Semiconductor devices are used in a variety of electronic applications, such as personal computers, cell phones, digital cameras, and other electronic equipment. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductive layers of material over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon. Many integrated circuits are typically manufactured on a single semiconductor wafer, and individual dies on the wafer are singulated by sawing between the integrated circuits along a scribe line. The individual dies are typically packaged separately, in multi-chip modules, or in other types of packaging, for example.
The semiconductor industry continues to improve the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continual reductions in minimum feature size, which allow more components to be integrated into a given area. These smaller electronic components also require smaller packages that utilize less area than packages of the past, in some applications.
Three dimensional integrated circuits (3DICs) are a recent development in semiconductor packaging in which multiple semiconductor dies are stacked upon one another, such as package-on-package (PoP) and system-in-package (SiP) packaging techniques. Some 3DICs are prepared by placing dies over dies on a semiconductor wafer level. 3DICs provide improved integration density and other advantages, such as faster speeds and higher bandwidth, because of the decreased length of interconnects between the stacked dies, as examples. However, there are many challenges related to 3DICs.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Moreover, the performance of a first process before a second process in the description that follows may include embodiments in which the second process is performed immediately after the first process, and may also include embodiments in which additional processes may be performed between the first and second processes. Various features may be arbitrarily drawn in different scales for the sake of simplicity and clarity. Furthermore, the formation of a first feature over or on a second feature in the description may include embodiments in which the first and second features are in direct or indirect contact. The like elements are identified by the same reference numbers, and thus are not repeated for brevity.
Hybrid bonding is a bonding process used for bonding substrates for forming 3DIC. Hybrid bonding involves at least two types of bondings, such as metal-to-metal bonding and nonmetal-to-nonmetal bonding.
Substrate 102 includes device regions 104 formed proximate a top surface of substrate 102. Device regions 104 may have various device elements. Examples of device elements, which are formed in substrate 102, include transistors (e.g., metal oxide semiconductor field effect transistors (MOSFET), complementary metal oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), high voltage transistors, high frequency transistors, p-channel and/or n channel field effect transistors (PFETs/NFETs), etc.), diodes, and/or other applicable elements. Various processes are performed to form the device elements, such as deposition, etching, implantation, photolithography, annealing, and/or other suitable processes. In some embodiments, device regions 104 are formed in substrate 102 in a front-end-of-line (FEOL) process. In some embodiments, substrate 102 further includes through-substrate vias (TSVs) 105 filled with a conductive material(s) that provides connections from a bottom side to a top side of substrate 102.
A metallization structure 106 is formed over substrate 102, e.g., over device regions 104. In some embodiments, metallization structure 106 is formed in a back-end-of-line (BEOL) process. Metallization structure 106 includes interconnect structures, such as conductive lines 108, vias 110, and conductive pads (conductive structures) 112. Conductive pads 112 are contact pads (or bond pads) formed in a top surface of semiconductor wafer 100, as shown in
In some embodiments, conductive lines 108, vias 110, and conductive pads 112 respectively include conductive materials such as copper (Cu), aluminum (Al), tungsten (W), titanium (Ti), or tantalum (Ta).
As shown in
A region M in
Semiconductor wafer 150 is similar to semiconductor wafer 100 and includes a conductive pad 152, a via 156, and an insulating material 154. Conductive pad 152 is similar to conductive pad 112, and via 156 is similar to via 110. Insulating material 154 is similar to insulating material 114. Conductive pad 152 includes a conductive material 162 and a diffusion barrier layer 153. Conductive material 162 is similar to conductive material 132, and diffusion barrier layer 153 is similar to diffusion barrier layer 113.
Before semiconductor wafer 100 is bonded to semiconductor wafer 150, semiconductor wafers 100 and 150 are aligned, such that conductive pad 112 can be bonded to conductive pad 152 and insulating material 114 can be bonded to insulating material 154 during the subsequent hybrid bonding. In some embodiments, the alignment of semiconductor wafers 100 and 150 is achieved by using an optical sensing method.
