The present invention relates to methods, systems, and computer programs for facilitating dielectric etching of a semiconductor device, and more particularly, methods, systems, and computer programs for facilitating negative ion control in a capacitively-coupled plasma (CCP) chamber.
The manufacturing of integrated circuits includes immersing silicon substrates (wafers) containing regions of doped silicon into chemically-reactive plasmas, where the submicron device features (e.g., transistors, capacitors, etc.) are etched onto the surface. Once the first layer is manufactured, several back-end insulating (dielectric) layers are built on top of the first layer, where holes (also referred to as vias) and trenches are etched into the material for placement of the conducting interconnectors.
SiO2 is a common dielectric used in semiconductor manufacturing. The plasmas used for SiO2 etching often include fluorocarbon gases such as carbon tetrafluoride CF4 and otafluorocyclobutane (C—C4F8), along with argon (Ar) and oxygen (O2) gases. The word plasma is used to refer to those gases in which the constituent atoms and molecules have been partially or wholly ionized. Capacitive radio frequency (RF) power coupling is often used for striking and sustaining the plasma because of the low dissociation rates obtained, favoring larger passivating molecules and high ion energies at the surface. To obtain independent control of the ion energy and the ion flux to the silicon substrate, dual frequency capacitive discharges (DF-CCP) are sometimes used.
Etching of the wafer is often performed by positive ions when the positive ions escape from the plasma and strike the feature to be etched. Some etching methods also rely on negative-ion etching by pulsing the plasma, i.e. having periods were the RF power supply is turned off, which enables the escaping of negative ions from the plasma during the off period of the RF (also referred to as the afterglow). However, pulsing the RF power supply is not an efficient way of etching, because the plasma is being created and dissipated in each cycle.
It is in this context that embodiments arise.
Embodiments of the present invention provide methods, systems, and computer programs for negative ion control in a capacitively-coupled plasma chamber. Embodiments enable the flux of both positive and negative ions to the surface of the wafer for feature-charging control.
It should be appreciated that the present invention can be implemented in numerous ways, such as a process, an apparatus, a system, a device or a method on a computer readable medium. Several inventive embodiments of the present invention are described below.
In one embodiment, a capacitively-coupled plasma chamber is provided. The chamber includes a bottom radio frequency (RF) signal generator, a top RF signal generator, and an RF phase controller. The bottom RF signal generator is coupled to the bottom electrode in the chamber, and the top RF signal generator is coupled to the top electrode. Further, the bottom RF signal is set at a first phase, and the top RF signal is set at a second phase. The RF phase controller is operable to receive the bottom RF signal and operable to set the value of the second phase. Additionally, the RF phase controller is operable to track the first phase and the second phase to maintain a time difference between the maximum of the top RF signal and the minimum of the bottom RF signal at approximately a predetermined constant value.
In another embodiment, a method for operating a capacitively-coupled plasma chamber is presented. The method includes operations for applying a bottom radio frequency (RF) signal set at a first phase to a bottom electrode in the chamber, and for measuring the first phase of the bottom RF signal. Further, the method includes an operation for applying a top RF signal set at a second phase to a top electrode in the chamber. The first phase and the second phase are tracked to maintain a time difference between a maximum of the top RF signal and a minimum of the bottom RF signal at approximately a constant predetermined value.
In yet another embodiment, a capacitively-coupled plasma chamber includes a bottom radio frequency (RF) signal generator coupled to a bottom electrode, and an RF phase controller. The bottom RF signal is set at a first phase, and the RF phase controller is operable to receive the bottom RF signal. Further, the RF phase controller is operable to generate a top RF signal set at a second phase for a top electrode. The RF phase controller is operable to track the first phase and the second phase to maintain a time difference between a maximum of the top RF signal and a minimum of the bottom RF signal at a predetermined value.
Other aspects will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
Embodiments of the invention perform substrate etching utilizing negative ions. The top electrode is powered with a low frequency radio frequency (RF) whose is phase is controlled based on the phase of another low frequency RF applied to the bottom electrode. Negative ions born at the top sheath travel through the plasma bulk, and approach the wafer surface when the bottom sheath potential is approximately at a minimum.
It will be apparent, that the present embodiments may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present embodiments.
