Not Applicable
Not Applicable
The present invention relates generally to media cards and, more particularly, to a leadframe based multi-media card having chip array, land grid array, and/or service mount technology like structures mounted to the leadframe using standard processing and equipment.
As is well known in the electronics industry, circuit modules or media cards are being used in increasing numbers to provide memory storage and other electronic functions for devices such as digital cameras, MP3 players, cellular phones, and personal digital assistants. In this regard, circuit modules are currently used in various memory card formats, including multi-media cards (MMC), secure digital cards (SDC), compact flash (CF), smart media, and memory stick.
Typically, circuit modules include multiple integrated circuit devices or semiconductor dies. The dies are interconnected using a circuit board substrate which adds to the weight, thickness, stiffness and complexity of the module. Circuit modules also include electrical contacts for providing an external interface to an insertion point or socket. These electrical contacts are typically disposed on the back side of the circuit board substrate, with the electrical connection to the dies being provided by vias which extend through the circuit board substrate.
In an effort to simplify the process steps needed to fabricate the circuit module and, hence, the memory card using the same, there has been developed by Applicant a circuit module wherein a leadframe assembly is used as an alternative to the circuit board substrate, as described in Applicant's co-pending U.S. application Ser. No. 09/956,190 entitled LEAD-FRAME METHOD AND ASSEMBLY FOR INNERCONNECTING CIRCUITS WITHIN A CIRCUIT MODULE filed Sep. 19, 2001 and Ser. No. 10/266,329 entitled DIE DOWN MULTI-MEDIA CARD AND METHOD OF MAKING SAME filed Oct. 8, 2002, the disclosures of which are incorporated herein by reference.
In certain multi-media card or secure digital card applications, it is desirable to mount or electrically connect passive structures such as chip array (CA), land grid array (LGA), and/or surface mount technology (SMT) like structures to the leadframe of the multi-media card. The inclusion of the CA, LGA and/or SMT structures typically requires that the traditional laminate circuit board substrate be employed in the multi-media card in lieu of the leadframe. However, the inclusion of the laminate circuit board substrate increases the number of process steps in the fabrication of the multi-media card, and thus increases the overall production cost. The present invention addresses this deficiency by providing a leadframe based multi-media card which is adapted to allow CA, LGA, and/or SMT structures to be mounted to the leadframe using standard D/A or standard W/B processing and equipment.
In accordance with the present invention, there is provided a media card comprising a lead frame having first and second die pads, a plurality of contacts, and a plurality of conductive traces which extend from respective ones of the contacts towards the first and second die pads. The second die pad is bent in a manner facilitating the formation of a cavity therein. Attached to the first die pad is a semiconductor die which is connected to the leadframe. Additionally, disposed within the cavity and electrically connected to the leadframe is an electronic component. A body at least partially encapsulates the leadframe, the semiconductor die and the electronic component such that the contacts are exposed in a bottom surface defined by the body. The electronic component is itself shielded from radio frequency as a result of its receipt into the cavity defined by the second die pad of the leadframe. The electronic component may comprise a surface mount technology subassembly, a chip array structure, or a land grid array structure.
In other embodiments of the present invention, the leadframe may be modified to include only a single die pad having a die stack attached thereto and electrically conmected to the leadframe. One such die stack may include an interposer which is disposed between a pair of dies and configured to facilitate a desired pattern of electrical connection therebetween. The configurations of the various embodiments of the multi-media card of the present invention are adapted to provide a leadframe based card which is suited to allow CA, LGA, and/or SMT structures to be mounted to the leadframe using standard D/A or standard W/P processing and equipment.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same,
In addition to the dambar 12, the leadframe 10 includes a pair of die attach areas or pads 14 which are disposed within the interior of the dambar 12. The die pads 14 each define opposed generally planar top and bottom surfaces. Integrally connected to and extending from one lateral side of the dambar 12 is a plurality of contacts 16. Each of the contacts 16 also defines opposed, generally planar top and bottom surfaces. Integrally connected to and extending from each of the contacts 16 is a conductive trace 18. The traces 18 terminate in close proximity to respective ones of the die pads 14. Tie bars 20 are used to integrally connect the die pads 14 to one or more of the longitudinal and lateral sides of the dambar 12. The leadframe 10 is preferably fabricated from a conductive metal material (e.g., copper) through either a chemical etching or mechanical stamping process. Importantly, the metal material used to fabricate the leadframe 10 is preferably partially etched in a manner wherein the thickness of the contacts 16 exceeds that of the remainder of the leadframe 10. In this regard, in the leadframe 10, the top surfaces of the contacts 16 preferably extend in substantially co-planar relation to the top surfaces of the die pads 14, traces 18 and tie bars 20 of the leadframe 10. In contrast, the bottom surfaces of the die pads 14, traces 18 and tie bars 20 are perpendicularly recessed relative to the bottom surfaces of the contacts 16 as a result of the half-etching of the leadframe 10. The purpose for the increased thickness of the contacts 16 in comparison to the die pads 14, traces 18 and tie bars 20 will be described in more detail below.
