The present invention relates to the field of micro-device processing. More particularly, the present invention relates to passivating low dielectric materials with supercritical processing solutions.
Semiconductor fabrication generally uses photoresist in etching and other processing steps. In the etching steps, a photoresist masks areas of the semiconductor substrate that are not etched. Examples of the other processing steps include using a photoresist to mask areas of a semiconductor substrate in an ion implantation step or using the photoresist as a blanket protective coating of a processed wafer or using the photoresist as a blanket protective coating of a MEMS (micro electro-mechanical system) device.
State of the art integrated circuits can contain up to 6 million transistors and more than 800 meters of wiring. There is a constant push to increase the number of transistors on wafer-based integrated circuits. As the number of transistors is increased there is a need to reduce the cross-talk between the closely packed wire in order to maintain high performance requirements. The semiconductor industry is continuously looking for new processes and new materials that can help improve the performance of wafer-based integrated circuits.
Materials exhibiting low dielectric constants of between 3.5-2.5 are generally referred to as low-k materials and porous materials with dielectric constant of 2.5 and below are generally referred to as ultra low-k (ULK) materials. For the purpose of this application low-k materials refer to both low-k and ultra low-k materials. Low-k materials have been shown to reduce cross-talk and provide a transition into the fabrication of even smaller integrated circuit geometries. Low-k materials have also proven useful for low temperature processing. For example, spin-on-glass materials (SOG) and polymers can be coated onto a substrate and treated or cured with relatively low temperature to make porous silicon oxide-based low-k layers. Silicon oxide-based herein does not strictly refer silicon-oxide materials. In fact there are a number of low-k materials which have silicon oxide and hydrocarbon components and/or carbon, wherein the formula is SiOxCxHz, referred to herein as hybrid materials and designated herein as MSQ materials. It is noted, however, that MSQ is often designated to mean Methyl Silsesquioxane, which is an example of the hybrid low-k materials described above. Some low-k materials such as carbon doped oxide (COD) or fluoridated silicon glass (FSG), are deposited using chemical vapor deposition techniques, while other low-k materials, such as MSQ, porous-MSQ, and porous silica, are deposited using a spin-on process.
While low-k materials are promising materials for fabrication of advanced micro circuitry, they also provide several challenges they tend be less robust that more traditional dielectric layer and can be damaged by etch and plasma ashing process generally used in pattern dielectric layer in wafer processing, especially in the case of the hybrid low-k materials, such as described above. Further, silicon oxide-based low-k materials tend to be highly reactive after patterning steps. The hydrophillic surface of the silicon oxide-based low-k material can readily absorb water and/or react with other vapors and/or process contaminants which can alter the electrical properties of the dielectric layer itself and/or diminish the ability to further process the wafer.
What is needed is a method of passivating a low-k layer especially after a patterning steps. Preferably, the method of passivating the low-k layer is compatible with other wafer processing steps, such as processing steps for removing contaminants and/or post-etch residue after a patterning step.
The present invention is directed to passivating silicon-oxide based low-k materials using a supercritical passivating solution. Low-k materials are usually porous oxide-based materials and can include an organic or hydrocarbon component. Examples of low-k materials include, but are not limited to, carbon-doped oxide (COD), spin-on-glass (SOG) and fluoridated silicon glass (FSG) materials. In accordance with the embodiments of the present invention, a supercritical passivating solution comprises supercritical carbon dioxide and an amount of a passivating agent that is preferably a silylating agent. The silylating agent can be introduced into supercritical carbon dioxide neat or with a carrier solvent, such as N, -dimethylacetamide (DMAC), gamma-butyrolacetone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC) N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, alcohol or combinations thereof, to generate the supercritical passivating solution. In accordance with a preferred embodiment of the invention, the silylating agent is an organosilicon compound, and silyl groups (Si(CR3)3) attack silanol (Si—OH) groups on the surface of the silicon oxide-based low-k dielectric material and/or in the bulk of the silicon oxide-based low-k dielectric material to form surface capped organo-silyl groups during the passivating step.
