purge gas source 240 and pulses of a reactant gas from reactant gas source 238 or may comprise pulses of a reactant gas from reactant gas source 238 and pulses of a purge gas from purge gas source 240. The second gas flow may comprises a continuous flow of a purge gas from purge gas source 240 and pulses of a reactant gas from reactant gas source 239 or may comprise pulses of a reactant gas from reactant gas source 239 and pulses of a purge gas from purge gas source 240. The gas flow travels through the expanding channel 234 as a vortex flow pattern 402 which provides a sweeping action across the inner surface of the expanding channel 234. The vortex flow pattern 402 dissipates to a downwardly flow 404 toward the surface of the substrate 210. The velocity of the gas flow reduces as it travels through the expanding channel 234. The gas flow then travels across the surface of the substrate 210 and across the bottom surface 260 of the chamber lid 232. The bottom surface 260 of the chamber lid 232, which is downwardly sloping, helps reduce the variation of the velocity of the gas flow across the surface of the substrate 210. The gas flow then travels by the choke 262 and into the pumping zone 266 of the chamber 200. Excess gas, by-products, etc. flow into the pumping channel 279 and are then exhausted from the chamber 200 by a vacuum system 278. In one aspect, the gas flow proceeds through the expanding channel 234 and between the surface of the substrate 210 and the bottom surface 260 of the chamber lid 232 in a laminar manner which aids in uniform exposure of a reactant gas to the surface of the substrate 210 and efficient purging of inner surfaces of the chamber lid 232.


Chamber 200 as illustrated in FIGS. 1-4 has been described herein as having a combination of features. In one aspect, chamber 200 provides a reaction zone 264 comprising a small volume in compared to a conventional CVD chamber. The chamber 200 requires a smaller amount of a gas, such as a reactant gas or a purge gas, to fill the reaction zone 264 for a particular process. In another aspect, chamber 200 provides a chamber lid 232 having a downwardly sloping or funnel shaped bottom surface 260 to reduce the variation in the velocity profile of a gas flow traveling between the bottom surface of the chamber lid 232 and a substrate 210 In still another aspect, the chamber 200 provides an expanding channel 234 to reduce the velocity of a gas flow introduced therethrough. In still another aspect, the chamber 200 provides gas conduits at an angle α from the center of the expanding channel 234. The chamber 200 provides other features as described elsewhere herein. Other embodiments of a chamber adapted for atomic layer deposition incorporate one or more of these features.


For example, FIG. 7 shows another embodiment of a chamber 800 including a gas delivery apparatus 830 comprising a chamber lid 832 which provides a reaction 864 zone comprising a small volume and which provides an expanding channel 834. Some components of the chamber 800 are the same or similar to those described with reference to chamber 200 of FIG. 1, described above. Accordingly, like numbers have been used where appropriate. The chamber lid 832 comprises a bottom surface 860 that is substantially flat. In one embodiment, the spacing between the choke 262 and the substrate support 212 is between about 0.04 inches and about 2.0 inches, preferably between about 0.04 inches and about 0.2 inches.


In another example, FIG. 8 shows another embodiment of a chamber 900 including a gas delivery apparatus 930 comprising a chamber lid 932 which provides a reaction zone 964 comprising a small volume and which provides a downwardly sloping or funnel shaped bottom surface 960. Some components of the chamber 900 are the same or similar to those described with reference to chamber 200 of FIG. 1, described above. Accordingly, like numbers have been used where appropriate. Gas sources 937 are coupled to the passageway 933 through one or more valves 941. In one aspect, the passageway 933 comprises a long length to reduce the likelihood that a gas introduced through valve 941 will blow off reactants absorbed on the surface of the substrate 210.


The gas delivery apparatuses 230, 830, 930 of FIGS. 1-8 have been described above as comprising chamber lids 232, 832, 932 which act as the lid of the chamber body 202. Other embodiments of the chamber lids 232, 832, 932 comprises any covering member disposed over the substrate support 212 delineating a reaction zone 264, 864, 964 which lowers the volume in which a gas must flow during substrate processing. In other embodiments, instead of or in conjunction with the substrate support 212, the chamber lid 232, 832, 932 may be adapted to move up and down to adjust the volume of the reaction zone 264, 864, 964.