Plasma can be created utilizing stable feedstock gases to obtain a wide variety of chemically reactive by-products created by the dissociation of the various molecules caused by electron-neutral collisions. The chemical aspect of etching involves the reaction of the neutral gas molecules and their dissociated by-products with the molecules of the to-be-etched surface, and producing volatile molecules, which can be pumped away. When plasma is created, the positive ions are accelerated from the plasma across a space-charge sheath separating the plasma from the walls, to strike the wafer surface with enough energy to remove material from the surface of the wafer. This is known as ion bombardment or ion sputtering. Some industrial plasmas, however, do not produce ions with enough energy to efficiently etch a surface by purely physical means. It has been proven that that the combined actions of both neutral-gas etching and ion bombardment produces a faster etch rate than simply adding the effects of each method.
In one embodiment, Fluorocarbon gases, such as CF4 and C—C4F8, are used in the dielectric etch process for their anisotropic and selective etching capabilities, but the principles of the invention can be applied to other plasma-creating gases. The Fluorocarbon gases are readily dissociated into smaller molecular and atomic radicals. These chemically reactive by-products etch away the dielectric material, which in one embodiment can be SiO2 or SiOCH for low-k devices.
Fluorocarbons, being halogen derived gases, can produce significant quantities of negative ions. For more information on the production of negative ions, please refer to Thin Solid Films, Kono et al, 2002, p. 198-203, which is herein incorporated by reference. The presence of negative ions can modify the plasma structure and result in a reduction of the positive ion flux leaving the plasma. However, if the negative ions are capable of reaching the substrate, then the negative ions may also participate in the etching process.
As a consequence of sheath formation, the plasma 304 is at a positive potential with respect to ground. As the sheath is a layer of charge separation, the ions entering this space charge region must gain enough energy to break free from the quasi-neutral plasma. In the chamber of
Negative ions play a significant role in surface charge control and the etch rate in dielectric etch processes. In a typical asymmetric capacitive discharge, negative ions do not usually reach the surface of the wafer since they are trapped in the plasma bulk by the sheath potential. Low energy negative ions born in the plasma bulk cannot escape from plasma, but high energy negative ions generated at expanding sheaths can cross the plasma bulk and reach the surface of the opposite electrode. For more information, please refer to Journal of Applied Physics Volume 79 (12), Zeuner at al., 15 Jun. 1996, p. 9379, which is herein incorporated by reference. In asymmetrical discharge, negative ions born at high voltage (powered electrode) sheath can escape to the lower voltage grounded upper electrode.
Some existing methods utilize a pulsing RF power source. When plasma is in the off period (referred to as the afterglow), the negative ion density increases due to low temperature electron attachment to neutrals. The negative ions escape to the walls and neutralize positive charges that may be have accumulated on the walls during the RF on period. However, by pulsing the RF, the overall flux of positive ions to the substrate drops, resulting in slower etch rates.
In a single high frequency (e.g., 60 MHz) plasma with relatively low sheath potentials, negative ions cannot escape from the plasma to the smaller-area powered electrode. However, in a dual frequency chamber with high and low frequency RF sources (e.g, 27 MHz and 2 MHz) some negative ions escape the plasma bulk due to higher sheath potentials. For more information, please refer to Journal of Applied Physics Volume 94 (6), Georgieva et al., 15 Sep. 2003, p. 3748, which is herein incorporated by reference. The motivation for dual frequency sources is the independent control of the ion flux and the ion energy. The high frequency source controls the ion flux, and the low frequency source controls the ion energy. Embodiments of the invention increase the number of negative ions that reach the wafer for processing.
The semiconductor manufacturing tool 402 also includes an RF phase controller 412 that controls the phases of low frequency RF generators 404 and 424. As described in more detail below with reference to
In other embodiment, RF phase controller reads the phase of the frequency generated at RF generator 404 and sends a control signal to control the phase of RF generator 424. In yet another embodiment, RF phase controller 412 controls both RF generator 404 and RF generator 424 so the desired phase difference is achieved by the system.
The system interface 420 provides an interface to access and control modules of the semiconductor manufacturing tool 402. The system interface includes connections to facilities 414, such as networking, gas sources, gas exhausts, vacuum, temperature control, etc. In one embodiment, system interface is configured via a recipe 426, which includes the chamber's parameters settings for the operation of the chamber, such as temperature, pressure, power levels for the top and bottom electrodes, chemistry flow rate, timing, facility interface, etc. Recipe 426 also includes information for configuring the RF phase controller 412, including the desired phase difference between the low frequencies generated at the top and bottom electrodes.