In accordance with further embodiments of the invention, a silicon oxide-based low-k material is passivated with a supercritical passivating solution comprising supercritical carbon dioxide and an organosilicon compound that comprises organo-groups with 5 carbon atoms or fewer. In accordance with a preferred embodiment of the invention the organo-groups, or a portion thereof, are methyl groups. For example, suitable organosilicon compounds useful as silylating agents in the present invention include, but are not limited to, hexamethyldisilazane (HMDS) and chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS) and combinations thereof. Alternatively, a source of (CH3) radicals can be used to as a silylating agent.
During a supercritical passivating step, a silicon oxide-based low-k material, in accordance with the embodiments of the invention, is maintained at temperatures in a range of 40 to 200 degrees Celsius, and preferably at a temperature of approximately 150 degrees Celsius, and at pressures in a range of 1,070 to 9,000 psi, and preferably at a pressure of approximately 3,000 psi, while a supercritical passivating solution, such as described above, is circulated over the surface of the silicon oxide-based low-k material.
In accordance with still further embodiments of the invention, the surface of the silicon oxide-based low-k material is dried or retreated prior to the passivating step. In accordance with this embodiment of the invention, the silicon oxide-based low-k material is dried, or retreated by exposing the low-k materials to a supercritical solution of supercritical carbon dioxide or supercritical carbon dioxide with one or more solvents including but not limited to ethanol, methanol, n-hexane and combinations thereof. While a supercritical processing solution with methanol and ethanol primarily remove water from low-k materials, a supercritical processing solution with n-hexane is believed to remove hydroxyl groups from low-k materials and facilitate the ability of a silylating agent, or agents, to silylate the low-k materials in the passivation processing step.
In accordance with yet further embodiments of the invention, a dielectric surface is passivated during a cleaning processing step, wherein a post-etch residue is simultaneously removed from the dielectric surface using a supercritical cleaning solution comprising a passivating agent, such as described above. The post-etch residue can include a photoresist polymer or a photoresist polymer with an anti-reflective dye and/or an anti-reflective layer.
In accordance with the method of the present invention, a patterned low-k dielectric layer is formed by depositing a continuous layer of a low-k dielectric material, etching a pattern in the low-k material and removing post-etch residue using a supercritical solution comprising supercritical carbon dioxide and a silicon-based passivating agent.
After a low-k material is patterned by treating the low-k material to an etch and/or ash process, the low-k material can show a marked increase in the k-values as a result of degeneration of the material and/or removal of a portion of the organic component, in the case of low-k hybrid materials; increases in k-values that are greater than 1.0 have been observed. The method of passivation, in accordance with the present invention has the ability to restore or recover a portion of the of the k-value lost in the patterning steps. In fact it has been observed that low-k materials passivated, in accordance with the embodiments of the present invention can be restored to exhibit k-values near, or at, k-values of the original and un-patterned material.
Further details of supercritical systems suitable for treating wafer substrates to supercritical processing solutions are further described in U.S. patent application Ser. No. 09/389,788, filed Sep. 3, 1999, and entitled “REMOVAL OF PHOTORESIST AND PHOTORESIST RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE PROCESS” and U.S. patent application Ser. No. 09/697,222, filed Oct. 25, 2000, and entitled “REMOVAL OF PHOTORESIST AND RESIDUE FROM SUBSTRATE USING SUPERCRITICAL CARBON DIOXIDE PROCESS”, both of which are hereby incorporated by reference.
In semiconductor fabrication, a dielectric layer is generally patterned using a photoresist mask in one or more etching and ashing steps. Generally, to obtain the high resolution line widths and high feature aspect ratios, an anti-reflective coating is required. In earlier processes, anti-reflective coating (ARC) of titanium nitride (TiN) were vapor deposited on the dielectric layer and the TiN anti-reflective coatings would not be removed after patterning but rather remain a part of the device fabricated. With new classes of low dielectric layers that can be made to be very thin, TiN anti-reflective coatings are not preferred because anti-reflective coatings can dominate over the electrical properties of the dielectric layer. Accordingly, polymeric spin-on anti-reflective coatings with an anti-reflective dye that can be removed after a patterning step are preferred. Regardless of the materials that are used in the patterning steps, after patterning the dielectric layer these materials are preferably removed from the dialectic layer after the patterning process is complete.