The gas delivery apparatus 230 of FIG. 1 has been described as including two pairs of valves 242A/252A, 242B/252B coupled to a reactant gas source 238, 239 and a purge gas source 240. In other embodiments, the gas delivery apparatus 230 may comprise one or more valves coupled to a single or a plurality of gas sources in a variety of configurations. FIGS. 1-3 show a chamber 200 adapted to provide two gas flows together or separately from two gas inlets 236A, 236B utilizing two pairs of valves 242A/252A, 242B/252B. FIG. 5 is a top cross-sectional view of another embodiment of an expanding channel 634 of the chamber lid 232 which is adapted to receive a single gas flow through one gas inlet 636 from one gas conduit 650 coupled to a single or a plurality of valves. The gas conduit 650 may be positioned at an angle α from the center line 602 of the gas conduit 650 and from a radius line 604 from the center of the expanding channel 634. The gas conduit 650 positioned at an angle α (i.e., when α>0° ) causes a gas to flow in a circular direction as shown by arrow 610. FIG. 6 is a top cross-sectional view of another embodiment of an expanding channel 734 of the chamber lid 232 which is adapted to receive three gas flows together, partially together (i.e. two of three gas flows together), or separately through three gas inlets 736A, 736B, 736C from three gas conduits 750A, 750B, 750C in which each conduit is coupled to a single or a plurality of valves. The gas conduits 750A, 750B, 750C may be positioned at an angle α from the center line 702 of the gas conduits 750A, 750B, 750C and from a radius line 704 from the center of the expanding channel 734. The gas conduits 750A, 750B, 7500 positioned at an angle α (i.e., when α>0° ) causes a gas to flow in a circular direction as shown by arrows 710.


Embodiments of chambers 200, 800, 900 with gas delivery apparatuses 230, 830, 930 as described in FIGS. 1-8 may be used to advantage to implement atomic layer deposition processes of elements, which include but are not limited to, tantalum, titanium, tungsten, and copper, or to implement atomic layer deposition of compounds or alloys/combinations films, which include but are not limited to tantalum nitride, tantalum silicon nitride, titanium nitride, titanium silicon nitride, tungsten nitride, tungsten silicon nitride, and copper aluminum. Embodiments of chambers 200, 800, 900 with gas delivery apparatuses 230, 830, 930 as described in FIGS. 1-8 may also be used to advantage to implement chemical vapor deposition of various materials.


For clarity reasons, deposition of a layer by atomic layer deposition will be described in more detail in reference to the atomic layer deposition of a tantalum nitride layer utilizing chamber 200 as described in FIGS. 1-4. In one aspect, atomic layer deposition of a tantalum nitride barrier layer comprises sequentially providing pulses of a tantalum containing compound and pulses of a nitrogen containing compound to the process chamber 200 in which each pulse is separated by a flow of a purge gas and/or chamber evacuation to remove any excess reactants to prevent gas phase reactions of the tantalum containing compound with the nitrogen containing compound and to remove any reaction by-products. Sequentially providing a tantalum containing compound and a nitrogen containing compound may result in the alternating absorption of monolayers of a tantalum containing compound and of monolayers of a nitrogen containing compound to form a monolayer of tantalum nitride on a substrate structure for each cycle of pulses. The term substrate structure is used to refer to the substrate as well as other material layers formed thereover, such as a dielectric layer.


It is believed that the absorption processes used to absorb the monolayer of the reactants, such as the tantalum containing compound and the nitrogen containing compound, are self-limiting in that only one monolayer may be absorbed onto the surface of the substrate structure during a given pulse because the surface of the substrate structure has a finite number of sites for absorbing the reactants. Once the finite number of sites are occupied by the reactants, such as the tantalum containing compound or the nitrogen containing compound, further absorption of the reactants will be blocked. The cycle may be repeated to a desired thickness of the tantalum nitride layer.