In
Referring now to
In addition to the dambar 12A, the leadframe 10A includes a single die attach area or die pad 14A which is disposed within the interior of the dambar 12A. The die pad 14A defines opposed, generally planar top and bottom surfaces. Integrally connected to and extending inwardly from one lateral side of the dambar 12A are a plurality of contacts 16A of the leadframe 10A. Each of the contacts 16A also defines opposed, generally planar top and bottom surfaces. Integrally connected to and extending from each of the contacts 16A is a conductive trace 18A. As seen in
Like the leadframe 10 described above, the leadframe 10A is also preferably fabricated from a conductive metal material such as copper through either a chemical etching or mechanical stamping process. Additinally, it is contemplated that at least one side of the leadframe 10A will be subjected to a partial etching process for purposes of causing at least the die pad 14A, traces 18A, and tie bars 20A to be of reduced thickness as compared to the contacts 16A. Thus, the top surfaces of the contacts 16A will extend in generally co-planar relation to the top surfaces of the die pad 14A, traces 18A, and tie bars 20A. However, the bottom surfaces of the die pad 14A, traces 18A, and tie bars 20A will be offset or perpendicularly recessed relative to the bottom surfaces of the contacts 16A. As is apparent from the foregoing, the primary distinction between the leadframes 10, 10A is the inclusion of only a single die pad 14A in the leadframe 10A, as compared to the two die pads 14 included in the leadframe 10.
In
In the leadframe 10 shown in
Referring now to
In addition to the leadframe 10, the multi-media card 42 comprises the above-described semiconductor die 22 which is mounted to the top surface of the die pad 14 disposed closest to the contacts 16. The pads or terminals of the semiconductor die 22 are electrically connected to one or more of the traces 18 via the above-described conductive wires 24. In addition to the semiconductor die 22, the multi-media card 42 includes the above-described SMT subassembly 26. However, the SMT subassembly 26 is not mounted to the top surface of the die pad 14 disposed furthest from the contacts 16. Rather, the SMT subassembly 26 is positioned within the cavity 44 formed within such die pad 14 in the manner shown in
Subsequent to the electrical connection of the semiconductor die 22 and SMT subassembly 26 to the leadframe 10 in the above-described manner, an encapsulant material is applied to the leadframe 10, semiconductor die 22, SMT subassembly 26, and conductive wires 24. The encapsulant material is preferably a plastic (e.g., thermoset, thermoplastic) which, upon hardening, forms a body 46 of the multi-media card 42. The body 46 is formed to provide the necessary form factor for the multi-media card 42. The body 46 defines a generally planar top surface 48, an opposed, generally planar bottom surface 50, and side surfaces 52 which extend generally perpendicularly between the top and bottom surfaces 48, 50. In the completed body 46, the bottom surfaces of the contacts 16 of the leadframe 10 are exposed in and generally flush with the bottom surface 50 of the body 46. Subsequent to the formation of the body 46, the leadframe 10 is singulated as needed to facilitate the electrical isolation of the traces 18 and hence the contacts 16 of the leadframe 10 from each other. In this regard, the body 46 is formed such that the dambar 12 of the leadframe 10 is exposed, thus allowing for the removal of the same from the multi-media card 42.
