1. Field of the Invention
The present invention relates to a semiconductor device and a method for manufacturing the same. In particular, the invention relates to a semiconductor device that includes high frequency components and a method for manufacturing the same.
2. Background Art
Typically, semiconductor devices are separated as individual semiconductor chips. For example, in Japanese Unexamined Patent Publication No. 2003-273279, semiconductor chips mounted in packages and the like are disclosed.
In the case of a semiconductor device which uses a high frequency component such as a high electron mobility transistor (HEMT), parasitic capacitance deteriorates the performance. Therefore, it is particularly necessary to decrease the capacitance between the input and output of the high frequency signal. However, there has been a problem in that when a semiconductor device is mounted in a mold package or the like, high dielectric constant molding resin may be intruded into the active portion of the high frequency component, resulting in an increase in parasitic capacitance.
The present invention has been developed to solve the above-described problem, and therefore it is an object of the present invention to provide a semiconductor device and its manufacturing method to prevent high dielectric constant molding resin from penetrating into the active portion of a high frequency component so as to suppress an increase in parasitic capacitance.
The above object is achieved by a semiconductor device that includes a component formed on a substrate, a first wire of an air bridge structure extended above the substrate at a certain distance from the component, an insulation film which encloses a space between the first wire and an area where the component is formed on the substrate, and a sealing material which covers the first wire and the insulation film, and wherein, the first wire has openings and the openings are sealed by a second wire.
The above object is achieved by a method of manufacturing a semiconductor device that includes the steps of forming a component on a substrate, forming a first wire of an air bridge structure extended above the substrate at a certain distance from the component, forming openings in the first wire, forming an insulation film which encloses a space between the first wire and an area where the component is formed on the substrate, forming a second wire which seals the openings, and molding a sealing material which covers the first wire and the insulation film.
According to the present invention, it is possible to provide a high frequency component-used semiconductor device and its measuring method capable of preventing high dielectric constant molding resin from penetrating into the active portion of a high frequency component so as to suppress an increase in parasitic capacitance.
Other features and advantages of the invention will be apparent from the following description taken in connection with the accompanying drawings.
Embodiments of the present invention will be described below referring to the drawings. In the drawings, the same or equivalent parts will be denoted by the same reference numerals, and the description thereof will be simplified or omitted.
The following describes a method of manufacturing a semiconductor device in accordance with this embodiment. Firstly, as shown in
As shown in
The air bridges 5a and 5b are connected by an air bridge 5 which extends therebetween. Hereinafter, the air bridges 5, 5a and 5b are denoted as a “first wire.” That is, the source bonding pads 2a and 2b are connected to each other by the first wire that have an air bridge structure. Above the GaAs substrate 1, the first wire of the air bridge structure is thus extended at a certain distance from the component such as a transistor. In addition, each of the air bridges 5a and 5b has an opening 9 formed therethrough.
Then, the GaAs substrate 1 is wholly coated with a photosensitive polyimide film.
Then, the top surface of the GaAs substrate 1 shown in
Then, the polyimide film 6 is developed. Consequently, a polyimide pattern 6a is formed which covers the top surface of the air bridge 5 so as to overlap the boundaries of the air bridge 5 (the ends of the polyimide pattern 6a are present outside the ends of the air bridge 5.)
The thus formed polyimide pattern 6a not only covers the top surface of the air bridge 5 but also constitutes walls which respectively extend from the ends 5e and 5f of the air bridge 5 to the surface of the GaAs substrate 1. It is therefore possible to seal the cavity 7 where the gate electrodes 12 are formed.
Then, a second wire 10 is formed by performing wire bonding so as to seal the openings 9 as shown in
Then, the semiconductor device shown in
In the semiconductor device shown in
The above-mentioned sealing resin 31 has a higher dielectric constant than the polyimide pattern 6a. The respective openings 9 are sealed by the balls 10a of the second wire 10 to prevent the sealing resin 31 from intruding into the cavity 7 during the molding. Therefore, it is possible to suppress an increase in capacitance parasitic to the high frequency component.
As mentioned above, the polyimide pattern 6a comprises a portion that is formed on the top surface of the air bridge 5, namely between the top surface of the air bridge 5 and the sealing resin 31. Preferably, the polyimide pattern 6a is an insulation film that has a higher mechanical strength than the sealing resin 31. This can prevent the air bridge 5 from deforming during the process of forming the sealing resin 31 (see
An estimate was made how the above-mentioned structure is effective in suppressing an increase in parasitic capacitance. Given that the air has a relative dielectric constant of 1 while that of the sealing resin 31 is 4, a typical gate structure would has about four times larger parasitic capacitance if sealed by the resin. In practice, however, the intrinsic capacitance of the transistor-formed region also has influence on its high frequency characteristics. Accordingly, the finite element method was used to estimate the effect of the present invention relative to the total gate capacitance.