The chamber of
The embodiment of
RF phase and power controller receives the output from filter 524 and adjusts the received low frequency signal by controlling the phase and power of the signal output from RF phase and power controller 522. Thus, the signal output by RF phase and power controller 522 is a low frequency signal with the same frequency as the signal generated by the low frequency generator, but with the desired phase difference and voltage level. RF power amplifier 520 amplifies the signal received by RF phase and power controller 522, and the signal is then fed to the top electrode through the matching network 504.
Therefore, the chamber of
In one embodiment, a low RF frequency is applied to the top electrode with phase lock to the signal at the bottom electrode, such that the negative ions born at the top sheath travel through the plasma bulk and approach the surface of wafer when the bottom wafer sheath potential is at its minimum, or near its minimum. It is referred to herein as a phase lock between the signals at the top and bottom electrode, when the RF signals powering the top and bottom electrodes have a desired phase difference. Thus, the phase lock does not necessarily mean that both signals have the same phase, only that the phase difference between the two signals is predetermined and constant when operating the chamber.
Embodiments of the invention produce a flux of negative ions, having a broad energy distribution, which are delivered to the surface of the wafer without having to extinguish the plasma, as is the case in pulsed plasma chambers. The ion transit time is the time required by a negative ion to cross the plasma 612 and bottom sheath 616, i.e., the time required by the negative ion born at the top sheath to reach the bottom electrode. The goal is to have the negative ions reach the bottom sheath when the bottom sheath is at the lowest RF potential.
Wafer 618 has a top layer 620 where the etching is taking place. The top layer 620 includes a mask layer on top of the layer that contains the features to be etched. For example, contact holes 624 are the areas that do not have mask material and where the etching is desired.
Time difference 602 shows the time required for the negative ions to go from the top sheath to the bottom sheath. In one embodiment, the distance d 610 between the top electrode and wafer 620 is used to calculate the traveling time for the negative ions, as an approximation for the distance between the top sheath and the bottom sheath. In another embodiment, the distance used to calculate the traveling time is the distance between the top sheath when the top electrode is at the maximum potential and the bottom sheath when the bottom sheath is at the lowest potential. See below for a description with reference to
As the negative ions are accelerated onto the surface of the wafer, some of the negative ions will enter contact holes 624 in the top surface of the wafer 620 to perform the etching. The negative ions penetrate into the contact holes and neutralize any positive charge accumulated at the bottom of the contact holes.
At time t2, the voltage of the top sheath 606 has a value of VTS2 636, which is less than the maximum voltage at the top sheath. The voltage of the bottom sheath 614 has a value VBS2 638 that is approaching the minimum voltage but that hasn't reached the minimum yet.
As shown in
The second measurement 704 was taken with a 3 kW 2 MHz RF power source and a 400 W 27 MHz RF power source. The introduction of the high frequency RF shows that the low-frequency component of the bottom RF signal presents some deformation due to the presence of the high-frequency RF signal. The shape of the voltage at the bottom does not appear as low as in the case where no high-frequency RF power is applied.
The third measurement 702 was taken with a 3 kW 2 MHz RF power source and a 1200 W 27 MHz RF power source. As the power of the high frequency is increased, the deformation of the low-frequency component of the bottom RF signal increases. Therefore, the waveform is lifted when the sheath collapses to the water potential due to the high frequency component of the RF signal.
Nevertheless, even though the minimum for the potential at the bottom sheath is not as low as in the case when only the high-frequency is present, the negative ion flux to the wafer is still possible. In one embodiment, the phase difference between the top and bottom RF is adjusted based on the shape of the potential of the bottom sheath when the high-frequency RF is present. For example, in signal 702, the minimum of the sheath potential occurs before the minimum potential for the signal generated by the RF power source. In this case, the phase difference is adjusted so the negative ions arrive at the bottom sheath when the potential is lowest, and not when the potential of only the low-frequency RF is at its lowest value.
