1. Field of the Invention
The present invention relates to semiconductor technology. More particularly, the present invention relates to memory cell technology and to resistive random access memory cell technology. The present invention relates to low leakage resistive random access memory (ReRAM) cells.
The contents of co-pending applications attorney docket no. 7618-52198-1 entitled LOW LEAKAGE ReRAM FPGA CONFIGURATION CELL; attorney docket no. 7618-52597-1 entitled THREE-TRANSISTOR RESISTIVE RANDOM ACCESS MEMORY CELLS; and attorney docket no. 7618-52666-1 entitled THREE-TRANSISTOR RESISTIVE RANDOM ACCESS MEMORY CELLS filed on the same date of this application are expressly incorporated herein by reference in their entirety.
2. The Prior Art
ReRAM push-pull memory cells make an attractive configuration memory for advanced field-programmable gate array (FPGA) integrated circuits due to their small size and scalability. Examples of ReRAM memory devices and memory cells configured from those devices are disclosed in U.S. Pat. No. 8,415,650.
A ReRAM device is basically two metal plates, one of which serves as a metal ion source, separated by a solid electrolyte. The solid electrolyte has two states. In a first state (an “on” state), ions from the metal ion source have been forced into the electrolyte by placing a DC voltage having a first polarity across the ReRAM device and having a sufficient potential to drive metal ions from the ion-source plate into the electrolyte. In the first state, the ions form a conductive bridge through the solid electrolyte across which electrons can pass fairly easily. As the electrolyte becomes increasingly populated with metal ions, its resistivity, and hence the resistivity of the entire ReRAM device, decreases. In a second state (an “off” state), the electrolyte has been virtually depleted of ions by placing a DC voltage having a polarity opposite to that of the first potential and a potential sufficient to drive the metal ions from the electrolyte back into the ion-source plate across the ReRAM device. In the second state, absence of the ions makes it difficult for electrons to pass through the solid electrolyte. As the population of metal ions in the electrolyte decreases, its resistivity, and hence the resistivity of the entire ReRAM device increases. Amorphous silicon is a solid electrolyte and it is a leading candidate today for use in ReRAM devices.
ReRAM devices are often employed in a push-pull configuration to form a ReRAM memory cell as shown in
The ReRAM devices 12 and 14 are connected in series between a pair of complementary bitlines (BL) 16 (BL!) 18. Persons of ordinary skill in the art will appreciate that the value of the potentials applied to (BL) 16 and (BL!) 18 will be selected as a function of the particular feature size and other aspects of the technology employed. Typical voltages that are applied to (BL) 16 and (BL!) 18 during its operating mode are 1.5V and 0V, respectively.
In operation, one of ReRAM devices 12 and 14 will be set to its “on” state and the other will be set to its “off” state. Depending on which one of the ReRAM devices 12 and 14 is “on” and which one is “off” switch node 20 will either be pulled up to the voltage on BL 16 or pulled down to the voltage on BL! 18.
The gate of a switch transistor 22 is coupled to switch node 20. The drain of the switch transistor is connected to a first programmable node 24 and the source of the switch transistor is connected to a second programmable node 26. The first programmable node 24 can be connected to the second programmable node 26 by turning on the switch transistor 22.
If ReRAM device 12 is in its “on” state and ReRAM device 14 is in its “off” state, switch node 20 is pulled up to the voltage on BL 16, and switch transistor 22 will be turned on. If ReRAM device 12 is in its “off” state and ReRAM device 14 is in its “on” state, switch node 20 is pulled down to the voltage on BL! 18, and switch transistor 22 will be turned off. Persons of ordinary skill in the art will note that the entire potential between (BL) 16 and (BL!) 18 will exist across the one of ReRAM devices 12 and 14 that is in the “off” state.
A programming transistor 28 has a gate coupled to a word line (WL) 30. The drain of programming transistor 28 is connected to switch node 20 and its source is connected to word line source (WLS) 32. In a typical application, ReRAM devices 12 and 14 are first erased (set to their “off” state) and then one of them is programmed (set to its “on” state) as described herein with reference to
Referring now to
The switch transistor 22 is oriented orthogonally to the programming transistor 28 and polysilicon line 48 forms its gate. The source 26 and drain 24 regions of the switch transistor 22 are located in planes behind and in front of the plane of
ReRAM device 12 is formed between a second segment 52 of the first layer (M1) of metal interconnect and a first segment 54 of a second layer (M2) of metal interconnect. An inter-metal contact 56 is shown connecting ReRAM device 12 to the first segment 54 of the second layer (M2) of metal interconnect. A second segment 58 of the second layer (M2) of metal interconnect serves as the bitline BL 16 and is connected to the second segment 52 of the first layer (M1) of metal interconnect by an inter-metal contact 60.