Pulses of a tantalum containing compound, such as pentadimethylamino-tantalum (PDMAT; Ta(NMe2)5), may be introduced by gas source 238 through valve 242A. The tantalum containing compound may be provided with the aid of a carrier gas, which includes, but is not limited to, helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and combinations thereof. Pulses of a nitrogen containing compound, such as ammonia, may be introduced by gas source 239 through valve 242A. A carrier gas may also be used to help deliver the nitrogen containing compound. A purge gas, such as argon, may be introduced by gas source 240 through valve 242A and/or through valve 242B. In one aspect, the flow of purge gas may be continuously provided by gas sources 240 through valves 242A, 242B to act as a purge gas between the pulses of the tantalum containing compound and of the nitrogen containing compound and to act as a carrier gas during the pulses of the tantalum containing compound and the nitrogen containing compound. In one aspect, delivering a purge gas through two gas conduits 250A, 250B provides a more complete purge of the reaction zone 264 rather than a purge gas provided through one gas conduit 250A, 250B. In one aspect, a reactant gas may be delivered through one gas conduit 250A, 250B since uniformity of flow of a reactant gas, such as a tantalum containing compound or a nitrogen containing compound, is not as critical as uniformity of the purge gas due to the self-limiting absorption process of the reactants on the surface of substrate structures. In other embodiments, a purge gas may be provided in pulses. In other embodiments, a purge gas may be provided in more or less than two gas flows. In other embodiments, a tantalum containing gas may be provided in more than a single gas flow (i.e. two or more gas flows). In other embodiments, a nitrogen containing may be provided in more than a single gas flow (i.e. two or more gas flows).


Other examples of tantalum containing compounds, include, but are not limited to, other organo-metallic precursors or derivatives thereof, such as pentaethylmethylamino-tantalum (PEMAT; Ta[N(C2H5CH3)2]5), pentadiethylamino-tantalum (PDEAT; Ta(NEt2)5,), and any and all derivatives of PEMAT, PDEAT, or PDMAT. Other tantalum containing compounds include without limitation TBTDET (Ta(NEt2)3NC4H9 or C16H39N4Ta) and tantalum halides, for example TaX5 where X is fluorine (F), bromine (Br) or chlorine (CI), and/or derivatives thereof. Other nitrogen containing compounds may be used which include, but are not limited to, NXHY with x and y being integers (e.g., hydrazine (N2H4)), dimethyl hydrazine ((CH3)2N2H2), t-butylhydrazine (C4H9N2H3) phenylhydrazine (C6H5N2H3), other hydrazine derivatives, a nitrogen plasma source (e.g., N2, N2/H2, NH3, or a N2H4 plasma), 2,2′-azoisobutane ((CH3)6C2N2), ethylazide (C2H5N3), and other suitable gases. Other examples of purge gases include, but are not limited to, helium (He), nitrogen (N2), hydrogen (H2), other gases, and combinations thereof.


The tantalum nitride layer formation is described as starting with the absorption of a monolayer of a tantalum containing compound on the substrate followed by a monolayer of a nitrogen containing compound. Alternatively, the tantalum nitride layer formation may start with the absorption of a monolayer of a nitrogen containing compound on the substrate followed by a monolayer of the tantalum containing compound. Furthermore, in other embodiments, a pump evacuation alone between pulses of reactant gases may be used to prevent mixing of the reactant gases.


The time duration for each pulse of the tantalum containing compound, the time duration for each pulse of the nitrogen containing compound, and the duration of the purge gas flow between pulses of the reactants are variable and depend on the volume capacity of a deposition chamber employed as well as a vacuum system coupled thereto. For example, (1) a lower chamber pressure of a gas will require a longer pulse time; (2) a lower gas flow rate will require a longer time for chamber pressure to rise and stabilize requiring a longer pulse time; and (3) a large-volume chamber will take longer to fill, longer for chamber pressure to stabilize thus requiring a longer pulse time. Similarly, time between each pulse is also variable and depends on volume capacity of the process chamber as well as the vacuum system coupled thereto. In general, the time duration of a pulse of the tantalum containing compound or the nitrogen containing compound should be long enough for absorption of a monolayer of the compound. In one aspect, a pulse of a tantalum containing compound may still be in the chamber when a pulse of a nitrogen containing compound enters. In general, the duration of the purge gas and/or pump evacuation should be long enough to prevent the pulses of the tantalum containing compound and the nitrogen containing compound from mixing together in the reaction zone.


