Semiconductor package and method therefor

Abstract
A semiconductor package substrate (11) has an array of package sites (13, 14, 16, and 21) that are substantially identical. The entire array of package sites (13, 14, 16, and 21) is covered by an encapsulant (19). The individual package sites (13, 14, 16, and 21) are singulated by sawing through the encapsulant (19) and the underlying semiconductor package substrate (11).
Description
BACKGROUND OF THE INVENTION

The present invention relates, in general, to packaging techniques, and more particularly, to a novel semiconductor package.


In the past, the semiconductor industry has utilized a variety of encapsulation techniques for forming the body of semiconductor packages. Typically, the semiconductor and other devices are assembled onto an interconnect platform or substrate such as a leadframe, printed circuit board or ceramic substrate. One particular encapsulating technique, commonly referred to as glob-top, involves dispensing an encapsulant to cover semiconductor devices or other components that are assembled onto the substrate. One problem with this prior technique is the planarity of the top surface of the encapsulant. Often, the top surface has a convex shape. Because of the convex shape, automated pick and place equipment can not utilize the resulting semiconductor package. Also, it is difficult to mark the top surface because of the convex shape.


Such techniques usually encapsulate a single assembly site on a substrate and after encapsulation, the assembly site is singulated to form an individual package. Consequently, assembly time and singulation time are long and result in high package cost.


Accordingly, it is desirable to have a semiconductor package that has a substantially planar surface that can be utilized with automated pick and place equipment, that is easily marked, and that increases throughput thereby reducing the cycle time and assembly costs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a plan view of a semiconductor package at a stage of manufacturing in accordance with the present invention;



FIG. 2 illustrates a cross-sectional view of the package of FIG. 1 at a subsequent manufacturing stage; and



FIG. 3 illustrates a cross-sectional view of a singulated semiconductor package in accordance with the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates an embodiment of a semiconductor package substrate or semiconductor package 10 at a stage of manufacturing. Package 10 includes an interconnect substrate 11 that has a plurality of package sites such as package sites 13, 14, 16, 21, 22, and 23. As will be seen hereinafter, each of sites 13, 14, 16, 21, 22, and 23 will subsequently be singulated into an individual singulated semiconductor package. Each of sites 13, 14, 16, 21, 22, and 23 are substantially identical and have areas within each site for attaching and interconnecting a plurality of electronic components such as active semiconductor devices, and passive elements such as resistors and capacitors. Each of sites 13, 14, 16, 21, 22, and 23 are separated by a space, for example space 17 between sites 16 and 21, so that each site may be singulated into an individual package.


Substrate 11 can have a variety of forms including a stamped leadframe, a ceramic substrate, a printed circuit board substrate, and other configurations that are well known to those skilled in the art. As shown in FIG. 1, substrate 11 is a ceramic substrate having multiple layers of electrical interconnect separated by dielectrics, and multiple attachment areas.


Substrate 11 also includes a dam-bar area 12 around the periphery of substrate 11, thus, surrounding the periphery of the plurality of package sites as indicated by a dashed line 15. As will be seen hereinafter, dam-bar area 12 is used for encapsulating package 10 and individual packages formed by each package site of the plurality of package sites, such as sites 13, 14, 16, 21, 22, and 23.



FIG. 2 illustrates a cross-sectional schematic of package 10 at a subsequent stage of manufacturing and is taken along cross-sectional line 2-2 shown in FIG. 1. The same reference numbers are used to represent the same elements among the drawings. Typically, components such as semiconductor devices or passive elements are attached to each package site as illustrated by a component 26 attached to sites 13, 14, 16, and 21. Many components may be attached to each package site, device 26 is shown only for illustration purposes. As shown in FIG. 2, encapsulating each package site of the plurality of package sites and associated components includes forming a dam-bar 18 on area 12. Dam-bar 18 creates a cavity containing the plurality of package sites. Dam-bar 18 is formed by dispensing a first encapsulating material onto area 12. The first encapsulating material has a first viscosity that is sufficiently high so that the encapsulating material does not flow across substrate 11 but substantially remains as dispensed onto area 12. Typically, the first encapsulating material has a high viscosity that is greater than approximately 500,000 centi-poise (cps), and typically has a viscosity of 1,000,000 to 2,000,000 cps at approximately 25° C. (degrees Celsius). One suitable first encapsulating material for dam-bar 18 is a rigid thermo-setting epoxy such as FP-4451 manufactured by Hysol-Dexter of Industry, Calif.