Porous low-k materials are most commonly silicon-oxide based with silanol (Si—OH) groups and/or organo components as described above. These low-k materials can become activated and/or damaged, which is believed to be in-part is due to depletion of an organic component during etch and/or ash steps. In either case of activation and/or damage, additional silanol groups are exposed which can readily adsorb water and/or contaminants and/or chemicals that are present during other processing steps. Accordingly, partial device structures with exposed low-k dielectric layers are difficult to handle and maintain contaminant free, especially after patterning steps. Further, activation and/or damage the bulk of the low-k material can result in increased k-values. It has been observed low-k materials that are activated and/or damaged can exhibit increases in k-values by 1.0 or more.
The present invention is directed to a method of and system for passivating porous low-k dielectric materials. The method of the present invention preferably passivates a layer of patterned low-k layer by end-capping silanol groups on the surface and/or in the bulk of the low-k material to produce a patterned low-k material which is more hydrophobic, more resistant to contamination and/or less reactive. In accordance with the embodiments of the present invention, a passivation processing step is carried out separately from a supercritical post-etch cleaning process or, alternatively, is carried out simultaneously with a supercritical post-etch cleaning process.
Referring now to
Now referring to
Now referring
It will be clear to one skilled in the art that a supercritical passivating solution with any number of silylating agents and combinations of silylating agents are within the scope of the present invention. Further, the silylating agent or agents used can be can be introduced into supercritical carbon dioxide neat or along with a carrier solvent, such as N, N-dimethylacetamide (DMAC), gamma-butyrolacetone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC) N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, alcohol or combinations thereof to generate the supercritical passivating solution. Also, as explained previously the passivating agent or agents used in the present invention can be used in supercritical cleaning processes to remove post-etch residues from a surface of a patterned low-k material.
The present invention is particularly well suited for removing post-etch photopolymer from a wafer material and even more specifically is well suited to remove a post-etch photopolymer and/or a polymeric anti-reflective coating layer from a low-k silicon oxide-based layer, including low-k layers formed from porous MSQ and porous SiO2 (e.g., Honeywell's NANOGLASS®), while simultaneously passivating a silicon oxide-based layer. For the purpose of simplicity, supercritical processing solutions are referred to herein as either a supercritical cleaning and/or a supercritical passivating solution.
The apparatus 200 comprises a carbon dioxide source 221 that is connected to an inlet line 226 through a source valve 223 which can be opened and closed to start and stop the flow of carbon dioxide form the carbon dioxide source 221 to the inlet line 226. The inlet line 226 is preferably equipped with one or more back-flow valves, pumps and heaters, schematically shown by the box 220, for generating and/or maintaining a stream of supercritical carbon dioxide. The inlet line 226 also preferably has a inlet valve 225 that is configured to open and close to allow or prevent the stream of supercritical carbon dioxide from flowing into a processing chamber 201.
Still referring to
Again referring to
The apparatus 200, also preferably has a circulation line or loop 203 that is coupled to the processing chamber 201. The circulation line 203 is preferably equipped with one or more valves 215 and 215′ for regulating the flow of a supercritical processing solution through the circulation line 203 and through the processing chamber 201. The circulation line 203, is also preferably equipped with any number back-flow valves, pumps and/or heaters, schematically represent by the box 205, for maintaining a supercritical processing solution and flowing the supercritical process solution through the circulation line 203 and through the processing chamber 201. In accordance with a preferred embodiment of the invention, the circulation line 203 has an injection port 207 for introducing chemistry, such as a passivating agents and solvents, into the circulation line 203 for generating supercritical processing solutions in situ.
The carbon dioxide supply vessel 332, the carbon dioxide pump 334, and the carbon dioxide heater 348 form a carbon dioxide supply arrangement 349. The chemical supply vessel 338, the first injection pump 359, the rinse agent supply vessel 360, and the second injection pump 363 form a chemical and rinse agent supply arrangement 365.
It will be readily apparent to one skilled in the art that the supercritical processing apparatus 76 includes valving, control electronics, filters, and utility hookups which are typical of supercritical fluid processing systems.