Generally, a pulse time of about 1.0 second or less for a tantalum containing compound and a pulse time of about 1.0 second or less for a nitrogen containing compound are typically sufficient to absorb alternating monolayers on a substrate structure. A time of about 1.0 second or less between pulses of the tantalum containing compound and the nitrogen containing compound is typically sufficient for the purge gas, whether a continuous purge gas or a pulse of a purge gas, to prevent the pulses of the tantalum containing compound and the nitrogen containing compound from mixing together in the reaction zone. Of course, a longer pulse time of the reactants may be used to ensure absorption of the tantalum containing compound and the nitrogen containing compound and a longer time between pulses of the reactants may be used to ensure removal of the reaction by-products.


During atomic layer deposition, the substrate 210 may be maintained approximately below a thermal decomposition temperature of a selected tantalum containing compound. An exemplary heater temperature range to be used with tantalum containing compounds identified herein is approximately between about 20° C. and about 500° C. at a chamber pressure less than about 100 torr, preferably less than 50 torr. When the tantalum containing gas is PDMAT, the heater temperature is preferably between about 100° C. and about 300° C., more preferably between about 175° C. and 250° C., and the chamber pressure is between about 1.0 and about 5.0 torr. In other embodiments, it should be understood that other temperatures and pressures may be used. For example, a temperature above a thermal decomposition temperature may be used. However, the temperature should be selected so that more than 50 percent of the deposition activity is by absorption processes. In another example, a temperature above a thermal decomposition temperature may be used in which the amount of decomposition during each precursor deposition is limited so that the growth mode will be similar to an atomic layer deposition growth mode.


One exemplary process of depositing a tantalum nitride layer by atomic layer deposition, in the process chamber 200 of FIGS. 1-4, comprises providing pulses of pentadimethylamino-tantalum (PDMAT) from gas source 238 at a flow rate between about 100 sccm and about 1000 sccm, preferably between about 100 sccm and about 400 sccm, through valve 242A for a pulse time of about 0.5 seconds or less, about 0.1 seconds or less, or about 0.05 seconds or less due the smaller volume of the reaction zone 264. Pulses of ammonia may be provided from gas source 239 at a flow rate between about 100 sccm and about 1000 sccm, preferably between 200 sccm and about 600 sccm, through valve 242B for a pulse time of about 0.5 seconds or less, about 0.1 seconds or less, or about 0.05 seconds or less due to a smaller volume of the reaction zone 264. An argon purge gas at a flow rate between about 100 sccm and about 1000 sccm, preferably, between about 100 sccm and about 400 sccm, may be continuously provided from gas source 240 through valves 242A, 242B. The time between pulses of the tantalum containing compound and the nitrogen containing compound may be about 0.5 seconds or less, about 0.1 seconds or less, or about 0.07 seconds or less due to the smaller volume of the reaction zone 264. It is believed that a pulse time of about 0.016 seconds or more is required to fill the reaction zone 264 with a reactant gas and/or a purge gas. The heater temperature preferably is maintained between about 100° C. and about 300° C. at a chamber pressure between about 1.0 and about 5.0 torr. This process provides a tantalum nitride layer in a thickness between about 0.5 Å and about 1.0 Å per cycle. The alternating sequence may be repeated until a desired thickness is achieved.


In one embodiment, the layer, such as a tantalum nitride layer, is deposited to a sidewall coverage of about 50 Å or less. In another embodiment, the layer is deposited to a sidewall coverage of about 20 Å or less. In still another embodiment, the layer is deposited to a sidewall coverage of about 10 Å or less. A tantalum nitride layer with a thickness of about 10 521 or less is believed to be a sufficient thickness in the application as a barrier layer to prevent copper diffusion. In one aspect, a thin barrier layer may be used to advantage in filling sub-micron (e.g., less than 0.15 μm) and smaller features having high aspect ratios (e.g., greater than 5 to 1). Of course, a layer having a sidewall coverage of greater than 50 Å may be used.