ReRAM device 14 is formed between a third segment 62 of the first layer (M1) of metal interconnect and a third segment 64 of the second layer (M2) of metal interconnect. The third segment 64 of the second layer (M2) of metal interconnect serves as the bitline BL!. An inter-metal contact 66 is shown connecting ReRAM device 14 to the third segment 64 of the second layer (M2) of metal interconnect.
An inter-metal contact 68 between the first segment 54 of the second layer (M2) of metal interconnect and the third segment 62 of the first layer (M1) of metal interconnect is used to make the connection between ReRAM device 12 and ReRAM device 14. Another pair of inter-metal contacts 70 and 72 and the third segment 62 of the first layer (M1) of metal interconnect are used to make the connection between the gate 48 of the switch transistor, the drain 38 of the programming transistor, and the common connection of the ReRAM devices 12 and 14.
Referring now to
The ReRAM structure depicted in
The tungsten via or damascene copper metal line 84 is surrounded by a barrier layer 86. A Chemical Mechanical Polishing (CMP) stop layer may be formed over the top of the inter-metal dielectric layer for use in the process employed to planarize the top of the tungsten via or damascene copper metal line 84 as is known in the art. SiN or SiC are commonly employed as CMP stop layers.
Persons of ordinary skill in the art will appreciate that the CMP stop layers may not be required and are optional. Their use or non-use will depend on the CMP technology used by the manufacturer. Some CMP processes may be able to have a timed polish step and do not need the CMP stop layer. This is preferred because it makes the process of depositing the dielectric layers simpler. In addition, the removal of SiN which has a dielectric constant of 7 and its replacement with silicon oxide which has a dielectric constant of 4 is preferred and will reduce the coupling capacitance of the metal layers, thus improving the speed performance of the device.
In the ReRAM device depicted in
A solid electrolyte layer 90 is formed above barrier metal layer 88. The solid electrolyte layer may be formed from a deposited layer of amorphous silicon. An ion source layer 92 is formed over the solid electrolyte layer 90 and is formed from a material such as Ag, since Cu may be difficult to plasma etch.
The stack of layers 88, 90, and 92 is etched to form an aligned stack. A dielectric barrier layer 94 formed from a material such as SiN or SiC is formed over the defined stack. A via is formed in the dielectric barrier layer 94 to expose the upper surface of ion source layer 92. A barrier metal layer 100 is then formed over the dielectric barrier layer and makes contact with ion source layer 92. A top metal may be in the form of a damascene copper metal line, a plug formed from tungsten or another metal used for interconnect layers in integrated circuits. The particular embodiment shown in
ReRAM devices in the “off” state do not exhibit infinite resistance. ReRAM devices will therefore pass a leakage current in the “off” state if a voltage is impressed across them. For most normal memory applications, bits are only read when they are addressed. A transistor may be used to block any leakage current during times when the bit is not being read, and thus the leakage is not overly problematic.
However, when using a ReRAM cell as a configuration memory for an FPGA, the cell statically drives the gate of a switch transistor to place the switch transistor in either its “on” or “off” state. In this application, the ReRAM cell is essentially always being read. Thus, the leakage current is always present across the ReRAM device that is in the “off” state, if a voltage is impressed thereacross, and is problematic.
Current investigations of the use of ReRAM memory cells as configuration memory in FPGA integrated circuits are academic in nature and ignore the cell leakage issue which presents a practical problem inhibiting the commercial application of this technology.
According to one aspect of the present invention, a ReRAM device is formed in an integrated circuit between a first metal layer and a second metal layer and includes a first barrier layer disposed over the first metal layer, a tunneling dielectric layer disposed over the first barrier layer, a solid electrolyte layer disposed over the tunneling dielectric layer, an ion source layer disposed over the solid electrolyte layer, and a second barrier layer disposed over the ion source layer.