Still referring to
Upon reaching initial supercritical conditions, the first injection pump 359 pumps the processing chemistry, such as a silylating agent, from the chemical supply vessel 338 into the processing chamber 336 via the circulation line 352 while the carbon dioxide pump further pressurizes the supercritical carbon dioxide. At the beginning of the addition of processing chemistry to the processing chamber 336, the pressure in the processing chamber 336 is preferably about 1,070 to 9,000 psi and preferably at or near 3,000 psi. Once a desired amount of the processing chemistry has been pumped into the processing chamber 336 and desired supercritical conditions are reached, the carbon dioxide pump 334 stops pressurizing the processing chamber 336, the first injection pump 359 stops pumping processing chemistry into the processing chamber 336, and the circulation pump 340 begins circulating the supercritical cleaning solution comprising the supercritical carbon dioxide and the processing chemistry. Preferably, the pressure within the processing chamber 336 at this point is about 3000 psi. By circulating the supercritical processing solution, supercritical processing solution is replenished quicky at the surface of the wafer thereby enhancing the rate of passivating the surface of a low-k dielectric layer on a wafer.
When a wafer (not shown) with a low-k layer is being processed within the pressure chamber 336, the wafer is held using a mechanical chuck, a vacuum chuck or other suitable holding or securing means. In accordance with the embodiments of the invention the wafer is stationary within the processing chamber 336 or, alternatively, is rotated, spun or otherwise agitated during the supercritical process step.
After the supercritical processing solution is circulated though circulation line 352 and the processing chamber 336, the processing chamber 336 is partially depressurized by exhausting some of the supercritical process solution to the exhaust gas collection vessel 344 in order to return conditions in the processing chamber 336 to near the initial supercritical conditions. Preferably, the processing chamber 336 is cycled through at least one such decompression and compression cycle before the supercritical processing solutions are completely exhausting the processing chamber 336 to the exhaust into the collection vessel 344. After exhausting the pressure chamber 336 a second supercritical process step is performed or the wafer is removed from the processing chamber 336 through the gate valve 306, and the wafer processing continued second processing apparatus or module (not shown).
After processing chamber 336 reaches an operating pressure Pop at the second time T2 which is preferably about 3,000 psi, but can be any value so long as the operating pressure is sufficient to maintain supercritical conditions, the supercritical processing solution is circulated over and/or around the wafer and through the processing chamber 336 using the circulation line 325, such as described above. Then the pressure within the processing chamber 336 is increases and over the duration of time the supercritical processing solution continues to be circulated over and/or around the wafer and through the processing chamber 336 using the circulation line 325 and or the concentration of the supercritical processing solution within the processing chamber is adjusted by a push through process, as described below.
Still referring to
The plot 400 is provided for exemplary purposes only. It will be understood by those skilled in the art that a supercritical processing step can have any number of different time/pressures or temperature profiles without departing from the scope of the present invention. Further any number of cleaning and rinse processing sequences with each step having any number of compression and decompression cycles are contemplated. Also, as stated previously, concentrations of various chemicals and species within a supercritical processing solution can be readily tailored for the application at hand and altered at any time within a supercritical processing step. In accordance with the preferred embodiment of the invention, a low-k layer is treated to 1 to 10 passivation steps in approximately 3 minute cycles, as described above with reference to
After the supercritical cleaning and passivating solution is generated in the step 504, in the step 506 the substrate structure is maintained in the supercritical processing solution for a period of time sufficient to remove at least a portion of the residue from the substrate structure and passivate surfaces exposed after the reside is removed. During the step 506, the supercritical cleaning and passivating solution is preferably circulated through the processing chamber and/or otherwise agitated to move the supercritical cleaning solution over surfaces of the substrate structure.
Still referring to
Still referring to
Still referring to
As described previously, the substrate structure can be dried and/or pretreated prior to passivating the low-k layer thereon by using a supercritical solution comprising supercritical carbon dioxide and one or more solvents such as methanol, ethanol, n-hexane and/or combination thereof. Also, as mentioned previously pretreating the low-k layer with supercritical solution comprising supercritical carbon dioxide and n-hexane appears to improve the coverage of the silyl-groups on surface of the low-k layer. Also, it will be clear of one skilled in the art that a wafer comprising a post-etch residue and/or a patterned low-k dialectic layer can be treated to any number cleaning and passivating steps and/or sequences.
It will be understood by one skilled in the art, that while the method of passivating low-k material has been primarily described herein with reference to a post-etch treatment and/or a post-etch cleaning treatment, the method of the present invention can be used to directly passivate low-k materials. Further, it will be appreciated that when treating a low-k material, in accordance with the method of the present invention, a supercritical rinse step is not always necessary and simply drying the low-k material prior treating the low-k material with a supercritical passivating solution can appropriate for some applications.
