Stacked module systems

Information

  • Patent Grant
  • 7656678
  • Patent Number
    7,656,678
  • Date Filed
    Monday, October 31, 2005
    18 years ago
  • Date Issued
    Tuesday, February 2, 2010
    14 years ago
Abstract
The present invention stacks integrated circuit packages into circuit modules. In a preferred embodiment, solder paste and primary adhesive respectively are applied to selected locations on the flex circuitry. Supplemental adhesive is applied to additional locations on the flex circuitry, CSP, or other component. The flex circuitry and the CSP are brought into proximity with each other. During solder reflow operation, a force is applied and the CSP collapses toward the flex circuitry, displacing the primary adhesive and the supplemental adhesive. The supplemental adhesive establishes a bond providing additional support to the flex circuitry. In another embodiment, CSPs or other integrated circuit packages are bonded to each other or to other components with a combination of adhesives. A rapid bond adhesive maintains alignment of the bonded packages and/or components during assembly, and a structural bond adhesive provides additional strength and/or structural integrity to the bond.
Description
TECHNICAL FIELD

The present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits using flex circuitry.


BACKGROUND

A variety of techniques are used to stack packaged integrated circuits. Some methods require special packages, while other techniques stack conventional packages.


The predominant package configuration employed during the past two decades has encapsulated an integrated circuit in a plastic surround typically having a rectangular configuration. The enveloped integrated circuit is connected to the application environment through leads emergent from the edge periphery of the plastic encapsulation. Such “leaded packages” have been the constituent elements most commonly employed by techniques for stacking packaged integrated circuits.


Leaded packages play an important role in electronics, but efforts to miniaturize electronic components and assemblies have driven development of technologies that preserve circuit board surface area. Because leaded packages have leads emergent from peripheral sides of the package, leaded packages occupy more than a minimal amount of circuit board surface area. Consequently, alternatives to leaded packages known as chip scale packages or “CSPs” have recently gained market share.


A commonly used style of CSP provides connection to a packaged integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package, contacts are placed on a major surface and typically emerge from the bottom surface of the package.


The absence of “leads” on package sides renders most of the conventional stacking techniques devised for leaded packages inapplicable for CSP stacking. Frequently, CSP stacking provides one or more flex circuits interconnecting the contacts of respective CSPs. Also, CSP stacking may more often dispose one CSP bonded to another CSP of the stack. Conventional stacking techniques devised for leaded packages also often are inadequate for stacking integrated circuits packaged in different forms, such as a stack comprising both CSPs and leaded packages.


A variety of previous techniques for stacking CSPs and mixed integrated circuit packages may present complex assembly problems. Therefore, a technique and system is needed for stacking CSPs that provides a thermally-efficient, reliable structure allowing efficient production at reasonable cost with readily understood and managed materials and methods.


SUMMARY

The present invention stacks integrated circuit packages into modules that conserve PWB or other board surface area and prepares units containing integrated circuit packages for such stacking. Although the present invention is applied most frequently to CSPs that contain one die, it may be employed with CSPs and other integrated circuit packages that include more than one integrated circuit die. Multiple numbers of integrated circuit packages may be stacked in accordance with the present invention. The integrated circuit packages employed in stacked modules devised in accordance with the present invention are connected with flex circuitry that may exhibit one or two or more conductive layers.


In accordance with a preferred embodiment, a combination comprising a form standard and a CSP is attached to flex circuitry. Solder paste is applied to first selected locations on the flex circuitry and primary adhesive is applied to second selected locations on the flex circuitry. Supplemental adhesive is applied to additional locations on the flex circuitry, CSP, form standard, or other component of the combination. The flex circuitry and the combination of the form standard and CSP are brought into proximity with each other. During solder reflow operation, a force is applied that tends to bring the combination and flex circuitry closer together. As the heat of solder reflow melts the contacts of the CSP, the combination collapses toward the flex circuitry displacing the primary adhesive and the supplemental adhesive as the solder paste and contacts merge into solder joints. In a preferred embodiment, the form standard will be devised of heat transference material, a metal, for example, such as copper would be preferred, to improve thermal performance. In other preferred embodiments, a CSP without a form standard is attached to flex circuitry. The supplemental adhesive establishes a bond providing additional support to the flex circuitry.


In another embodiment, CSPs or other integrated circuit packages are bonded to each other or to other components with a combination of adhesives. A rapid bond adhesive maintains alignment of the bonded packages and/or components during assembly, and a structural bond adhesive provides additional strength and/or structural integrity to the bond.