In the case of a fluorine negative ion F−, the mass mf of the negative ion is 19×1.67×10−27 kg. Furthermore, the charge e of the electron taken positively is 1.6×10−19 C. The relationship between the charge e of the electron, the velocity ν, the mass mf, and the voltage V is determined according to the following formula:
Therefore, the velocity ν can be expressed as follows:
Therefore, for a sheath voltage V of 100 Volts, the velocity of the negative ion is:
If the gap d between electrodes is 32 mm, the travel time t is calculated as follows:
Therefore, the phase of the low frequency RF signal in the top electrodes is controlled such that, the maximum voltage for the RF frequency on the top electrode occurs a time t (1 μsec in this example) seconds ahead of the time corresponding to the minimum voltage for the RF frequency on the bottom electrode.
The negative ions traveling across the electrode gap experience multiple collisions with neutral and charged particles present in the plasma. If the sheath phase delay conditions discussed above are met, the negative ion flux delivered to the bottom electrode can be estimated as:
where Γt is the negative ion flux born at the upper electrode, d is the electrode spacing, and λ is the negative ion mean free path. Since negative ions experience collisions with both charged and neutral gas species, the mean free path is a complex function of the neutral gas density, the density of positive and negative ions, and the cross sections for ion-neutral and ion-ion collisions. The cross sections for ion-ion collisions are significantly larger than the collisions with neutrals. However, in typical capacitive plasma chambers with low degree of ionization, the neutral gas density dominates. As follows from the formula, it is advantageous to use smaller electrode gaps to maximize the negative ion flux to the wafer since the flux decays exponentially with the distance.
Referring back to
Once the travel time is established, in operation 806 the method determines the phase of the bottom electrode RF power signal. After operation 806, the method continues to operation 808, where the phase of the top electrode RF power signal is set based on the travel time, and on the phase of the bottom electrode RF power signal. In one embodiment, an iterative method is utilized to further refine the value of the phase difference. After an initial setting is determined for the phase difference, measurements are taken on the chamber regarding etching performance, such as concentration of negative ions in the plasma, concentration of positive ions in the plasma, feature quality, etc. The results with the performance measurements are then compared, and the value of the phase difference that produces the best etching results is selected.
It is noted that the embodiment illustrated in
From operation 902 the method flows to operation 904, where the first phase of the bottom RF signal is measured. In one embodiment, the phase of the bottom RF signal is provided to an RF phase controller, such as the one in
Further, a top RF signal with the second phase is applied to the top electrode in the chamber in operation 906. In one embodiment, the phase of the top RF signal is controlled by the RF phase controller, which provides the value of the desired phase to the top RF signal generator. In another embodiment, such as the one presented in
In one embodiment, the time difference is base on the time required for negative ions to travel from the top of the chamber to the bottom of the chamber. However, this time difference can be farther fine-tuned by measuring the performance of the chamber utilizing different time differences, and then selecting the time difference that provides the best results. In yet another embodiment, a user selects, via a Graphical User Interface, the time difference for the top and bottom RF signals.
Mass storage device 1014 represents a persistent data storage device such as a floppy disc drive or a fixed disc drive, which may be local or remote. Network interface 1030 provides connections via network 1032, allowing communications with other devices. It should be appreciated that CPU 1004 may be embodied in a general-purpose processor, a special purpose processor, or a specially programmed logic device. Input/Output (I/O) interface provides communication with different peripherals and is connected with CPU 1004, RAM 1028, ROM 1012, and mass storage device 1014, through bus 1010. Sample peripherals include display 1018, keyboard 1022, cursor control 1024, removable media device 1034, camera 1040, etc.
Display 1018 is configured to display the user interfaces described herein. Keyboard 1022, cursor control 1024, removable media device 1034, and other peripherals are coupled to I/O interface 1020 in order to communicate information in command selections to CPU 1004. It should be appreciated that data to and from external devices may be communicated through I/O interface 1020. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.
Embodiments of the present invention may be practiced with various computer system configurations including hand-held devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a network.
With the above embodiments in mind, it should be understood that the invention can employ various computer-implemented operations involving data stored in computer systems. These operations are those requiring physical manipulation of physical quantities. Any of the operations described herein that form part of the invention are useful machine operations. The invention also relates to a device or an apparatus for performing these operations. The apparatus may be specially constructed for the required purpose, such as a special purpose computer. When defined as a special purpose computer, the computer can also perform other processing, program execution or routines that are not part of the special purpose, while still being capable of operating for the special purpose. Alternatively, the operations may be processed by a general purpose computer selectively activated or configured by one or more computer programs stored in the computer memory, cache, or obtained over a network. When data is obtained over a network the data maybe processed by other computers on the network, e.g., a cloud of computing resources.