Generally, the first encapsulating material is heated during dispensing by heating the syringe or dispensing mechanism so that the first encapsulating material can be dispensed. Additionally, substrate 11 generally is also heated to a higher temperature so that the first encapsulating material flows sufficiently to form dam-bar 18. Generally, the dispensing mechanism or syringe is heated to approximately forty to fifty degrees Celsius (40-50° C.), and substrate 11 generally is heated to approximately eighty to ninety degrees Celsius.


Thereafter, a second encapsulating material is dispensed within the cavity formed by dam-bar 18 to form an encapsulant 19 covering the components on substrate 12. The thickness of encapsulant 19 is sufficient to cover and protect components such as component 26 formed on substrate 12. The second encapsulating material is a second viscosity that is sufficiently low so that the second encapsulating material flows to fill the cavity leaving no voids and surrounds the components and attachment wires used to connect components to substrate 11. The second viscosity is less than the 500,000 cps high viscosity of the first encapsulating material and typically is approximately 20,000 to 200,000 cps at 25° C. One example of a suitable material for the second encapsulating material is FP-4650 manufactured by Hysol-Dexter. Additionally, the second encapsulating material typically has the same chemical base as the first encapsulating material so that the two materials bond at the interface to minimize separation and potential contamination. During dispensing, the second encapsulating material and substrate 11 are heated similarly to the heating used for dispensing the first encapsulating material.


After dispensing, the first and second encapsulating material are heated to gel both encapsulating materials in order to control subsequent out gassing and warpage of substrate 11. Typically, both encapsulating materials are gelled for approximately one hour at one hundred ten degrees Celsius. Subsequently, dam-bar 18 and encapsulant 19 are cured so that encapsulant 19 forms a continuous encapsulating material covering the underlying components. Typically the curing is performed at a temperature of approximately 165° C. for a time of up to two hours. After curing, each individual package site is singulated into a singulated package by using space 17 for sawing completely through encapsulant 19 and substrate 12. For example, a ceramic saw is used to saw through encapsulant 19 and substrate 11 when substrate 12 is ceramic material. Other singulation techniques could be utilized including laser cutting through encapsulant 19 and substrate 11.


The area covered by encapsulant 19 should be larger than the meniscus formed by the second encapsulating material so that the top surface of encapsulant 19 remains substantially planar. For example, the top surface should have a deviation of less than plus or minus 0.13 millimeters across the surface of encapsulant 19. As shown in FIG. 2, the plurality of package sites are formed in an 4×4 array but could also be formed in other arrays. An array that is sixty by sixty millimeters provides a sufficient area to provide the desired planarity.


It should be noted that other encapsulating techniques could be utilized to cover the plurality of package sites with an encapsulating material in order to encapsulate package 10. For example, dam-bar 18 could be a premanufactured frame applied to area 12, and overmolding or other techniques could be used for the encapsulating. Thereafter each package site can be singulated as described hereinbefore,



FIG. 3 illustrates a cross-sectional view of a singulated package formed from a package site such as package site 13 shown in FIG. 1 and FIG. 2.


By now it should be appreciated that there has been provided a novel semiconductor package and method therefor. Forming a plurality of package sites on a substrate and using one dam-bar around the entire periphery surrounding the plurality of package sites, facilitates forming a substantially planar surface on the encapsulant. Forming a substantially planar surface allows each singulated package to have a substantially planar surface and facilitates utilization with automated pick and place equipment, and also facilitates clear marking of each singulated package. Forming the plurality of packages sites adjacent to each other and covering the plurality of package sites with one continuous encapsulant minimizes space required to singulate the package sites and maximizes the number of package sites on a substrate thereby providing the smallest package outline and lowering package costs.