SUMMARY OF THE DRAWINGS


FIGS. 1A-1D depict known construction of a unit for a circuit module and issues relating to such construction.



FIG. 2 depicts selected steps in a method for construction of a unit for a circuit module in accordance with a preferred embodiment of the present invention.



FIG. 3 depicts a unit for a circuit module in accordance with a preferred embodiment of the present invention.



FIGS. 4A and 4B depict selected steps in a method for construction of a unit for a circuit module in accordance with a preferred embodiment of the present invention.



FIG. 5 depicts known issues concerning construction of a unit for a circuit module.



FIG. 6 depicts a unit for a circuit module in accordance with a preferred embodiment of the present invention.



FIG. 7A depicts a known configuration for flex circuitry for a circuit module.



FIG. 7B depicts a flex circuitry configured in accordance with a preferred embodiment of the present invention.



FIG. 8 depicts a portion of a unit for a circuit module in accordance with a preferred embodiment of the present invention.



FIGS. 9A-9G depict circuit modules in accordance with several preferred embodiments of the present invention.



FIG. 10 depicts selected steps in a method for construction of a circuit module in accordance with a preferred embodiment of the present invention.



FIG. 11 depicts circuit module in accordance with a preferred embodiment of the present invention.



FIGS. 12 and 13 depict selected configurations of adhesive in accordance with selected preferred embodiments of the present invention.



FIGS. 14A and 14B depict a step in a method for construction of a circuit module in accordance with a preferred embodiment of the present invention.



FIG. 15 depicts a circuit module in accordance with a preferred embodiment of the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS

Although several embodiments are described herein, the present invention can be used to advantage with CSPs or leaded packages of a variety of sizes and configurations ranging from larger packaged base elements having many dozens of contacts to smaller packages including, for example, packages approaching the size of the die such as die-sized ball grid array packages. Although the present invention is applied most frequently to packages that contain one die, it may be employed with packages that include more than one integrated circuit die.



FIGS. 1A-1C depict the construction of an exemplary unit 58 in accordance with a preferred embodiment for stacking in a circuit module. Form standard 35 is devised to be employed with a CSP in the disclosed embodiment to provide a standard form for flex circuitry. Form standard 35 is attached to the upper major surface 18 of CSP 12 with adhesive 37 and partially wraps around lateral edges of CSP to form a primary combination 50. In respective preferred embodiments, adhesive 37 is a thermoset adhesive or epoxy that will not soften during subsequent reflow operations such as exposure to 200-250 degrees Centigrade, for example. Unit 58 in the depicted embodiment comprises primary combination 50 and flex circuitry 30.


The depicted configuration of form standard 35 is just one of many that can provide a standard form about which flex circuitry may be disposed. Use of a form standard allows a connective design implemented in flex circuitry to be used with CSPs of a variety of designs and configurations. Form standard 35 may also provide thermal advantages particularly when devised from metallic materials such as copper and copper alloys for example. Other configurations of form standard 35 may be employed with the present invention including but not limited to those that extend across the bottom surface 20 of CSP 12. Further, some form standards may not extend beyond the perimeter of CSP 12. Still other embodiments of the invention may affix flex circuitry to CSP bodies without employing a form standard, and the flex circuitry may partially wrap about a lateral edge of the CSP as shown for example in FIGS. 5 and 6.


The flex circuitry in this embodiment comprises a contiguous flex circuit 30, but other embodiments may use two or several flex circuits. In addition, the flex circuitry may be flexible throughout or flexible in some areas and rigid in other areas. Flex circuitry in various embodiments may have one or two or more conductive layers, and also may have one or more outer layers and/or intermediate layers. Flex circuitry has solder paste 41 applied at selected sites. In the illustrated embodiments, primary adhesive 44 is also applied at selected sites on the flex circuitry that are proximal to the lateral edge of lower major surface 20 of CSP 12.


In FIG. 1B, the primary combination 50 and the flex circuitry have been disposed in proximity to each other. Typically, there will be contact between contacts 26 and solder paste 41, but a large gap “G” between flex circuitry and form standard 35 will be exhibited because primary combination 50 is suspended above flex circuit 30 by primary adhesive 44 and the uncompressed height of contacts 26 and solder paste 41. Weight 52 is disposed above CSP 12 on primary combination 50 while flex circuit 30 is supported from beneath by work support 54. Work support 54 is preferably a carrier that is in motion through an assembly process or may be stationary. Primary combination 50 and the flex circuitry are subjected to a solder reflow operation, examples of which are well known to those of skill in the art.