Those of ordinary skill in the art will recognize that the body 46 may be formed to have a form factor for a memory card other than the multi-media card 42 shown in
Advantageously, in the multi-media card 42 shown in
Referring now to
Subsequent to the electrical connection of the semiconductor die 22 and SMT subassembly 26 to the leadframe 10 in the above-described manner, an encapsulant material is applied to the leadframe 10, semiconductor die 22, SMT subassembly 26, and conductive wires 24. The hardening of the encapsulant material facilitates the formation of a body 56 of the multi-media card 54 which has the same structural attributes described above in relation to the body 46 of the multi-media card 42. Subsequent to the formation of the body 56, the leadframe 10 is singulated as described above in relation to the multi-media card 42 for purposes of electrically isolating the traces 18 and contacts 16 of the leadframe 10 from each other. In the completed body 56, the bottom surfaces of the contacts 16 of the leadframe 10 are exposed in and substantially flush with the bottom surface 58 of the body 56.
It is contemplated that, as an alternative to the leadframe 10, the multi-media card 54 may be fabricated through the use of the leadframe 10A. In this regard, both the semiconductor die 22 and SMT subassembly 26 would each be mounted to the top surface of the sole die pad 14A of the leadframe 10A. Subsequent to such mounting, the conductive wires 24 would be used to electrically connect the pads or terminals of the semiconductor die 22 and the substrate of the SMT subassembly 26 to respective ones of the traces 18A of the leadframe 10A. Despite the substitution of the leadframe 10 with the leadframe 10A, the body 56 of the multi-media card 54 would still be formed in the above-described manner.
Referring now to
Referring now to
The multi-media card 62 further includes a body 66 which is formed in the manner described above in relation to the body 46 and the body 56. In the completed multi-media card 62, the bottom surfaces of the contacts 16A of the leadframe 10A are exposed in the bottom surface 68 of the body 66. As shown in
Referring now to
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2596993 | Gookin | May 1952 | A |
3435815 | Forcier | Apr 1969 | A |
3734660 | Davies et al. | May 1973 | A |
3838984 | Crane et al. | Oct 1974 | A |
4054238 | Lloyd et al. | Oct 1977 | A |
4189342 | Kock | Feb 1980 | A |
4258381 | Inaba | Mar 1981 | A |
4289922 | Devlin | Sep 1981 | A |
4301464 | Otsuki et al. | Nov 1981 | A |
4332537 | Slepcevic | Jun 1982 | A |
4417266 | Grabbe | Nov 1983 | A |
4451224 | Harding | May 1984 | A |
4530152 | Roche et al. | Jul 1985 | A |
4646710 | Schmid et al. | Mar 1987 | A |
4707724 | Suzuki et al. | Nov 1987 | A |
4737839 | Burt | Apr 1988 | A |
4756080 | Thorp, Jr. et al. | Jul 1988 | A |
4812896 | Rothgery et al. | Mar 1989 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4862246 | Masuda et al. | Aug 1989 | A |
4907067 | Derryberry | Mar 1990 | A |
4920074 | Shimizu et al. | Apr 1990 | A |
4935803 | Kalfus et al. | Jun 1990 | A |
4942454 | Mori et al. | Jul 1990 | A |
4987475 | Schlesinger et al. | Jan 1991 | A |
5029386 | Chao et al. | Jul 1991 | A |