Claims
  • 1. A method for making a packaged semiconductor device comprising: providing an interconnect substrate having a plurality of substantially identical package sites arranged in an array, the plurality of sites being separated by a singulation space and the interconnect substrate being a ceramic substrate or a rigid printed circuit board substrate;mounting and interconnecting a semiconductor device within each site;forming a cavity containing the plurality of substantially identical package sites; andovermolding a single and continuous encapsulant over each semiconductor device, the plurality of sites, and the singulation space, wherein overmolding produces a top surface of the continuous encapsulant which has a surface deviation of less than 0.13 millimeters across the top surface of the continuous encapsulant.
  • 2. The method of claim 1 further comprising the step of singulating the plurality of package sites after overmolding.
  • 3. The method of claim 2 wherein singulating comprises sawing through the single and continuous encapsulant and the interconnect substrate along the singulation space.
  • 4. The method of claim 3 wherein singulating produces a plurality of packaged semiconductor devices, and further comprising the step of handling each packaged semiconductor device with automated pick and place equipment.
  • 5. The method of claim 1, wherein forming a cavity comprises providing a dam-bar.
  • 6. A method for making a packaged semiconductor device comprising: providing an interconnect substrate that is either a ceramic substrate or a rigid printed circuit board substrate having a plurality of substantially identical package sites arranged in at least a four by four array, the plurality of sites being separated by a singulation space;mounting and interconnecting a semiconductor device within each site;forming a cavity containing the plurality of substantially identical package sites; andovermolding a single and continuous encapsulant over each semiconductor device, the plurality of sites, and the singulation space to produce a top surface of the encapsulant which has a surface deviation of less than 0.13 millimeters across the top surface of the encapsulant.
  • 7. The method of claim 6 further comprising the step of singulating the plurality of package sites after overmolding.
  • 8. The method of claim 7 wherein singulating comprises sawing through the single and continuous encapsulant and the interconnect substrate along the singulation space.
  • 9. The method of claim 8 wherein singulating produces a plurality of packaged semiconductor devices, and further comprising the step of handling each packaged semiconductor device with automated pick and place equipment.
  • 10. The method of claim 6, wherein forming a cavity comprises providing a dam-bar.
  • 11. A method for making a packaged semiconductor device comprising: providing an interconnect substrate that is either a ceramic substrate or a rigid printed circuit board substrate having a plurality of substantially identical package sites arranged in an array, the plurality of sites being separated by a singulation space;mounting and interconnecting a semiconductor device within each package site;forming a cavity containing the plurality of substantially identical package sites; andovermolding an encapsulant over the plurality of sites and the singulation space to have a top surface planarity deviation of less than 0.13 millimeters.
  • 12. The method of claim 11 further comprising the step of singulating the plurality of package sites after overmolding.
  • 13. The method of claim 12 wherein singulating comprises sawing through the single and continuous encapsulant and the interconnect substrate along the singulation space.
  • 14. The method of claim 13 wherein singulating produces a plurality of packaged semiconductor devices, and further comprising the step of handling each packaged semiconductor device with automated pick and place equipment.
  • 15. The method of claim 11, wherein forming a cavity comprises providing a dam-bar.
Parent Case Info

This application is a continuation of U.S. Ser. No. 09/062,986 filed on Apr. 20, 1998, now abandoned, which is a divisional of U.S. Ser. No. 08/708,296 filed on Sep. 04, 1996, now U.S. Pat. No. 5,776,798.