Using a supercritical processing system, such as described in detail above in reference to
Still referring to
The present invention has the advantages of being capable of passivating a low-k surface and being compatible with other processing steps, such as removing post-etch residues (including, but not limited to, spin-on polymeric anti-reflective coating layers and photopolymers) for patterned low-k layers in a supercritical processing environment. The present invention also has been observed restore or partially restore k values of materials lost after patterning steps and has been shown to produce low-k layers that are stable over time.
While the present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention, such references herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention. Specifically, while supercritical CO2 is the preferred medium for cleaning, other supercritical media alone or in combination with supercritical CO2 and combinations of hydrogen fluoride adducts are contemplated.
This Patent Application claims priority under 35 U.S.C. 119 (e) of the co-pending U.S. Provisional Patent Application Ser. No. 60/361,917 filed Mar. 4, 2002, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM” and the co-pending U.S. Provisional Patent Application Ser. No. 60/369,052 filed Mar. 29, 2002, and entitled “USE OF SUPERCRITICAL CO2 PROCESSING FOR INTEGRATION AND FORMATION OF ULK DIELECTRICS”. The Provisional Patent Application Ser. No. 60/361,917 filed Mar. 4, 2002, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM” and the Provisional Patent Application Ser. No. 60/369,052 filed Mar. 29, 2002, and entitled “USE OF SUPERCRITICAL CO2 PROCESSING FOR INTEGRATION AND FORMATION OF ULK DIELECTRICS” are also both hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2439689 | Hyde et al. | Apr 1948 | A |
2617719 | Stewart | Nov 1952 | A |
2993449 | Harland | Jul 1961 | A |
3135211 | Pezzillo | Jun 1964 | A |
3642020 | Payne | Feb 1972 | A |
3646948 | Athey | Mar 1972 | A |
3890176 | Bolon | Jun 1975 | A |
3900551 | Bardoncelli et al. | Aug 1975 | A |
4219333 | Harris | Aug 1980 | A |
4341592 | Shortes et al. | Jul 1982 | A |
4349415 | DeFilippi et al. | Sep 1982 | A |
4475993 | Blander et al. | Oct 1984 | A |
4730630 | Ranft | Mar 1988 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4838476 | Rahn | Jun 1989 | A |
4877530 | Moses | Oct 1989 | A |
4879004 | Oesch et al. | Nov 1989 | A |
4923828 | Gluck et al. | May 1990 | A |
4925790 | Blanch et al. | May 1990 | A |
4933404 | Beckman et al. | Jun 1990 | A |
4944837 | Nishikawa et al. | Jul 1990 | A |
5011542 | Weil | Apr 1991 | A |
5013366 | Jackson et al. | May 1991 | A |
5068040 | Jackson | Nov 1991 | A |
5071485 | Matthews et al. | Dec 1991 | A |
5091207 | Tanaka | Feb 1992 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5158704 | Fulton et al. | Oct 1992 | A |
5174917 | Monzyk | Dec 1992 | A |
5185058 | Cathey, Jr. | Feb 1993 | A |
5185296 | Morita et al. | Feb 1993 | A |
5196134 | Jackson | Mar 1993 | A |
5201960 | Starov | Apr 1993 | A |
5213619 | Jackson et al. | May 1993 | A |
5215592 | Jackson | Jun 1993 | A |
5225173 | Wai | Jul 1993 | A |
