The present invention relates to lead-frame-based semiconductor packages, and more particularly, to a semiconductor package with a lead frame as a chip carrier for accommodating a multi-media card (MMC) chip, and a fabrication method of the semiconductor package.
Multi-media cards (MMC) are small-scale integrated circuit (IC) devices having control and memory chips for storing and processing digital video and audio data. Conventionally, MMC chips are packaged and accommodated on a chip carrier such as substrate or tape; however, this substrate-based or tape-based packaging technology is relatively cost-ineffective to implement.
Therefore, Taiwan Publication No. 484222 teaches a lead-frame-based semiconductor package in which a lead frame is employed as a chip carrier for MMC chips. As shown in
A chip 12, such as a MMC chip, is mounted on the inner lead portions 110, and electrically connected to the leads 11 by a plurality of bonding wires 13. Then, an encapsulant 14 is formed to encapsulate the leads 11, chip 12 and bonding wires 13, wherein the outer lead portions 112 are exposed to outside of the encapsulant 14 for mediating electrical connection between the semiconductor package 1 and an external device such as a printed circuit board (not shown). These components encapsulated by the encapsulant 14 can thus be protected against external moisture, contaminants and impact.
However, the above semiconductor package 1 has significant drawbacks. One is difficulty in obtaining desirable planarity of the leads; when the leads 11 are shaped or deformed to form inner lead portions 110, middle lead portions 111 and outer lead portions 112, it may easily lead to poor planarity of the outer lead portions 112, or a R angle (as circled in
A primary objective of the present invention is to provide a lead-frame-based semiconductor package and a fabrication method thereof, which can effectively maintain planarity of a lead frame or leads, and prevent resin flash during a molding process, so as to assure reliability and quality of electrical connection for fabricated package products.
In accordance with the above and other objectives, the present invention proposes a lead-frame-based semiconductor package, comprising: a lead frame having a plurality of first leads and second leads, each lead having an upper surface and a lower surface opposed to the upper surface, wherein each of the first leads is formed with an extending portion smaller in thickness than the corresponding one of the first leads in a manner that, an upper surface of the extending portion is flush with the upper surface of the corresponding first lead, and a lower surface of the extending portion forms a predetermined height difference with respect to the lower surface of the corresponding first lead; at least a chip mounted over the upper surfaces of the extending portions; a plurality of bonding wires for electrically connecting the chip to the first and second leads; an encapsulant for encapsulating the upper surfaces of the first and second leads, the upper surfaces of the extending portions, the chip and the bonding wires; and a non-conductive material applied over the lower surfaces of the extending portions, wherein the lower surfaces of the first and second leads are exposed to outside of the non-conductive material. The exposed lower surfaces of the first and second leads are used to mediate electrical connection between the semiconductor package and an external device such as a printed circuit board. The non-conductive material may be the same as or different from a resin material used for forming the encapsulant.
In one embodiment, the first leads of the lead frame are formed with the extending portions respectively; a molding process is performed to form an encapsulant for encapsulating the first and second leads, extending portions, chip and bonding wires, allowing the lower surfaces of the first and second leads and the lower surfaces of the extending portions to be exposed to outside of the encapsulant. Then, a grind process is performed to grind the exposed lower surfaces of the extending portions so as to allow the extending portions to be smaller in thickness than the first leads, wherein the lower surfaces of the extending portions form a predetermined height different with respect to the lower surfaces of the first leads. Thereafter, a non-conductive material is applied over the lower surfaces of the extending portions; an applied thickness of the non-conductive material is equal to the predetermined height different between the lower surfaces of the extending portions and the lower surfaces of the first leads, so as to allow an exposed surface of the non-conductive material to be flush with the lower surfaces of the first leads.
In another embodiment, the extending portions formed at the first leads of the lead frame are subject to a half-etching process for etching the lower surfaces of the extending portion, so as to allow the extending portions to be smaller in thickness than the first leads. Then, an encapsulant is formed to encapsulate the first and second leads, extending portions, chip and bonding wires, allowing the lower surfaces of the first and second leads to be exposed to outside of the encapsulant.