Embodiments of atomic layer deposition have been described above as absorption of a monolayer of reactants on a substrate. The present invention also includes embodiments in which the reactants are deposited to more or less than a monolayer. The present invention also includes embodiments in which the reactants are not deposited in a self-limiting manner. The present invention also includes embodiments in which deposition occurs in mainly a chemical vapor deposition process in which the reactants are delivered sequentially or simultaneously.


Embodiments of atomic layer deposition have been described above as the deposition of the binary compound of tantalum nitride utilizing pulses of two reactants. In the deposition of other elements or compounds, pulses of two or more reactants may also be used.


While foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A chamber, comprising: a substrate support having a substrate receiving surface; a chamber lid comprising; an expanding channel at a central portion of the chamber lid; and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, wherein the tapered bottom surface is shaped and sized to substantially cover the substrate receiving surface, and wherein a plurality of flow sections are defined between the tapered bottom surface of the chamber lid and the substrate receiving surface, wherein a ratio of a maximum area of the flow sections to a minimum area of the flow sections is less than about 2.0; one or more gas conduits coupled to the expanding channel, wherein the one or more gas conduits are positioned at an angle from a center of the expanding channel and wherein the one or more gas conduits comprise one or more valves; and one or more gas sources coupled to each valve.
  • 2. The chamber of claim 1, wherein the ratio of the maximum area of the flow sections to the minimum area of the flow sections is less than about 1.5.
  • 3. The chamber of claim 1, wherein the ratio of the maximum area of the flow sections to the minimum area of the flow sections is less then about 1.3.
  • 4. The chamber of claim 1, wherein the ratio of the maximum area of the flow sections to the minimum area of the flow sections is about 1.0.
  • 5. A chamber, comprising: a substrate support having a substrate receiving surface; a chamber lid comprising: an expanding channel at a central portion of the chamber lid; and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, wherein the tapered bottom surface is shaped and sized to substantially cover the substrate receiving surface, and wherein a reaction zone defined between the chamber lid and the substrate receiving surface comprises about 1.000 cm3 or less and the substrate receiving surface is adapted to receive a 200 mm diameter substrate; one or more gas conduits coupled to the expanding channel, wherein the one or more gas conduits are positioned at an angle from a center of the expanding channel and wherein the one or more gas conduits comprise one or more valves; and one or more gas sources coupled to each valve.
  • 6. The chamber of claim 5, wherein the reaction zone comprises about 500 cm3 or less.
  • 7. The chamber of claim 5, wherein the reaction zone comprises about 200 cm3 or less.
  • 8. A chamber, comprising: a substrate support having a substrate receiving surface; a chamber lid comprising: an expanding channel at a central portion of the chamber lid; and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, wherein the tapered bottom is surface shaped and sized to substantially cover the substrate receiving surface, and wherein a reaction zone defined between the chamber lid and the substrate receiving surface comprises about 3,000 cm3 or less and the substrate receiving surface is adapted to receive a 300 mm diameter substrate.
  • 9. The chamber of claim 8, wherein the reaction zone comprises about 1,500 cm3 or less.
  • 10. The chamber of claim 8, wherein the reaction zone comprises about 600 cm3 or less.
  • 11. A chamber, comprising: a substrate support having a substrate receiving surface; a chamber lid comprising: an expanding channel at a central portion of the chamber lid; and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, wherein the tapered bottom surface is shaped and sized to substantially cover the substrate receiving surface; one or more gas conduits coupled to the expanding channel, wherein at least one of the one or more gas conduits has an inner diameter which increases toward the expanding channel and wherein the one or more gas conduits are positioned at an angle from a center of the expanding channel and wherein the one or more gas conduits comprises one or more valves and couple the one or more valves to the expanding channel; and one or more gas sources coupled to each valve.
  • 12. The chamber of claim 11, wherein at least one of the one or more gas conduits has a tapered inner diameter which increases toward the expanding channel.
  • 13. The chamber of claim 11, wherein at least one of the one or more gas conduits comprises a plurality of sections having a progressively larger inner diameter toward the expanding channel.
  • 14. A chamber, comprising: a substrate support having a substrate receiving surface; a chamber lid comprising: an expanding channel at a central portion of the chamber lid; and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid, wherein the tapered bottom surface is shaped and sized to substantially cover the substrate receiving surface; one or more gas conduits coupled to the expanding channel, wherein a longitudinal axis of at least one of the one or more gas conduits is not parallel to a longitudinal axis of the expanding channel, and wherein the one or more gas conduits comprise one or more valves; and one or more gas sources coupled to each valve.
  • 15. The chamber of claim 14, wherein the longitudinal axis of at least one of the one or more gas conduits is disposed at a 90 degree angle to the longitudinal axis of the expanding channel.
  • 16. The chamber of claim 14, wherein the longitudinal axis of at least one of the one or more gas conduits is angled downwardly with respect to a plane which could be drawn perpendicular to the longitudinal axis of the expanding channel.
  • 17. The chamber of claim 14, wherein the longitudinal axis of at least one of the one or more gas conduits is angled upwardly with respect to a plane which could be drawn perpendicular to the longitudinal axis of the expanding channel.
  • 18. The chamber of claim 11, wherein a longitudinal axis of at least one of the one or more gas conduits is not parallel to a longitudinal axis of the expanding channel.
  • 19. The chamber of claim 11, wherein a longitudinal axis of a least one of the one or more gas conduits is disposed at a 90 degree angle to the longitudinal axis of the expanding channel.
  • 20. The chamber of claim 11, wherein a longitudinal axis of a least one of the one or more gas conduits is angled downwardly with respect to a plane which could be drawn perpendicular to the longitudinal axis of the expanding channel.
  • 21. The chamber of claim 11, wherein a longitudinal axis of at least one of the one or more gas conduits is angled upwardly with respect to a plane which could be drawn perpendicular to the longitudinal axis of the expanding channel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. provisional Patent Application Ser. No. 60/346,086, entitled “METHOD AND APPARATUS FOR ALD DEPOSITION,” filed Oct. 26, 2001, which is herein incorporated by reference.