After the alignment is performed, semiconductor wafers 100 and 150 are pressed together and the temperature is raised to allow the bonds to be formed between the conductive layers and between the insulating layers of semiconductor wafers 100 and 150. As shown in
Some crack may form at interface 130 between two conductive pads 112 and 152 due to insufficient cleaning of metal surface and/or formation of metal oxide at interface 130. Cracking at interface 130 is undesirable and can reduce yield. Therefore, mechanisms for cleaning the metal surfaces of conductive materials 132 and 152 and removal of metal oxides on the metal surfaces are needed.
As shown in
As shown in
The excess portion of conductive material 132 is removed from a top surface of insulating material 114 to form conductive pad 112, as shown in
The top surface of semiconductor wafer 100 is treated to assist hybrid bonding in subsequent processes. As shown in
After plasma process 20, residues 150 are formed on the top surface of semiconductor wafer 100, as shown in
Referring to
In some embodiments, cleaning solution 35 contains citric acid (CA), and the cleaning process includes the following reactions.
2CuOx+2CA→2[Cu/CA]+xO2 (1)
[Cu/CA]+H→[Cu/H]+CA (2)
Referring to equation (1), the metal oxide, such as CuOx, of the metal oxide layer 115 is reacted with citric acid to form a complex [Cu/CA]. The citric acid is replaced by the hydrogen ion (H+) in cleaning solution 35 to form [Cu/H], which contains copper-hydrogen bonds (see equation (2)). Therefore, metal oxide layer 115 is reduced to form metal-hydrogen bonds by a reduction reaction during the cleaning process. In addition, these metal-hydrogen bonds protect the surface of conductive pad 112 from oxidation before hybrid bonding is performed. Moreover, the metal-hydrogen bonds can be easily broken to form metal-to-metal bonding during hybrid bonding.
In some embodiments, the citric acid has a concentration in a range from about 0.25% to about 10%. In some embodiments, the hydrofluoric acid (HF) has a concentration in a range from 0.1% to about 0.5%. In some other embodiments, tetramethylammonium hydroxide (TMAH) has a concentration in a range from about 0.25% to about 0.5%.
The processes described above and illustrated in
After the alignment is performed, semiconductor wafers 100 and 150 are hybrid bonded together by applying pressure and heat. Hybrid bonding may be performed in an inert environment filled with such as N2, Ar, He, or combinations thereof. In some embodiments, the pressure for hybrid bonding is in a range from about 10 kPa to about 200 kPa. In some embodiments, the heat applied to bond semiconductor wafers 100 and 150 includes an anneal operation at a temperature in a range from about 300° C. to about 400° C. Alternatively, the pressure and temperature used for hybrid bonding may be adjusted as required.
Since the top surfaces of semiconductor wafers 100 and 150 are cleaned, no residues 150 and metal oxide layer 115 are left to block the bonding between semiconductor wafers 100 and 150. As a result, the bonding strength between conductive pads 112 and 152 is improved, and the interfacial cracking is resolved or greatly improved.
For example, semiconductor wafer 100 is first placed on the robot in transfer chamber 420. Afterwards, the robot transfers semiconductor wafer 100 to plasma chamber 410 for plasma process 20 shown in
In the process described above, the cleaning process is performed to remove residues 150 and metal oxide layer 115 before hybrid bonding. In addition, since semiconductor wafer 100 and 150 are transferred from one chamber to another chamber in integrated system 400 under vacuum, semiconductor wafers 110 and 150 do not leave integrated system 400 during the processes. Therefore, reformation of metal oxides (such as CuOx) on the top surface of conductive pads 112 and 152 is avoided, and the hybrid bonding strength between two bonding semiconductor wafers 100 and 150 is improved.
