Disclosed embodiments are related to a package including first and second embedded dies and toward a method of forming a package having first and second embedded dies, and, more specifically, to a package including a layer of printed circuit board (PCB) material having first and second embedded, stacked, dies and toward a method of forming a package including a layer of PCB material having first and second embedded, stacked, dies.
Die stacking involves mounting one or more chips on another chip in a single semiconductor package. This process can increase the amount of circuitry that can be housed within a package of a given size, and thus reduces the real estate taken up on a printed circuit board by a chip. Die stacking may also simplify the assembly of printed circuit boards since multiple dies may be attached to a printed circuit board in a single operation. Die stacking also has the potential to improve the electrical performance of devices in which it is used since the interconnections between elements on each of the stacked dies may be shorter than the interconnections that would be required to connect the die elements on a planar surface. This can result in faster signal propagation and may also reduce cross-talk.
While die stacking provides the above benefits, and others, it may also increase thickness of a given printed circuit board (PCB) or package. In some applications the thickness of a package including the stacked die may be greater than the height available for mounting the package. In those situations, it may be necessary to redesign the product in which the stacked die is to be used or forego the benefits of die stacking. It would be desirable to provide a solution to the above problem which would expand the range of environments in which packages having stacked dies could be used.
Exemplary embodiments are directed to apparatuses and methods for forming a package. One aspect comprises a method of forming a package that includes forming an opening in a top surface of a printed circuit board (PCB) layer, placing a stacked die comprising a top die stacked on a bottom die into the opening, laminating the PCB layer to form a laminate layer, and forming an electrical connection with the stacked die.
Another aspect comprises a package that includes a PCB having a First side and a second side and a thickness between the first side and the second side and a stacked die comprising a top die mounted on a bottom die, the bottom die being at least partially embedded in the PCB.
The accompanying drawings are presented to aid in the description of embodiments and are provided solely for illustration of the embodiments and not limitation thereof.
Aspects are disclosed in the following description and related drawings directed to specific embodiments. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosed embodiments.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments” does not require that all embodiments include the discussed feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequences of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the embodiments may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
The thickness of a given package that includes a stacked die can be reduced if the stacked die is partially or completely embedded in a PCB substrate. In this manner, the benefits of die stacking can be obtained in environments where it was previously not possible to fit a package that included a stacked die.
Leaving the top die 406 exposed may be beneficial when the top die 406 comprises an analog die and generates or receives RF transmissions which may be affected if the top die 406 were embedded in the top laminate layer 416. Leaving a portion of the bottom die 404 exposed may be beneficial when it is desirable to leave the connections between the bottom die 404 and the top die 406 accessible, when it might be necessary to replace the top die 406 while leaving the bottom die 404 in place for example. Alternately, this arrangement provides benefits when the real estate beneath the die mounting location is needed for other connections. However, in some applications, sufficient clearance may be available that embedding a portion of the bottom die 404 in the PCB reduces the thickness of the PCB package sufficiently to allow a stacked die arrangement to be used where previously insufficient clearance existed.
A method of forming a package according to an embodiment is illustrated in
A method according to another embodiment is illustrated in
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the invention.
In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM, a solid state memory device, such as a flash-drive, or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
It will be appreciated that packages as illustrated for example in
The foregoing disclosed devices and methods may be designed and are configured into GDSII and GERBER computer files, stored on a computer readable media. These files are in turn provided to fabrication handlers who fabricate devices based on these files. The resulting products are semiconductor wafers that are then cut into semiconductor die and packaged into a semiconductor chip. The chips are then employed in devices described above.
While the foregoing disclosure shows illustrative embodiments, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the embodiments described herein need not be performed in any particular order. Furthermore, although elements of embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
The present Application for Patent is a divisional of patent application Ser. No. 12/634,965 entitled “PRINTED CIRCUIT BOARD HAVING EMBEDDED DIES AND METHOD OF FORMING SAME” filed Dec. 10, 2009, pending, and assigned to the assignee hereof and hereby expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12634965 | Dec 2009 | US |
Child | 13919230 | US |