The model used in this calculation is a high electron mobility transistor (HEMT) having a mushroom-shaped gate structure wherein the gate length is 0.2 μm, the source-drain distance is 3 μm, the source-gate distance is 1 μm, the gate metal thickness is 0.6 μm, the electron supply layer thickness is 20 nm and the gate height is 0.26 μm. The calculation result shows that the gate capacitance per unit gate width is 1.6894 fF/μm if the transistor-formed region is covered with sealing resin. In the case of the present semiconductor device embodiment, this gate capacitance is 1.3863 fF/μm. By employing the structure of the present embodiment, it is therefore possible to decrease the gate capacitance per unit gate width by about 18%.
In addition, distorted lattice high mobility field effect transistors were experimentally fabricated by using the manufacturing method of the present embodiment and MSG (Maximum Stable Gain) evaluation was made at a frequency of 12 GHz. As a result, whereas a conventional sample in which the component region is covered by injected sealing resin showed a MSG of 12. 5 dB, a sample fabricated according to the present embodiment showed a MSG value of 13.8 dB. It is therefore possible to attain a MSG improvement of about 1.3 dB by employing the structure shown in the present embodiment.
The following describes a variation of the semiconductor device fabrication method in accordance with the present embodiment. In this variation, the openings 9 are formed so as to have substantially the same diameter as the balls 10a. The wire bonding process inserts the balls into the openings 9. The openings 9 are sealed without plastically deforming the air bridges 5a-5d around the openings 9.
A description of the other processes is omitted here since they are the same as the aforementioned manufacturing method (refer to
The following describes a method of manufacturing a semiconductor device in accordance with this embodiment. A description of the present embodiment focuses on what are different from the second embodiment. Firstly, a transistor and other components are formed on a GaAs substrate 1. This and the subsequent processes are done in the same manner as the first embodiment until the first wire is formed although they are not illustrated.
Then, wire bonding is done onto source bonding pads 2a and 2b as shown in
Then, as shown in
In the present embodiment, no opening is formed in the first wire. Instead, bonding is done by plastically deforming the air bridges 2a and 2b as shown in
Then, similar to the first embodiment, sealing resin is molded so as to cover the whole surface of the GaAs substrate 1.
In the semiconductor device manufacturing method according to the present embodiment, the potting material 13 is used instead of forming the polyimide pattern 6a of the first embodiment (see
In the present embodiment, the process to form openings in the first wire is eliminated. This can reduce the number of the process steps as compared with the first embodiment. In addition, since the air tightness of the cavity 7 can be improved, it is possible to effectively prevent the sealing resin 31 from intruding into the cavity 7 when the sealing resin is molded.
In a semiconductor device fabricated by the aforementioned manufacturing method, the potting material 13 is dropped so as to extend from ends of the air bridge 5 to the surface of the GaAs substrate 1, namely, seal the region where the gate electrodes 12 of the transistor are formed. In addition, the first wire has no opening formed therethrough. Such a structure makes it possible to effectively prevent the sealing resin 31 from intruding into the cavity 7 when the sealing resin is molded. Therefore, the increase in parasitic capacitance can be suppressed more effectively than in the first embodiment.
The following describes a method of manufacturing a semiconductor device in accordance with this embodiment. A description of the present embodiment focuses on what are different from the first and second embodiments. At first, a field effect transistor (hereinafter denoted as the “FET”) having gate electrodes 12, source electrodes 15 and a drain electrode 16 is formed on a GaAs substrate as shown in
Then, a polyimide film and a photoresist film are formed over the FET in this order although they are not shown in the figure. Then, the photoresist film is exposed so that a second resist pattern 19 (indicated by dotted lines) will be left over the first resist pattern 17.
Then, by using the second resist pattern 19 as a mask, the polyimide film is etched down to the first resist pattern 17 (see
Then, a metal film is deposited to an appropriate thickness over the polyimide pattern 18 by sputtering or the like.
Then, a resist pattern (not shown in the figure) is formed over the metal film 21 shown in
Likewise,
Then, similar to the first and second embodiments, sealing resin is molded on the GaAs substrate 1 although not illustrated. Since the opening 20 (see
By the manufacturing method describe above, a semiconductor device shown in
This structure can prevent the sealing resin from intruding into the cavities 7 above the gate electrodes 7. It is therefore possible to suppress an increase in capacitance parasitic to a high frequency component.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may by practiced otherwise than as specifically described.
The entire disclosure of a Japanese Patent Application No. 2005-342199, filed on Nov. 28, 2005 including specification, claims, drawings and summary, on which the Convention priority of the present application is based, are incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2005-342199 | Nov 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5757072 | Gorowitz et al. | May 1998 | A |
6798064 | Henry et al. | Sep 2004 | B1 |
6830958 | Makimoto | Dec 2004 | B2 |
7342351 | Kubo et al. | Mar 2008 | B2 |
20070013268 | Kubo et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
05-335343 | Dec 1993 | JP |
2003-273279 | Sep 2003 | JP |
WO 2004105237 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070123026 A1 | May 2007 | US |