US Referenced Citations (385)
Number Name Date Kind
3291456 Deane Dec 1966 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4614639 Hegedus Sep 1986 A
4732110 Parsons Mar 1988 A
4761269 Conger et al. Aug 1988 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Matsumoto Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4907534 Huang et al. Mar 1990 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4987856 Hey et al. Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5085887 Adams et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5134965 Tokuda et al. Aug 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5204145 Gasworth Apr 1993 A
5205077 Wittstock Apr 1993 A
5221449 Colgan et al. Jun 1993 A
5224513 Bertone Jul 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5261959 Gasworth Nov 1993 A
5264038 Hara et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5281485 Colgan et al. Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338362 Imahashi Aug 1994 A
5338363 Kawata et al. Aug 1994 A
5338364 Kurihara et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5496410 Fukuda et al. Mar 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5542452 Carver et al. Aug 1996 A
5573566 Anderberg et al. Nov 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5643366 Somekh et al. Jul 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5804488 Shih et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5835677 Li et al. Nov 1998 A
5838677 Kozaki et al. Nov 1998 A
5846330 Quirk et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5888303 Dixon Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5919332 Koshiishi et al. Jul 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5951771 Raney et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5996528 Berrian et al. Dec 1999 A
6001267 Os et al. Dec 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6066358 Guo et al. May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143077 Ikeda et al. Nov 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6158446 Mohindra et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6179920 Tarutani et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6218298 Hoinkis Apr 2001 B1
6231672 Choi et al. May 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6333260 Kwon et al. Dec 2001 B1
6334983 Okayama et al. Jan 2002 B1
6335280 Van der Jeugd Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348376 Lim et al. Feb 2002 B2
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6372598 Kang et al. Apr 2002 B2
6379748 Bhandari et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B2
6416577 Suntoloa et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6436193 Kasai et al. Aug 2002 B1
6447607 Soininen et al. Sep 2002 B2
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6482740 Soininen et al. Nov 2002 B2
6511539 Raaijmakers Jan 2003 B1
6534133 Kaloyeros et al. Mar 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6551406 Kilpi Apr 2003 B2
6551929 Kori et al. Apr 2003 B1
6569501 Chiang et al. May 2003 B2
6572705 Suntola et al. Jun 2003 B1
6575705 Akiyama et al. Jun 2003 B2
6578287 Aswad Jun 2003 B2
6579372 Park Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6596602 Iizuka et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607976 Chen et al. Aug 2003 B2
6620723 Byun et al. Sep 2003 B1
6630030 Suntola et al. Oct 2003 B1
6630201 Chiang et al. Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6660126 Nguyen et al. Dec 2003 B2
6686271 Raaijmakers et al. Feb 2004 B2
6778762 Shareef et al. Aug 2004 B1