5236602 | Jackson | Aug 1993 | A |
5237824 | Pawliszyn | Aug 1993 | A |
5238671 | Matson et al. | Aug 1993 | A |
5250078 | Saus et al. | Oct 1993 | A |
5261965 | Moslehi | Nov 1993 | A |
5266205 | Fulton et al. | Nov 1993 | A |
5269815 | Schlenker et al. | Dec 1993 | A |
5269850 | Jackson | Dec 1993 | A |
5274129 | Natale | Dec 1993 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5288333 | Tanaka et al. | Feb 1994 | A |
5290361 | Hayashida et al. | Mar 1994 | A |
5294261 | McDermott et al. | Mar 1994 | A |
5298032 | Schlenker et al. | Mar 1994 | A |
5304515 | Morita et al. | Apr 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5312882 | DeSimone et al. | May 1994 | A |
5314574 | Takahashi | May 1994 | A |
5316591 | Chao et al. | May 1994 | A |
5320742 | Fletcher et al. | Jun 1994 | A |
5328722 | Ghanayem et al. | Jul 1994 | A |
5334332 | Lee | Aug 1994 | A |
5334493 | Fujita et al. | Aug 1994 | A |
5352327 | Witowski | Oct 1994 | A |
5356538 | Wai et al. | Oct 1994 | A |
5364497 | Chau et al. | Nov 1994 | A |
5370740 | Chao et al. | Dec 1994 | A |
5370741 | Bergman | Dec 1994 | A |
5370742 | Mitchell et al. | Dec 1994 | A |
5397220 | Akihisa et al. | Mar 1995 | A |
5401322 | Marshall | Mar 1995 | A |
5403621 | Jackson et al. | Apr 1995 | A |
5403665 | Alley et al. | Apr 1995 | A |
5417768 | Smith, Jr. et al. | May 1995 | A |
5456759 | Stanford, Jr. et al. | Oct 1995 | A |
5470393 | Fukazawa | Nov 1995 | A |
5474812 | Truckenmuller et al. | Dec 1995 | A |
5482564 | Douglas et al. | Jan 1996 | A |
5486212 | Mitchell et al. | Jan 1996 | A |
5494526 | Paranjpe | Feb 1996 | A |
5500081 | Bergman | Mar 1996 | A |
5501761 | Evans et al. | Mar 1996 | A |
5514220 | Wetmore et al. | May 1996 | A |
5522938 | O'Brien | Jun 1996 | A |
5547774 | Gimzewski et al. | Aug 1996 | A |
5550211 | DeCrosta et al. | Aug 1996 | A |
5580846 | Hayashida et al. | Dec 1996 | A |
5589082 | Lin et al. | Dec 1996 | A |
5589105 | DeSimone et al. | Dec 1996 | A |
5629918 | Ho et al. | May 1997 | A |
5632847 | Ohno et al. | May 1997 | A |
5635463 | Muraoka | Jun 1997 | A |
5637151 | Schulz | Jun 1997 | A |
5641887 | Beckman et al. | Jun 1997 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5665527 | Allen et al. | Sep 1997 | A |
5676705 | Jureller et al. | Oct 1997 | A |
5679169 | Gonzales et al. | Oct 1997 | A |
5679171 | Saga et al. | Oct 1997 | A |
5683473 | Jureller et al. | Nov 1997 | A |
5683977 | Jureller et al. | Nov 1997 | A |
5688879 | DeSimone | Nov 1997 | A |
5700379 | Biebl | Dec 1997 | A |
5714299 | Combes et al. | Feb 1998 | A |
5725987 | Combes et al. | Mar 1998 | A |
5726211 | Hedrick et al. | Mar 1998 | A |
5730874 | Wai et al. | Mar 1998 | A |
5736425 | Smith et al. | Apr 1998 | A |
5739223 | DeSimone | Apr 1998 | A |
5766367 | Smith et al. | Jun 1998 | A |
5783082 | DeSimone et al. | Jul 1998 | A |
5797719 | James et al. | Aug 1998 | A |
5798438 | Sawan et al. | Aug 1998 | A |
5804607 | Hedrick et al. | Sep 1998 | A |
5807607 | Smith et al. | Sep 1998 | A |
5847443 | Cho et al. | Dec 1998 | A |
5866005 | DeSimone et al. | Feb 1999 | A |
5868856 | Douglas et al. | Feb 1999 | A |
5868862 | Douglas et al. | Feb 1999 | A |
