1. Field of the Invention
The present invention is related to an integrated device having a plurality of chip arrangements, each of which being provided with one or more contact elements for contacting a contact pad. The present invention is further related to a method for producing such an integrated device.
2. Description of the Related Art
To increase the performance of electronic devices in terms of signal transmission and integration, modern devices may comprise a plurality of chips integrated in a single package or a plurality of chips wherein each chip is packaged and wherein the packages are stacked to provide a compact electronic device.
According to the first proposal above, a stacking of bare dies requires each of the dies to be tested before being stacked and packaged, which is technically expensive and time-consuming and causes high costs. Regarding the second proposal above, the stacking of packaged devices wherein each packaged device is separately encapsulated with a mold to protect the die therein from the environment, however, has an issue in that the encapsulation of each die increases their heights such that the overall height of the electronic device becomes undesirably high.
Therefore, one embodiment of the present invention provides an integrated device having a plurality of chip arrangements which can be manufactured with reduced costs and provide a high integration.
A further embodiment of the present invention provides an integrated device having a plurality of chip arrangements wherein each chip arrangement can be functionally tested before assembled to the integrated device in a facilitated manner.
Another embodiment of the present invention provides an integrated device having a plurality of chip arrangements wherein the integrated device has a reduced height compared to package stack as known conventionally.
A further embodiment of the present invention provides a method for producing an integrated device having a plurality of chips with a high yield and in a cost-efficient manner, wherein the height of the produced integrated device is reduced compared to a conventional package stack.
According to a first aspect of the present invention, an integrated device is provided which includes a plurality of non-encapsulated chip arrangements each of which having a plurality of contact elements for contacting a contact pad, wherein the chip arrangements are stacked on each other such that the respective contact elements provide electrical connections to the respective chip arrangements, and a common integral mold arranged to encapsulate the stacked chip arrangements.
In the present invention, a chip arrangement is defined as a chip which is provided with a plurality of contact elements for providing external contacts to the chip by placing the contact elements on respective contact pads. In one embodiment, the contact pads are formed as solder bumps, e.g., solder balls, which may be soldered to the respective contact pads. The chip arrangement is non-encapsulated so that the height of the chip arrangement is not unnecessarily increased. On the other hand, the contact element allows for carrying out a functional test of the chip in a facilitated and cost-effective manner prior to the stacking. To protect the chip arrangements from the environmental influences, a common integral mold is arranged around the chip arrangements to encapsulate them.
Each of the plurality of chip arrangements may comprise one of a flip chip on which the plurality of contact elements are directly arranged, and a BGA (i.e., Ball Grid Array) arrangement wherein a chip is arranged on a first surface of a substrate. On a second opposing surface of the substrate, the plurality of contact elements is provided which has an electrical connection with integrated circuits included in the chip.
According to a further embodiment of the present invention, the plurality of chip arrangements comprises at least one BGA arrangement and at least one flip chip. A package substrate may be provided on which the at least one BGA arrangement and the at least one flip chip are arranged. The flip chip may be arranged on the package-substrate so that its contact elements contact associated contact pads of the package-substrate and wherein the BGA arrangement is arranged on the package substrate so that its contact elements contact respective further contact pads of the package substrate, wherein the plurality of contact elements of the BGA arrangements are located so that an area is formed on which no contact elements are provided, wherein the BGA arrangement is stacked onto the flip chip so that the area covers the flip chip.
According to an embodiment of the present invention, the common mold is arranged on the package substrate so that only one side of the package substrate is covered with the common mold. Thereby, an opposing side of the package substrate can be used for providing electrical interconnections to the stacked chip arrangements contained in the integrated device.
According to a further aspect of the present invention, a method for producing an integrated device including a plurality of chip arrangements is provided. The chip arrangements each have contact elements for contacting respective contact pads. The method comprises the steps of stacking the plurality of chip arrangements and encapsulating the plurality of chip arrangements so that a plurality of contact elements of at least one of the chip arrangements is externally contactable and therefore not covered by the encapsulation.