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020004293 Soininen et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020019121 Pyo Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020048880 Lee Apr 2002 A1
20020052097 Park May 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020060363 Xi et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020108570 Lindfors Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Nguyen et al. Sep 2002 A1
20020127336 Chen et al. Sep 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Nguyen et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030072913 Chou et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030089308 Raaijmakers May 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030134508 Raaijmakers et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030153177 Tepman et al. Aug 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224107 Hey et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20040009307 Koh et al. Jan 2004 A1
20040011404 Ku et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040046197 Basceri et al. Mar 2004 A1
Foreign Referenced Citations (231)
Number Date Country
196 27 017 Jan 1997 DE
198 20 147 Jul 1999 DE
0 344 352 Dec 1989 EP
0 429 270 May 1991 EP
0 422 490 Aug 1991 EP
0 799 641 Oct 1997 EP
1 077 484 Feb 2001 EP
1 167 569 Jan 2002 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 355 727 May 2001 GB
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-236657 Sep 1989 JP
01-245512 Sep 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Oct 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-285167 Oct 1992 JP
04-291916 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-132236 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
07-300649 Nov 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-188840 Jul 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-212752 Aug 2000 JP
2000-218445 Aug 2000 JP
2000-319772 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-020075 Jan 2001 JP
2001-62244 Mar 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-189312 Jul 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
2000-212752 Nov 2002 JP
2001-111000 Dec 2002 JP
0040650 May 2003 KR
9002216 Mar 1990 WO
9110510 Jul 1991 WO
9302111 Feb 1993 WO
WO 9617107 Jun 1996 WO
9617107 Jun 1996 WO
9618756 Jun 1996 WO
WO 9703223 Jan 1997 WO
9806889 Feb 1998 WO
9851838 Nov 1998 WO
WO 9901595 Jan 1999 WO
9901595 Jan 1999 WO
9913504 Mar 1999 WO
WO 9929924 Jun 1999 WO
9929924 Jun 1999 WO
9941423 Aug 1999 WO
WO 9965064 Dec 1999 WO
0011721 Mar 2000 WO
0015865 Mar 2000 WO
0015881 Mar 2000 WO
WO 00-16377 Mar 2000 WO
0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
0054320 Sep 2000 WO
0063957 Oct 2000 WO
0079019 Dec 2000 WO
WO 0079576 Dec 2000 WO
0079576 Dec 2000 WO
WO 0112891 Feb 2001 WO
0115220 Mar 2001 WO
0115220 Mar 2001 WO
WO 0117691 Mar 2001 WO
WO 01-17692 Mar 2001 WO
WO 01-27346 Apr 2001 WO
0127346 Apr 2001 WO
WO 01-27347 Apr 2001 WO
0127347 Apr 2001 WO
WO 01-29280 Apr 2001 WO
0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
0129891 Apr 2001 WO
WO 01-29893 Apr 2001 WO
0129893 Apr 2001 WO
0136702 May 2001 WO
WO 0136702 May 2001 WO
0140541 Jun 2001 WO
WO 01-66832 Sep 2001 WO
0166832 Sep 2001 WO
WO 02-01628 Jan 2002 WO
WO 02-08485 Jan 2002 WO
WO 0208488 Jan 2002 WO
WO 200227078 Apr 2002 WO
WO 02-43115 May 2002 WO
WO 02-45167 Jun 2002 WO
WO 0245871 Jun 2002 WO
WO 02-067319 Aug 2002 WO
WO 0323835 Mar 2003 WO
Related Publications (1)
Number Date Country
20030079686 A1 May 2003 US
Provisional Applications (1)
Number Date Country
60346086 Oct 2001 US