5872061 | Lee et al. | Feb 1999 | A |
5872257 | Beckman et al. | Feb 1999 | A |
5873948 | Kim | Feb 1999 | A |
5881577 | Sauer et al. | Mar 1999 | A |
5888050 | Fitzgerald et al. | Mar 1999 | A |
5893756 | Berman et al. | Apr 1999 | A |
5896870 | Huynh et al. | Apr 1999 | A |
5900354 | Batchelder | May 1999 | A |
5904737 | Preston et al. | May 1999 | A |
5908510 | McCullough et al. | Jun 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5944996 | DeSimone et al. | Aug 1999 | A |
5954101 | Drube et al. | Sep 1999 | A |
5955140 | Smith et al. | Sep 1999 | A |
5965025 | Wai et al. | Oct 1999 | A |
5976264 | McCullough et al. | Nov 1999 | A |
5980648 | Adler | Nov 1999 | A |
5992680 | Smith | Nov 1999 | A |
5994696 | Tai et al. | Nov 1999 | A |
6005226 | Aschner et al. | Dec 1999 | A |
6017820 | Ting et al. | Jan 2000 | A |
6021791 | Dryer et al. | Feb 2000 | A |
6024801 | Wallace et al. | Feb 2000 | A |
6037277 | Masakara et al. | Mar 2000 | A |
6063714 | Smith et al. | May 2000 | A |
6067728 | Farmer et al. | May 2000 | A |
6085762 | Barton | Jul 2000 | A |
6099619 | Lansbarkis et al. | Aug 2000 | A |
6100198 | Grieger et al. | Aug 2000 | A |
6110232 | Chen et al. | Aug 2000 | A |
6114044 | Houston et al. | Sep 2000 | A |
6128830 | Bettcher et al. | Oct 2000 | A |
6140252 | Cho et al. | Oct 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6171645 | Smith et al. | Jan 2001 | B1 |
6200943 | Romack et al. | Mar 2001 | B1 |
6216364 | Tanaka et al. | Apr 2001 | B1 |
6224774 | DeSimone et al. | May 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6228826 | DeYoung et al. | May 2001 | B1 |
6232238 | Chang et al. | May 2001 | B1 |
6232417 | Rhodes et al. | May 2001 | B1 |
6235145 | Li et al. | May 2001 | B1 |
6239038 | Wen | May 2001 | B1 |
6242165 | Vaartstra | Jun 2001 | B1 |
6251250 | Keigler | Jun 2001 | B1 |
6255732 | Yokoyama et al. | Jul 2001 | B1 |
6262510 | Lungu | Jul 2001 | B1 |
6270531 | DeYoung et al. | Aug 2001 | B1 |
6270948 | Sato et al. | Aug 2001 | B1 |
6277753 | Mullee et al. | Aug 2001 | B1 |
6284558 | Sakamoto | Sep 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6306564 | Mullee | Oct 2001 | B1 |
6319858 | Lee et al. | Nov 2001 | B1 |
6331487 | Koch | Dec 2001 | B2 |
6333268 | Starov et al. | Dec 2001 | B1 |
6344243 | McClain et al. | Feb 2002 | B1 |
6358673 | Namatsu | Mar 2002 | B1 |
6361696 | Spiegelman et al. | Mar 2002 | B1 |
6367491 | Marshall et al. | Apr 2002 | B1 |
6380105 | Smith et al. | Apr 2002 | B1 |
6425956 | Cotte et al. | Jul 2002 | B1 |
6436824 | Chooi et al. | Aug 2002 | B1 |
6454945 | Weigl et al. | Sep 2002 | B1 |
6458494 | Song et al. | Oct 2002 | B2 |
6461967 | Wu et al. | Oct 2002 | B2 |
6465403 | Skee | Oct 2002 | B1 |
6485895 | Choi et al. | Nov 2002 | B1 |
6486078 | Rangarajan et al. | Nov 2002 | B1 |
6492090 | Nishi et al. | Dec 2002 | B2 |
6500605 | Mullee et al. | Dec 2002 | B1 |
6509141 | Mullee | Jan 2003 | B2 |
6537916 | Mullee et al. | Mar 2003 | B2 |
6558475 | Jur et al. | May 2003 | B1 |
6562146 | DeYoung et al. | May 2003 | B1 |
6596093 | DeYoung et al. | Jul 2003 | B2 |
6635565 | Wu et al. | Oct 2003 | B2 |
6641678 | DeYoung et al. | Nov 2003 | B2 |