US Referenced Citations (99)
Number Name Date Kind
3413713 Helda et al. Dec 1968 A
3444441 Helda et al. May 1969 A
3606673 Overman Sep 1971 A
3913217 Misawa et al. Oct 1975 A
4508758 Wong Apr 1985 A
4518631 Antonen May 1985 A
4530152 Roche et al. Jul 1985 A
4595647 Spanjer Jun 1986 A
4654290 Spanjer Mar 1987 A
4674811 Corwin Jun 1987 A
4703984 Mitchell, Jr. Nov 1987 A
4734820 Lauffer et al. Mar 1988 A
4737395 Mabuchi et al. Apr 1988 A
4773955 Mabuchi et al. Sep 1988 A
4808990 Kamigaki et al. Feb 1989 A
4821007 Fields et al. Apr 1989 A
4866841 Hubbard Sep 1989 A
4870474 Karashima Sep 1989 A
4871317 Jones Oct 1989 A
4887352 Adams Dec 1989 A
4890383 Lumbard et al. Jan 1990 A
4920074 Shimizu et al. Apr 1990 A
4930216 Nelson Jun 1990 A
4961821 Drake et al. Oct 1990 A
4994936 Hernandez Feb 1991 A
4999700 Dunaway et al. Mar 1991 A
5000689 Ishizuka et al. Mar 1991 A
5006673 Freyman et al. Apr 1991 A
5061657 Queen et al. Oct 1991 A
5071375 Savage, Jr. Dec 1991 A
5136366 Worp et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5153385 Juskey et al. Oct 1992 A
5164817 Eisenstadt et al. Nov 1992 A
5172214 Casto Dec 1992 A
5188984 Nishiguchi Feb 1993 A
5216278 Lin et al. Jun 1993 A
5239198 Lin et al. Aug 1993 A
5248903 Heim Sep 1993 A
5251107 Takemura et al. Oct 1993 A
5261962 Hamamoto et al. Nov 1993 A
5280193 Lin et al. Jan 1994 A
5302101 Nishimura Apr 1994 A
5316965 Philipossian et al. May 1994 A
5334857 Mennitt et al. Aug 1994 A
5335671 Clement Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5338972 Negoro Aug 1994 A
5341039 Fukumoto Aug 1994 A
5346118 Degani et al. Sep 1994 A
5347159 Khandros et al. Sep 1994 A
5355283 Marrs et al. Oct 1994 A
5371404 Juskey et al. Dec 1994 A
5433822 Mimura et al. Jul 1995 A
5435482 Variot et al. Jul 1995 A
5436203 Lin Jul 1995 A
5446625 Urbish et al. Aug 1995 A
5450283 Lin et al. Sep 1995 A
5462636 Chen et al. Oct 1995 A
5467252 Nomi et al. Nov 1995 A
5467253 Heckman et al. Nov 1995 A
5468999 Lin et al. Nov 1995 A
5471368 Downie et al. Nov 1995 A
5491111 Tai Feb 1996 A
5497033 Fillion et al. Mar 1996 A
5525834 Fischer et al. Jun 1996 A
5535101 Miles et al. Jul 1996 A
5541450 Jones et al. Jul 1996 A
5570505 Downie et al. Nov 1996 A
5592025 Clark et al. Jan 1997 A
5593926 Fujihira Jan 1997 A
5604160 Warfield Feb 1997 A
5612513 Tuttle et al. Mar 1997 A
5612576 Wilson et al. Mar 1997 A
5635671 Freyman et al. Jun 1997 A
5639695 Jones et al. Jun 1997 A
5641714 Yamanaka Jun 1997 A
5652185 Lee Jul 1997 A
5679977 Khandros et al. Oct 1997 A
5685885 Khandros et al. Nov 1997 A
5690773 Fidalgo et al. Nov 1997 A
5700981 Tuttle et al. Dec 1997 A
5729437 Hashimoto Mar 1998 A
5729894 Rostoker et al. Mar 1998 A
5745986 Variot et al. May 1998 A
5776798 Quan et al. Jul 1998 A
5848467 Khandros et al. Dec 1998 A
5926696 Baxter et al. Jul 1999 A
5973263 Tuttle et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5989937 Variot et al. Nov 1999 A
6365432 Fukutomi et al. Apr 2002 B1
6465743 Owens Oct 2002 B1
6607943 Kinsman Aug 2003 B1
6710265 Owens Mar 2004 B2
7199306 Owens Apr 2007 B2
7397001 Owen Jul 2008 B2
Foreign Referenced Citations (30)
Number Date Country
0 261 324 Mar 1988 EP
55-86342 Jun 1980 JP
56002656 Jan 1981 JP
57194240 Nov 1982 JP
58134450 Aug 1983 JP
61222151 Oct 1986 JP
62-009639 Jan 1987 JP
02-047855 Feb 1990 JP
02-301155 Dec 1990 JP
04-084452 Mar 1992 JP
4-148553 May 1992 JP
04254363 Sep 1992 JP
05-067694 Mar 1993 JP
05-67705 Mar 1993 JP
950955414 Mar 1993 JP
05129517 May 1993 JP
05190737 Jul 1993 JP
05315515 Nov 1993 JP
6-61417 Mar 1994 JP
6-132423 May 1994 JP
06169051 Jun 1994 JP
06216179 Aug 1994 JP
06-283561 Oct 1994 JP
07-193162 Jul 1995 JP
08-125062 May 1996 JP
08-153832 Jun 1996 JP
8222654 Aug 1996 JP
9414213 Jun 1994 WO
9526047 Sep 1995 WO
WO 9526047 Sep 1995 WO
Related Publications (1)
Number Date Country
20020053452 A1 May 2002 US
Divisions (1)
Number Date Country
Parent 08708296 Sep 1996 US
Child 09062986 US
Continuations (1)
Number Date Country
Parent 09062986 Apr 1998 US
Child 09928737 US