The exposed lower surfaces of the first and second leads may be plated with gold for mediating mediate electrical connection between the semiconductor package and the external printed circuit board.
The above package fabrication method can effectively maintain planarity of the lead frame or leads, and prevent the resin material for forming the encapsulant from flashing over the exposed surfaces of the leads, thereby assuring reliability and quality of electrical connection for fabricated package products.
The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
Preferred embodiments for a lead-frame-based semiconductor package and a fabrication method thereof proposed in the present invention are described in more detail as follows with reference to
First Preferred Embodiment
Referring to
Each of the first leads 21 has an upper surface 210 and a lower surface 211 opposed to the upper surface 210. And, each of the second leads 22 also has an upper surface 220 and a lower surface 221 opposed to the upper surface 220.
Each of the first leads 21 is formed with an extending portion 23 that has an upper surface 231 and a lower surface 232 opposed to the upper surface 231, wherein the upper and lower surfaces 231, 232 of the extending portion 23 are respectively flush with the upper and lower surfaces 210, 211 of the corresponding one of the first leads 21. A chip attach area 230 is defined on the upper surfaces 231 of the extending portions 23 for chip-mounting purpose.
Referring to
A die-bonding process is performed to mount the non-active surface 241 of the chip 24 over the chip attach area 230 on the upper surfaces 231 of the extending portions 23.
Then, a wire-bonding process is performed to form a plurality of bonding wires 25 such as gold wires, allowing the bonding wires 25 to be bonded to the bond pads 242 of the chip 24 and to the first and second leads 21, 22 for electrically connecting the chip 24 to the lead frame 20.
Referring to
Referring to
Referring to
Second Preferred Embodiment
Referring to
Each of the first leads 21 has an upper surface 210 and a lower surface 211 opposed to the upper surface 210. And, each of the second leads 22 also has an upper surface 220 and a lower surface 221 opposed to the upper surface 220.
Each of the first leads 21 is formed with an extending portion 23 that has an upper surface 231 and a lower surface 232 opposed to the upper surface 231, wherein the upper and lower surfaces 231, 232 of the extending portion 23 are respectively flush with the upper and lower surfaces 210, 211 of the corresponding one of the first leads 21. A chip attach area 230 is defined on the upper surfaces 231 of the extending portions 23 for chip-mounting purpose. Then, a half-etching process is performed to etch the lower surfaces 232 of the extending portions 23 for reducing thickness of the extending portions 23, so as to allow the reduced thickness h of the extending portions 23 to be smaller than thickness H of the first leads 21, for example, H=2h.
Referring to
Referring to
It should be understood that, partial removal of the extending portions 23 can be implemented by other technologies but not limited to grinding and half-etching processes exemplified as above.
The above fabricated semiconductor package 2, 2′, without having to shape leads to form inner lead portions, middle lead portions and outer lead portions as in the prior art, can thereby eliminate problems of poor planarity, R angles, resin flash during molding, and the like. Therefore, the semiconductor package 2, 2′ according to this invention can effectively maintain planarity of the lead frame 20 or leads 21, 22, and prevent resin flash over the exposed surfaces 211, 221 of the leads 21, 22, thereby assuring reliability and quality of electrical connection for fabricated package products.
The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
91114917 A | Jul 2002 | TW | national |
This application is a divisional of application U.S. Ser. No. 10/211,422, filed on Aug. 2, 2002, now U.S. Pat. No. 6,806,565.
Number | Name | Date | Kind |
---|---|---|---|
5521429 | Aono et al. | May 1996 | A |
5703399 | Majumdar et al. | Dec 1997 | A |
5977613 | Takata et al. | Nov 1999 | A |
6187614 | Takata et al. | Feb 2001 | B1 |
6580161 | Kobayakawa | Jun 2003 | B1 |
6624007 | Kobayakawa et al. | Sep 2003 | B1 |
6759737 | Seo et al. | Jul 2004 | B1 |
20020121684 | Kobayakawa | Sep 2002 | A1 |
20020187584 | Bolken | Dec 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050029639 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10211422 | Aug 2002 | US |
Child | 10938144 | US |