Embodiments of mechanisms for cleaning surfaces of semiconductor wafers for hybrid bonding are provided. Each semiconductor wafer includes a conductive pad surrounded by an insulating layer and a metal oxide layer formed on the top surface of the conductive pad. The surfaces of the semiconductor wafers are treated with plasma first and then cleaned by using a cleaning process after a plasma process. During the cleaning process, residues formed on the top surfaces of the semiconductor wafers are removed by a cleaning solution. In addition, the metal oxide layer formed on the conductive pads of the semiconductor wafers are reduced by the acid in the cleaning solution, and metal-hydrogen bonds are formed on the conductive pads to protect the conductive pads. The cleaned semiconductor wafers are bonded together to form a bonding structure by hybrid bonding. The processes of preparing and bonding the semiconductor wafers, including the plasma process, the cleaning process, and hybrid bonding, are performed in an integrated system. The wafers are transferred from one chamber to another in the integrated system under vacuum to prevent metal oxidation. Therefore, reformation of metal oxide can be avoided, and the hybrid bonding quality is greatly improved.
In some embodiments, a method for cleaning a surface of a semiconductor wafer for a hybrid bonding is provided. The method includes providing a semiconductor wafer, and the semiconductor wafer has a conductive pad embedded in an insulating layer and metal oxide formed on a surface of the conductive pad. The method also includes performing a plasma process to a surface of the semiconductor wafer. The method further includes performing a cleaning process using a cleaning solution to the surface of the semiconductor wafer after the plasma process, and the metal oxide is reduced and metal-hydrogen bonds are formed on the surface of the conductive pad. The method further includes transferring the semiconductor wafer to a bonding chamber under vacuum for hybrid bonding.
In some embodiments, a hybrid bonding for semiconductor wafers is provided. The hybrid bonding includes providing a first semiconductor wafer and a second semiconductor wafer, and the first semiconductor wafer and the second semiconductor wafer each has a conductive pad embedded in an insulating layer. The hybrid bonding also includes performing a plasma process to surfaces of the first semiconductor wafer and the second semiconductor wafer respectively. The hybrid bonding further includes performing a cleaning process using a cleaning solution to the surface of the first semiconductor wafer and the surface of the second semiconductor wafer respectively. The hybrid bonding also includes bonding the first semiconductor wafer to the second semiconductor wafer.
In some embodiments, an integrated system for hybrid bonding is provided. The integrated system includes a plasma chamber coupled to a transfer chamber and a cleaning chamber coupled to the transfer chamber. The integrated system further includes a hybrid bonding chamber coupled to the transfer chamber, and the hybrid bonding chamber is configured to bond two semiconductor wafers to form metal-to-metal bonding and non-metal-to-non-metal bonding.
Although embodiments of the present disclosure and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, it will be readily understood by those skilled in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a Divisional application of U.S. patent application Ser. No. 13/949,756, filed on Jul. 24, 2013, the entire of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5783495 | Li | Jul 1998 | A |
6022400 | Izumi | Feb 2000 | A |
6153524 | Henley | Nov 2000 | A |
6645831 | Shaheen | Nov 2003 | B1 |
8703546 | Lin et al. | Apr 2014 | B2 |
8802538 | Liu et al. | Aug 2014 | B1 |
20030036268 | Brabant | Feb 2003 | A1 |
20030119278 | McKinnell | Jun 2003 | A1 |
20060030167 | Henley | Feb 2006 | A1 |
20060281298 | Noguchi et al. | Dec 2006 | A1 |
20060286783 | Papanu | Dec 2006 | A1 |
20070257033 | Yamada | Nov 2007 | A1 |
20070287264 | Rogers | Dec 2007 | A1 |
20100330776 | Zuniga | Dec 2010 | A1 |
20120252189 | Sadaka | Oct 2012 | A1 |
20120318432 | Nishibayashi | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
101558186 | Oct 2009 | CN |
102254842 | Nov 2011 | CN |
103531492 | Jan 2014 | CN |
104051288 | Sep 2014 | CN |
480619 | Mar 2002 | TW |
200702474 | Jan 2007 | TW |
201036047 | Oct 2010 | TW |
Number | Date | Country | |
---|---|---|---|
20150243537 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13949756 | Jul 2013 | US |
Child | 14710227 | US |