The embodiments of the present invention can also be defined as a machine that transforms data from one state to another state. The transformed data can be saved to storage and then manipulated by a processor. The processor thus transforms the data from one thing to another. Still further, the methods can be processed by one or more machines or processors that can be connected over a network. Each machine can transform data from one state or thing to another, and can also process data, save data to storage, transmit data over a network, display the result, or communicate the result to another machine.
One or more embodiments of the present invention can also be fabricated as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data, which can be thereafter be read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes and other optical and non-optical data storage devices. The computer readable medium can include computer readable tangible medium distributed over a network-coupled computer system so that the computer readable code is stored and executed in a distributed fashion.
Although the method operations were described in a specific order, it should be understood that other housekeeping operations may be performed in between operations, or operations may be adjusted so that they occur at slightly different times, or may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing, as long as the processing of the overlay operations are performed in the desired way.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
This application is a Divisional application of U.S. patent application Ser. No. 13/188,421, filed on Jul. 21, 2011, and entitled, “NEGATIVE ION CONTROL FOR DIELECTRIC ETCH,” which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3849276 | Greiner | Nov 1974 | A |
5658418 | Coronel | Aug 1997 | A |
5779925 | Hashimoto | Jul 1998 | A |
5872443 | Williamson | Feb 1999 | A |
6017825 | Kim | Jan 2000 | A |
6328845 | Ohmoto | Dec 2001 | B1 |
6875366 | Sumiya et al. | Apr 2005 | B2 |
7838426 | Goyal et al. | Nov 2010 | B2 |
9117767 | Marakhatanov | Aug 2015 | B2 |
20020031617 | Sumiya | Mar 2002 | A1 |
20020103563 | Izawa | Aug 2002 | A1 |
20020125207 | Ono | Sep 2002 | A1 |
20020139658 | Kanakasabapathy | Oct 2002 | A1 |
20050115677 | Nagahata et al. | Jun 2005 | A1 |
20060073700 | Brown | Apr 2006 | A1 |
20070037300 | Qin | Feb 2007 | A1 |
20070095788 | Hoffman | May 2007 | A1 |
20070164237 | Bernhardt | Jul 2007 | A1 |
20080053818 | Ui | Mar 2008 | A1 |
20080083502 | Heo et al. | Apr 2008 | A1 |
20090114244 | Sexton | May 2009 | A1 |
20090194508 | Ui | Aug 2009 | A1 |
20090291562 | Jensen | Nov 2009 | A1 |
20100006225 | Yokogawa | Jan 2010 | A1 |
20100175832 | Nishio | Jul 2010 | A1 |
20100175833 | Nishio | Jul 2010 | A1 |
20100243883 | Vidal-De-Miguel | Sep 2010 | A1 |
20100248488 | Agarwal | Sep 2010 | A1 |
20100253224 | Marakhtanov | Oct 2010 | A1 |
20100276391 | Grimbergen et al. | Nov 2010 | A1 |
20100315064 | Kuthi | Dec 2010 | A1 |
20110031216 | Liao | Feb 2011 | A1 |
20110094994 | Todorow | Apr 2011 | A1 |
20110097901 | Banna | Apr 2011 | A1 |
20110137446 | Valcore, Jr. | Jun 2011 | A1 |
20110234100 | Tomita | Sep 2011 | A1 |
20110248634 | Heil | Oct 2011 | A1 |
20130009545 | Benjamin | Jan 2013 | A1 |
20130023064 | Marakhtanov | Jan 2013 | A1 |
20130243966 | Schett | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
101088147 | Dec 2007 | CN |
101557885 | Oct 2009 | CN |
101627461 | Jan 2010 | CN |
101978461 | Feb 2011 | CN |
102010060910 | May 2012 | DE |
200947494 | Nov 2009 | TW |
WO-2009115135 | Sep 2009 | WO |
WO-2012073142 | Jun 2012 | WO |
WO-2013006759 | Jan 2013 | WO |
Entry |
---|
Thin Solid Films 407 (2002) 198-203; Behaviors of electron and negative-ion densities in low-pressure high-density inductively coupled plasmas of SF6, NF3, CF4, and C4F8 gases diluted with Ar. Akihiro Kono, Masahito Konishi, Kenji Kato Dec. 31, 2002; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150357209 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13188421 | Jul 2011 | US |
Child | 14827052 | US |