According to another aspect of the present invention, a ReRAM device is formed in an integrated circuit between a first metal layer and a second metal layer and includes a first barrier layer disposed over the first metal layer, a solid electrolyte layer disposed over the first barrier layer, a dielectric layer disposed over the solid electrolyte layer, an ion source layer disposed over the dielectric layer, and a second barrier layer disposed over the ion source layer and beneath the second metal layer.
According to another aspect of the present invention, a ReRAM device is formed in an integrated circuit between a first metal layer and a second metal layer and includes a first barrier layer disposed over the first metal layer, a tunneling dielectric layer disposed over the first barrier layer, a solid electrolyte layer disposed over the tunneling dielectric layer, a dielectric layer disposed over the solid electrolyte layer, an ion source layer disposed over the dielectric layer, and a second barrier layer disposed over the ion source layer and beneath the second metal layer.
According to other aspects of the invention, the first and second metal layers can include any combination of a conventional deposited metal layer, a plug or via, such as a tungsten plug, a damascene copper metal line, etc. The barrier layer may be formed from materials that are known to serve as barrier layers for metals that are employed as the first and second metal layers. The solid electrolyte may be formed from amorphous silicon and the ion source may be formed from a material such as silver.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
Referring now to
ReRAM device 110 is formed over a metal interconnect layer which, in the illustrative embodiment shown in
The tungsten via or damascene copper metal line 84 is shown surrounded by a barrier layer 86. A CMP stop layer may be formed over the top of the inter-metal dielectric layer 82 and is used in the process employed to planarize the top of damascene copper interconnect layer or tungsten via 84 as is known in the art. SiN or SiC are commonly employed as CMP stop layers.
Persons of ordinary skill in the art will appreciate that the CMP stop layers may not be required and are optional. Their use or non-use will depend on the CMP technology used by the manufacturer. Some CMP processes may be able to have a timed polish step and do not need the CMP stop layer. This is preferred because it makes the process of depositing the dielectric layers simpler. In addition, the removal of SiN which has a dielectric constant of 7 and its replacement with silicon oxide which has a dielectric constant of 4 is preferred and will reduce the coupling capacitance of the metal layers, thus improving the speed performance of the device.
In the ReRAM device depicted in
It is known that electrons can be made to tunnel across an ultra-thin dielectric layer, i.e., one that is less than 35 Å. According to one aspect of the present invention, an tunneling dielectric layer 102 formed from a material such as SiN, is deposited over the barrier metal layer 88, as an ultra-thin layer. This tunneling dielectric layer will reduce leakage in the “off” state. During the “on” state it will limit current flow through the ReRAM, although current sufficient to bias the switch node to the proper voltage will still flow.
A solid electrolyte layer 90 is formed above tunneling dielectric layer 102. The solid electrolyte layer 90 may be formed from a deposited layer of amorphous silicon. Other materials, such as chalcogenides (e.g., Ge2Sb2Te5 or AgInSbTe), NiO or TiO2, Ge or GeSe, TaOx may also be used. The thickness of the solid electrolyte layer 90 may range from about 50 Å to about 500 Å, a typical thicknesses being from about 200 Å to about 300 Å.
An ion source layer 92 is formed over the solid electrolyte layer 90 and is formed from a material such as Ag. Other materials, such as copper, and TiO2 may be used. The thickness of the ion source layer 92 may range from about 100 Å to about 2,000 Å, typical thicknesses being from about 300 Å to about 500 Å.
The stack of layers 88, 102, 90, and 92 is etched to form an aligned stack using conventional stack etching techniques. A dielectric barrier layer 94 formed from a material such as deposited SiN or SiC is formed over the defined stack. A via is formed in the dielectric barrier layer 94 to expose the upper surface of ion source layer 92. A barrier metal layer 100 is then formed over the dielectric barrier layer and makes contact with ion source layer 92. A top metal may be formed as a damascene copper or tungsten plug 98 or from Al or another metal used for interconnect layers in integrated circuits. The embodiment shown in
During the “on” state, the electrolyte is well populated with ions and has a relatively low resistance, allowing electrons to flow through it. Because electrons will tunnel through the tunneling dielectric layer 102, the tunneling dielectric layer 102 will act as a resistance. It is expected that, for a 1V cell, about 1 μA will pass through the dielectric tunneling layer 102.