5041902 | McShane | Aug 1991 | A |
5059379 | Tsutsumi et al. | Oct 1991 | A |
5065223 | Matsuki et al. | Nov 1991 | A |
5070039 | Johnson et al. | Dec 1991 | A |
5087961 | Long et al. | Feb 1992 | A |
5091341 | Asada et al. | Feb 1992 | A |
5096852 | Hobson | Mar 1992 | A |
5157480 | McShane et al. | Oct 1992 | A |
5168368 | Gow, 3rd et al. | Dec 1992 | A |
5172213 | Zimmerman | Dec 1992 | A |
5172214 | Casto | Dec 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200809 | Kwon | Apr 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5218231 | Kudo | Jun 1993 | A |
5221642 | Burns | Jun 1993 | A |
5250841 | Sloan et al. | Oct 1993 | A |
5252853 | Michii | Oct 1993 | A |
5258094 | Furui et al. | Nov 1993 | A |
5266834 | Nishi et al. | Nov 1993 | A |
5273938 | Lin et al. | Dec 1993 | A |
5277972 | Sakumoto et al. | Jan 1994 | A |
5278446 | Nagaraj et al. | Jan 1994 | A |
5279029 | Burns | Jan 1994 | A |
5294897 | Notani et al. | Mar 1994 | A |
5327008 | Djennas et al. | Jul 1994 | A |
5332864 | Liang et al. | Jul 1994 | A |
5335771 | Murphy | Aug 1994 | A |
5336931 | Juskey et al. | Aug 1994 | A |
5343076 | Katayama et al. | Aug 1994 | A |
5365106 | Watanabe | Nov 1994 | A |
5381042 | Lerner et al. | Jan 1995 | A |
5391439 | Tomita et al. | Feb 1995 | A |
5406124 | Morita et al. | Apr 1995 | A |
5410180 | Fujii et al. | Apr 1995 | A |
5414299 | Wang et al. | May 1995 | A |
5424576 | Djennas et al. | Jun 1995 | A |
5428248 | Cha | Jun 1995 | A |
5435057 | Bindra et al. | Jul 1995 | A |
5444301 | Song et al. | Aug 1995 | A |
5454905 | Fogelson | Oct 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5484274 | Neu | Jan 1996 | A |
5493151 | Asada et al. | Feb 1996 | A |
5508556 | Lin | Apr 1996 | A |
5517056 | Bigler et al. | May 1996 | A |
5521429 | Aono et al. | May 1996 | A |
5534467 | Rostoker | Jul 1996 | A |
5539251 | Iverson et al. | Jul 1996 | A |
5543657 | Diffenderfer et al. | Aug 1996 | A |
5544412 | Romero et al. | Aug 1996 | A |
5545923 | Barber | Aug 1996 | A |
5581122 | Chao et al. | Dec 1996 | A |
5592019 | Ueda et al. | Jan 1997 | A |
5592025 | Clark et al. | Jan 1997 | A |
5594274 | Suetaki | Jan 1997 | A |
5604376 | Hamburgen et al. | Feb 1997 | A |
5608267 | Mahulikar et al. | Mar 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5633528 | Abbott et al. | May 1997 | A |
5639990 | Nishihara et al. | Jun 1997 | A |
5640047 | Nakashima | Jun 1997 | A |
5641997 | Ohta et al. | Jun 1997 | A |
5644169 | Chun | Jul 1997 | A |
5646831 | Manteghi | Jul 1997 | A |
5650663 | Parthasarathi | Jul 1997 | A |
5665996 | Williams et al. | Sep 1997 | A |
5673479 | Hawthorne | Oct 1997 | A |
5683806 | Sakumoto et al. | Nov 1997 | A |
5689135 | Ball | Nov 1997 | A |
5696666 | Miles et al. | Dec 1997 | A |
5701034 | Marrs | Dec 1997 | A |
5703407 | Hori | Dec 1997 | A |
5710064 | Song et al. | Jan 1998 | A |
5723899 | Shin | Mar 1998 | A |
5736432 | Mackessy | Apr 1998 | A |
5745984 | Cole, Jr. et al. | May 1998 | A |
5753977 | Kusaka et al. | May 1998 | A |
5766972 | Takahashi et al. | Jun 1998 | A |
5770888 | Song et al. | Jun 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783861 | Son | Jul 1998 | A |
5801440 | Chu et al. | Sep 1998 | A |
5814877 | Diffenderfer et al. | Sep 1998 | A |