6669785 | DeYoung et al. | Dec 2003 | B2 |
6764552 | Joyce et al. | Jul 2004 | B1 |
6848458 | Shrinivasan et al. | Feb 2005 | B1 |
6890853 | Biberger et al. | May 2005 | B2 |
7044143 | DeYoung et al. | May 2006 | B2 |
20010019857 | Yokoyama et al. | Sep 2001 | A1 |
20010024247 | Nakata | Sep 2001 | A1 |
20010041455 | Yun et al. | Nov 2001 | A1 |
20010041458 | Ikakura et al. | Nov 2001 | A1 |
20020001929 | Biberger et al. | Jan 2002 | A1 |
20020014257 | Chandra et al. | Feb 2002 | A1 |
20020055323 | McClain et al. | May 2002 | A1 |
20020074289 | Sateria et al. | Jun 2002 | A1 |
20020081533 | Simons et al. | Jun 2002 | A1 |
20020088477 | Cotte et al. | Jul 2002 | A1 |
20020098680 | Goldstein et al. | Jul 2002 | A1 |
20020106867 | Yang et al. | Aug 2002 | A1 |
20020112740 | DeYoung et al. | Aug 2002 | A1 |
20020112746 | DeYoung et al. | Aug 2002 | A1 |
20020115022 | Messick et al. | Aug 2002 | A1 |
20020117391 | Beam | Aug 2002 | A1 |
20020123229 | Ono et al. | Sep 2002 | A1 |
20020127844 | Grill et al. | Sep 2002 | A1 |
20020132192 | Namatsu | Sep 2002 | A1 |
20020141925 | Wong et al. | Oct 2002 | A1 |
20020142595 | Chiou | Oct 2002 | A1 |
20020150522 | Heim et al. | Oct 2002 | A1 |
20020164873 | Masuda et al. | Nov 2002 | A1 |
20030003762 | Cotte et al. | Jan 2003 | A1 |
20030008238 | Goldfarb et al. | Jan 2003 | A1 |
20030008518 | Chang et al. | Jan 2003 | A1 |
20030013311 | Chang et al | Jan 2003 | A1 |
20030036023 | Moreau et al. | Feb 2003 | A1 |
20030047533 | Reid et al. | Mar 2003 | A1 |
20030051741 | DeSimone et al. | Mar 2003 | A1 |
20030106573 | Masuda et al. | Jun 2003 | A1 |
20030125225 | Xu et al. | Jul 2003 | A1 |
20030198895 | Toma et al. | Oct 2003 | A1 |
20030205510 | Jackson | Nov 2003 | A1 |
20030217764 | Masuda et al. | Nov 2003 | A1 |
20040011386 | Seghal | Jan 2004 | A1 |
20040018452 | Schilling | Jan 2004 | A1 |
20040020518 | DeYoung et al. | Feb 2004 | A1 |
20040087457 | Korzenski et al. | May 2004 | A1 |
20040103922 | Inoue et al. | Jun 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040177867 | Schilling | Sep 2004 | A1 |
20040211440 | Wang et al. | Oct 2004 | A1 |
20040259357 | Saga | Dec 2004 | A1 |
20050191865 | Jacobsen et al. | Sep 2005 | A1 |
20060003592 | Gale et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0 283 740 | Sep 1988 | EP |
0 391 035 | Oct 1990 | EP |
0 518 653 | Dec 1992 | EP |
0 536 752 | Apr 1993 | EP |
0 572 913 | Dec 1993 | EP |
0 620 270 | Oct 1994 | EP |
0 679 753 | Nov 1995 | EP |
0 711 864 | May 1996 | EP |
0 726 099 | Aug 1996 | EP |
0 727 711 | Aug 1996 | EP |
0 822 583 | Feb 1998 | EP |
60-192333 | Sep 1985 | JP |
1-045131 | Feb 1989 | JP |
8-186140 | Jul 1996 | JP |
8-222508 | Aug 1996 | JP |
WO9006189 | Jun 1990 | WO |
WO9314255 | Jul 1993 | WO |
WO9314259 | Jul 1993 | WO |
WO9320116 | Oct 1993 | WO |
WO9627704 | Sep 1996 | WO |
WO9949998 | Oct 1999 | WO |
WO 0073241 | Dec 2000 | WO |
WO 0133613 | May 2001 | WO |
WO 0209894 | Feb 2002 | WO |
WO 0211191 | Feb 2002 | WO |
WO 0216051 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030198895 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60361917 | Mar 2002 | US | |
60369052 | Mar 2002 | US |