During the “off” state, the electrolyte layer 90 is not well populated with ions and has a relatively high resistance, so there will be few electrons flowing through it. Under these conditions, the tunneling dielectric layer 102 will then act as a very high resistance, thus reducing the “off” state leakage. It is important to note that the current through the tunneling dielectric 102 is a function of the number of electrons present at the potential barrier and the e-field across the barrier. The tunneling dielectric layer 102 presents a high resistance during the “off” state because the lower population of electrons at the potential barrier in the tunneling dielectric 102 causes a lower probability of electron tunneling. Conversely the tunneling dielectric 102 presents a much lower resistance during the “on” state because the presence of more electrons as a result of the ion density in the solid electrolyte 90 increases the probability of electron tunneling.
Referring now to
A thin dielectric layer 104 formed from a material such as SiO2 is placed between the top of the solid electrolyte layer 90 and the ion source layer 92. Other materials, such as SiN, doped SiO2, SiOxyNitride, may be used. The thickness of the thin dielectric layer 104 may range from about 5 Å to about 100 Å, typical thicknesses being from about 20 Å to about 30 Å.
The use of the thin dielectric layer 104 will reduce leakage of ReRAM device 120 in the “off” state, since the area of the metal/electrolyte interconnect is reduced, as described below.
In the “off” state, some electrons do pass through the solid electrolyte layer 90 as leakage. The number of electrons that get through the solid electrolyte layer 90 is a function of the interface between the ion source layer 92 and the solid electrolyte layer 90. Given the present state of integrated circuit fabrication technology, a square area of interface between ion source layer 92 and the solid electrolyte layer 90 having an area of about 32 nm×32 nm is possible to achieve. By placing the thin dielectric layer 104 at this interface, a portion of the dielectric layer is punched through during the initial programming process. In particular, during initial programming some tunneling occurs, but some destructive punch through also occurs.
Because of the nature of the punch-through mechanism, the initial punch-through process occurs over only a portion of the thin dielectric layer 104, since the punch through follows the path of least resistance. This results in a reduced area of contact (much less than 32 nm×32 nm) between the solid electrolyte layer 90 and the ion source layer 92.
Referring now to
ReRAM device 130 is a combination of the embodiments depicted in
ReRAM device 130 thus includes both the ultra-thin dielectric tunneling layer 102 of
Referring now to
The processes for fabricating the ReRAM devices shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Persons of ordinary skill in the art will readily observe that
Referring now to
The table of
The voltages listed in
Before programming any of the ReRAM cells, they are all erased by placing both of the ReRAM devices in the ReRAM cells to their “off” states.
Column A represents the voltages applied to erase (turn off) all upper ReRAM devices in the cells. When the voltages listed in column A of the table are applied to the array of
Column B represents the voltages applied to erase all lower ReRAM devices in the cells. When the voltages listed in column B of the table are applied to the array of
Once all of the ReRAM cells have been erased, each ReRAM cell may be programmed to turn it “on” thereby turning on its associated switch transistor or to turn it “off” thereby turning off its associated switch transistor. As described below, the programming is accomplished responsive to the proper bias of the bitlines, word lines and respective programming transistor.
Column C represents the voltages applied to turn on the ReRAM cell at R1C1 by turning on the upper ReRAM device 12-1-1 in that cell to pull up the switch node to turn on the switch transistor. When the voltages listed in column C of the table are applied to the array of
Programming transistor 28-1-2 has 0V on its source, 2.5V on its gate and will be turned on, driving the switch node 22-1-2 in ReRAM cell R1C2 to 0V. Because both BL2 and BL2! have 0V on them, both ReRAM devices 12-1-2 and 14-1-2 in ReRAM cell R1C2 will have 0V across them and will not be programmed.
Programming transistors 28-2-1 and 28-2-2 each has 0V on its gate and will be turned off. The switch nodes 22-2-1 and 22-2-2 in ReRAM cells R2C1 and R2C2 will be either floating or at the potential on both bitlines BL2 and BL2! if one of the ReRAM devices in those cells has been programmed. Since bitlines BL2 and BL2! are both at 0V, no ReRAM devices in cells R2C1 and R2C2 in the second row of the array will be programmed.