5814881 | Alagaratnam et al. | Sep 1998 | A |
5814883 | Sawai et al. | Sep 1998 | A |
5814884 | Davis et al. | Sep 1998 | A |
5817540 | Wark | Oct 1998 | A |
5818105 | Kouda | Oct 1998 | A |
5821457 | Mosley et al. | Oct 1998 | A |
5821615 | Lee | Oct 1998 | A |
5834830 | Cho | Nov 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5844306 | Fujita et al. | Dec 1998 | A |
5856911 | Riley | Jan 1999 | A |
5859479 | David | Jan 1999 | A |
5866939 | Shin et al. | Feb 1999 | A |
5871782 | Choi | Feb 1999 | A |
5874784 | Aoki et al. | Feb 1999 | A |
5877043 | Alcoe et al. | Mar 1999 | A |
5886397 | Ewer | Mar 1999 | A |
5886398 | Low et al. | Mar 1999 | A |
5894108 | Mostafazadeh et al. | Apr 1999 | A |
5897339 | Song et al. | Apr 1999 | A |
5900676 | Kweon et al. | May 1999 | A |
5903049 | Mori | May 1999 | A |
5903050 | Thurairajaratnam et al. | May 1999 | A |
5917242 | Ball | Jun 1999 | A |
5939779 | Kim | Aug 1999 | A |
5942794 | Okumura et al. | Aug 1999 | A |
5951305 | Haba | Sep 1999 | A |
5959356 | Oh | Sep 1999 | A |
5969426 | Baba et al. | Oct 1999 | A |
5973388 | Chew et al. | Oct 1999 | A |
5976912 | Fukutomi et al. | Nov 1999 | A |
5977613 | Takata et al. | Nov 1999 | A |
5977615 | Yamaguchi et al. | Nov 1999 | A |
5977630 | Woodworth et al. | Nov 1999 | A |
5981314 | Glenn et al. | Nov 1999 | A |
5986333 | Nakamura | Nov 1999 | A |
5986885 | Wyland | Nov 1999 | A |
6001671 | Fjelstad | Dec 1999 | A |
6013947 | Lim | Jan 2000 | A |
6018189 | Mizuno | Jan 2000 | A |
6025640 | Yagi et al. | Feb 2000 | A |
6031279 | Lenz | Feb 2000 | A |
RE36613 | Ball | Mar 2000 | E |
6034423 | Mostafazadeh et al. | Mar 2000 | A |
6040626 | Cheah et al. | Mar 2000 | A |
6043430 | Chun | Mar 2000 | A |
6060768 | Hayashida et al. | May 2000 | A |
6060769 | Wark | May 2000 | A |
6072228 | Hinkle et al. | Jun 2000 | A |
6075284 | Choi et al. | Jun 2000 | A |
6081029 | Yamaguchi | Jun 2000 | A |
6084310 | Mizuno et al. | Jul 2000 | A |
6087722 | Lee et al. | Jul 2000 | A |
6100594 | Fukui et al. | Aug 2000 | A |
6113474 | Costantini et al. | Sep 2000 | A |
6118174 | Kim | Sep 2000 | A |
6118184 | Ishio et al. | Sep 2000 | A |
RE36907 | Templeton, Jr. et al. | Oct 2000 | E |
6130115 | Okumura et al. | Oct 2000 | A |
6130473 | Mostafazadeh et al. | Oct 2000 | A |
6133623 | Otsuki et al. | Oct 2000 | A |
6140154 | Hinkle et al. | Oct 2000 | A |
6143981 | Glenn | Nov 2000 | A |
6169329 | Farnworth et al. | Jan 2001 | B1 |
6177718 | Kozono | Jan 2001 | B1 |
6181002 | Juso et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6194777 | Abbott et al. | Feb 2001 | B1 |
6197615 | Song et al. | Mar 2001 | B1 |
6198171 | Huang et al. | Mar 2001 | B1 |
6201186 | Daniels et al. | Mar 2001 | B1 |
6201292 | Yagi et al. | Mar 2001 | B1 |
6204554 | Ewer et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208021 | Ohuchi et al. | Mar 2001 | B1 |
6208023 | Nakayama et al. | Mar 2001 | B1 |
6211462 | Carter, Jr. et al. | Apr 2001 | B1 |
6218731 | Huang et al. | Apr 2001 | B1 |
6222258 | Asano et al. | Apr 2001 | B1 |
6225146 | Yamaguchi et al. | May 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6229205 | Jeong et al. | May 2001 | B1 |
6239384 | Smith et al. | May 2001 | B1 |
6242281 | Mclellan et al. | Jun 2001 | B1 |