In one embodiment, at least one of the chip arrangements may be provided as a flip chip on which the plurality of contact elements are directly arranged, and at least one of the chip arrangements may be provided as a BGA arrangement, wherein a chip is arranged on a first surface of a substrate, wherein on a second opposing surface of the substrate, a plurality of contact elements is provided which are in electrical connection with the chip. Both, the flip chip and the BGA arrangement can be placed on a package substrate so that the respective contact elements of the flip chip contact associated contact pads of the package substrate and wherein the BGA arrangement is arranged on the package substrate so that its respective contact elements contact respective further contact pads of the package substrate, wherein the plurality of contact elements of the BGA arrangement are arranged so that an area is formed on which no contact elements are provided, and wherein the BGA arrangement is stacked onto the flip chip so that the area covers the flip chip.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In
The first contact pads 15 of the package substrate 11 and the first contact elements 14 are interconnected according to a pre-determined scheme such that one or more of the first contact elements 14 is connected with one or more of the first contact pads 15, respectively, by means of a (not shown) redistribution layer included within the package substrate 11. The chip arrangement 18 also has a redistribution layer include in the substrate 20 which provides an electrical interconnection between the third contact elements 19 and the second contact pads 21 on the BGA substrate 20.
The first and the second chip arrangements 24, 18 are placed on the package substrate 11 such that the chips 17 and 22 are substantially arranged in a stacked condition, i.e., arranged in parallel with regard to the first surface of the package substrate 11 on top of each other. The third contact elements 19 of the second chip arrangement 18 are located in an outer region R1 of the substrate 20 such that an area is enclosed in an inner region R2 of the substrate 20. Thereby, the second chip arrangement 18 can be placed on top of the first chip arrangement 24 so that the first contact elements 19 are placed outside of the first chip arrangement 24 which is formed as a flip chip. The inner region R2 of the substrate 20 therefore is located on top of the first chip arrangement 24 with regard to the package substrate 11.
It is shown in
The term chip arrangement as used herein defines an arrangement of one chip and a plurality of contact elements, wherein the contact elements are made to be externally contacted and to provide a direct or indirect electrical connection to the chip on which, e.g., electrically operable structures may be employed. A chip arrangement may be a flip chip having contact elements directly attached to pads on the chip. A chip arrangement may further be a BGA arrangement wherein a substrate having contact elements is provided wherein the contact elements are in electrical connection with a chip arranged on the substrate, wherein the chip is formed as a flip chip or any other chip which is connected to the substrate by means of bond wires and the like. Different kind of chip arrangements can be used at a time to provide the stacked device as long as the chip arrangements are not encapsulated by a mold or a similar encapsulation material prior to their stacking.
After the chip arrangements 24, 18 are stacked onto each other, a common integral mold 25 is applied in a single step such that the liquid mold flows into the spacing between the chip arrangements to provide a secure protection against environmental influences and to avoid having any air filled cavity formed within the integrated device 10. Usually, a common mold can be used for the encapsulation process as long as the mold has a viscosity which is low enough that it can easily flow between the chip arrangements.
As shown in the first embodiment of the present invention, the mold 25 is applied on the first surface 12 of the package substrate 11 such that the second surface 13 of the package substrate 11 is not covered with the mold 25 so that the first contact element 14 can be externally connected to apply electrical signals to each of the chips in the integrated device 10.
In
As already explained with regard to
In
In
After stacking the chip arrangements 51, 71, a common integral mold 90 is applied so that the chip arrangements 51, 71 are encapsulated in a single process step such that the second surface 57 of the first substrate 52 remains uncovered by the mold 90 such that the first contact elements 61 are freely accessible for providing electrical contacts to the first and second chips 54, 74.
In
For any embodiments, the integrated device can be provided with one or more thermal element which, in the case of
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is related to U.S. patent application Ser. No. 11/039,293, Attorney Docket No. INFN/0097 (2004P53356US), entitled SIGNAL REDISTRIBUTION USING BRIDGE LAYER FOR MULTICHIP MODULE, filed Jan. 20, 2005, by Thoai That Le et al., U.S. patent application Ser. No. 11/208,362, Attorney Docket No. INFN/0140, entitled METHOD FOR MCP PACKAGING FOR BALANCED PERFORMANCE, filed Aug. 19, 2005, by Farid Barakat et al., and U.S. patent application Ser. No. 11/079,620, Attorney Docket No. INFN/WB0157, entitled METHOD FOR PRODUCING CHIP STACKS AND CHIP STACKS FORMED BY INTEGRATED DEVICES, filed Mar. 14, 2005, by Harald Gross. Each of the aforementioned related patent applications is herein incorporated by reference in its entirety.