Column D represents the voltages applied to turn off the ReRAM cell at R1C1 by turning on the lower ReRAM device 14-1-1 in that cell to pull down the switch node 22-1-2 to turn off the associated switch transistor. When the voltages listed in column D of the table are applied to the array of
Programming transistor 28-1-2 has 1.8V on its source, 2.5V on its gate and will be turned on, driving the switch node 22-1-2 in ReRAM cell R1C2 to 1.8V. Because BL2 and BL2! both have 1.8V on them, both ReRAM devices 12-1-2 and 14-1-2 in ReRAM cell R1C2 will have 0V across them and will not be programmed.
Programming transistors 28-2-1 and 28-2-2 each has 0V on its gate and will be turned off. The switch nodes 22-2-1 and 22-2-2 in ReRAM cells R2C1 and R2C2 will be either floating or at the potential on both bitlines BL2 and BL2! if one of the ReRAM devices in those cells has been programmed. All bitlines are at 1.8V, but because the switch nodes 22-2-1 and 22-2-2 are either floating or at the potential of bitlines BL2 and BL!2, no ReRAM devices in cells R2C1 and R2C2 in the second row of the array will be programmed.
Column E represents the voltages applied to turn on the ReRAM cell at R1C2 by turning on the upper ReRAM device 12-1-2 in that cell to pull up the switch node 22-1-2 to turn on the associated switch transistor. The conditions are similar to those for column C, except that the source of programming transistor 28-1-2 is now at 1.8V and is turned on (and the source of transistor 28-1-1 is now at 0V) and ReRAM device 12-1-2 is programmed because it has 0V at its top end and 1.8V on its bottom end. ReRAM device 14-1-2 will also have a voltage of 1.8V across it, but its bottom end is more negative than its top end and therefore ReRAM device 14-1-2 will not be programmed. Persons of ordinary skill in the art will appreciate that the ReRAM cells in the second row of the array are not programmed for the reasons set forth in the explanation of the column C conditions.
Column F represents the voltages applied to turn off the ReRAM cell at R1C2 by turning on the lower ReRAM device 14-1-2 in that cell to pull down the switch node 22-1-2 to turn off the associated switch transistor. When the voltages listed in column F of the table are applied to the array of
Programming transistor 28-1-1 has 1.8V on its source, 2.5V on its gate and will be turned on, driving the switch node 22-1-1 in ReRAM cell R1C1 to 1.8V. Because BL1 and BL1! both have 1.8V on them, both ReRAM devices 12-1-1 and 14-1-1 in ReRAM cell R1C1 will have 0V across them and will not be programmed.
Programming transistors 28-2-1 and 28-2-2 each has 0V on its gate and will be turned off. The switch nodes 22-2-1 and 22-2-2 in ReRAM cells R2C 1 and R2C2 will be either floating or at the potential on both bitlines BL1 and BL1! if one of the ReRAM devices in those cells has been programmed. All bitlines are at 1.8V, but because the switch nodes 22-2-1 and 22-2-2 are either floating or at the potential of bitlines BL1 and BL2!, no ReRAM devices in cells R2C1 and R2C2 in the second row of the array will be programmed.
Column G represents the voltages applied to turn on the ReRAM cell at R2C1 by turning on the upper ReRAM device 12-2-1 in that cell to pull up the switch node 22-2-1 to turn on the associated switch transistor. Column H represents the voltages applied to turn off the ReRAM cell at R2C1 by turning on the lower ReRAM device 14-2-1 in that cell to pull down the switch node 22-2-1 to turn off the associated switch transistor. Column I represents the voltages applied to turn on the ReRAM cell at R2C2 by turning on the upper ReRAM device 12-2-2 in that cell to pull up the switch node 22-2-2 to turn on the associated switch transistor. Column J represents the voltages applied to turn off the ReRAM cell at R2C1 by turning on the lower ReRAM device 14-2-2 in that cell to pull down the switch node 22-2-1 to turn off the associated switch transistor. From the conditions described with reference to columns C through F for programming the ReRAM cells in the first row of the array to either their “on” or “off” states, persons of ordinary skill in the art will readily appreciate from
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/268,699 filed Dec. 17, 2015, the contents of which are incorporated in this disclosure by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62268699 | Dec 2015 | US |