6256200 | Lam et al. | Jul 2001 | B1 |
6281566 | Magni | Aug 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6282095 | Houghton et al. | Aug 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6291271 | Lee et al. | Sep 2001 | B1 |
6291273 | Miyaki et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6294830 | Fjelstad | Sep 2001 | B1 |
6295977 | Ripper et al. | Oct 2001 | B1 |
6297548 | Moden et al. | Oct 2001 | B1 |
6303984 | Corisis | Oct 2001 | B1 |
6303997 | Lee | Oct 2001 | B1 |
6307272 | Takahashi et al. | Oct 2001 | B1 |
6309909 | Ohgiyama | Oct 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6323550 | Martin et al. | Nov 2001 | B1 |
6326243 | Suzuya et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6339255 | Shin | Jan 2002 | B1 |
6355502 | Kang et al. | Mar 2002 | B1 |
6369454 | Chung | Apr 2002 | B1 |
6373127 | Baudouin et al. | Apr 2002 | B1 |
6380048 | Boon et al. | Apr 2002 | B1 |
6384472 | Huang | May 2002 | B1 |
6388336 | Venkateshwaran et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6400004 | Fan et al. | Jun 2002 | B1 |
6414385 | Huang et al. | Jul 2002 | B1 |
6437429 | Su et al. | Aug 2002 | B1 |
6444499 | Swiss et al. | Sep 2002 | B1 |
6448633 | Yee et al. | Sep 2002 | B1 |
6452279 | Shimoda | Sep 2002 | B1 |
6464121 | Reijnders | Oct 2002 | B1 |
6476474 | Hung | Nov 2002 | B1 |
6482680 | Khor et al. | Nov 2002 | B1 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6498392 | Azuma | Dec 2002 | B1 |
6507120 | Lo et al. | Jan 2003 | B1 |
6559525 | Huang | May 2003 | B1 |
6624005 | DiCaprio et al. | Sep 2003 | B1 |
20010008305 | McLellan et al. | Jul 2001 | A1 |
20010014538 | Kwan et al. | Aug 2001 | A1 |
20020011654 | Kimura | Jan 2002 | A1 |
20020024122 | Jung et al. | Feb 2002 | A1 |
20020140061 | Lee | Oct 2002 | A1 |
20020140068 | Lee et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
19734794 | Aug 1997 | DE |
54021117 | Jun 1979 | EP |
59050939 | Mar 1984 | EP |
0720225 | Mar 1996 | EP |
0720234 | Mar 1996 | EP |
0794572 | Oct 1997 | EP |
0844665 | May 1998 | EP |
0936671 | Aug 1999 | EP |
0989608 | Mar 2000 | EP |
1032037 | Aug 2000 | EP |
55163868 | Dec 1980 | JP |
5745959 | Mar 1982 | JP |
59208756 | Nov 1984 | JP |
59227143 | Dec 1984 | JP |
60010756 | Jan 1985 | JP |
60116239 | Aug 1985 | JP |
60195957 | Oct 1985 | JP |
60231349 | Nov 1985 | JP |
6139555 | Feb 1986 | JP |
629639 | Jan 1987 | JP |
63205935 | Aug 1988 | JP |
63233555 | Sep 1988 | JP |
63249345 | Oct 1988 | JP |
63316470 | Dec 1988 | JP |
64054749 | Mar 1989 | JP |
1106456 | Apr 1989 | JP |
4098864 | Mar 1992 | JP |
5129473 | May 1993 | JP |
5166992 | Jul 1993 | JP |
5283460 | Oct 1993 | JP |
692076 | Apr 1994 | JP |
6260532 | Sep 1994 | JP |
7297344 | Nov 1995 | JP |
7312405 | Nov 1995 | JP |
864634 | Mar 1996 | JP |
8125066 | May 1996 | JP |
8222682 | Aug 1996 | JP |
8306853 | Nov 1996 | JP |
98205 | Jan 1997 | JP |
98206 | Jan 1997 | JP |
98207 | Jan 1997 | JP |
992775 | Apr 1997 | JP |
9293822 | Nov 1997 | JP |
10199934 | Jul 1998 | JP |
10256240 | Sep 1998 | JP |
10022447 | Oct 1998 | JP |
00150765 | May 2000 | JP |
941979 | Jan 1994 | KR |
199772358 | Nov 1997 | KR |
100220154 | Jun 1999 | KR |
0049944 | Jun 2002 | KR |
9956316 | Nov 1999 | WO |
9967821 | Dec 1999 | WO |