With primary combination 50 and flex circuit 30 under force F which tends to move them closer together, primary combination 50 collapses toward the flex circuitry as contacts 26 melt in the solder reflow operation and merge with the solder paste on flex circuit 30 to form solder joints 56 as primary adhesive 44 is compressed as well. As a result of such compression, primary adhesive 44 comes in contact with form standard 35 and disposes form standard adhesive bonds on form standard 35 comprising primary adhesive 44 along a line approximately parallel to the lateral edges of lower major surface 20. In respective preferred embodiments, primary adhesive 44 cures after the solder has melted.


After appreciating this specification, those of skill will recognize that force F may be applied by several methods and apparatus including weights and fixtures that apply force F during the reflow operation that melts contacts 26. For example, an alternate system using a fixture 40 to apply force F is shown in FIG. 1C. These processes are amenable to implementation in standard pick and place operations known in the art.


As shown in FIGS. 1A-1C, portions of flex circuitry 30 may be partially wrapped about form standard 35 and, preferably, bonded by primary adhesive to the upper surface of form standard 35. In such wrapped configuration, flex circuitry 30 also becomes partially wrapped about lateral sides of lower major surface 20 of CSP 12. Flex circuitry 30 disposed in such wrapped configuration may express contacts to connect with contacts 26 of another unit 58 or contacts of another CSP or leaded package integrated circuit. Details of such wrapping and connecting methods and structures are not repeated, but are disclosed, for example, by U.S. Pat. No. 6,576,992 B1, No. 6,914,324 B2, and No. 6,940,729 B2, each of which is incorporated herein by reference.



FIG. 1D depicts a unit 58 devised in accordance the described methods and comprising CSP 12, form standard 35, and flex circuitry 30. FIG. 1D illustrates an adhesive failure 60 at the bond between flex circuitry 30 and form standard 35. Adhesive failures may be caused by handling and manufacturing variances during the production process. An adhesive failure 60 may allow relaxation of flex circuitry 30 and distorted solder joints 61, which in turn may cause undesirable deviation from coplanarity of a circuit module or its components.


The use of supplemental adhesive provides additional support to the flex circuitry configuration. Various advantages may result from such additional support, such as an increase in the integrity of component alignment in case of an adhesive failure.



FIG. 2 depicts a preferred embodiment in which supplemental adhesive 46 is disposed between CSP 12 and flex circuitry 30 and between sets of contacts 26 so that the supplemental adhesive bonds formed by supplemental adhesive 46 are distal from and between the primary adhesive bonds formed by primary adhesive 44. In the illustrated embodiment, supplemental adhesive is disposed along a line approximately parallel to the lateral edges of lower major surface 20. Supplemental adhesive 46 can be the same adhesive used for primary adhesive 44 or a different adhesive, but preferably will allow solder reflow without interfering with the geometry of solder joints 56, for example by curing after solder joints 56 have formed and stabilized. FIG. 3 depicts unit 58 of such embodiment fully assembled for stacking.


Depending on the configuration of integrated circuit package 12, contacts 26, flex circuitry 30, and other components that may be comprised in unit 58, those of skill in the art will appreciate that the quantity of supplemental adhesive 46 can be varied according to the desired volume of the supplemental bond with the flex circuit. For example, FIG. 4A depicts the use of a lesser quantity of supplemental adhesive 46 to fill the smaller gap between the overmold disposed on lower major surface 20 of CSP 12 and the flex circuitry 30 of the illustrated embodiment, compared with FIG. 4B that depicts the use of a greater quantity of supplemental adhesive 46 to fill the larger gap between the planar lower major surface 20 of CSP 12 and the flex circuitry 30 of that illustrated embodiment. For further example, similar variations in the quantity of supplemental adhesive 46 may be appropriate to accommodate variations in the heights of solder joints 56. Those of skill in the art further will appreciate that other or additional locations may be available at which the use of varying amounts and types of supplemental adhesive in accordance with the invention disclosed herein may increases the integrity of component alignment in case of an adhesive failure.


As depicted for example in FIG. 5, stiffeners 51 may be used for embodiments that do not deploy a form standard such as form standard 35 of FIGS. 1-4. As shown in FIGS. 5 and 6, the flex circuitry in the disclosed embodiments partially wraps around lateral edges of lower major surface 20 of CSP 12, and primary adhesive 44 is disposed proximal to such lateral edges. In such embodiments, an adhesive failure may occur at the bond between a stiffener 51 and CSP 12, as depicted for example in FIG. 5. FIG. 6 illustrates the deployment of supplemental adhesive 46 proximal to lower major surface 20 of CSP 12 but distal from the bond of primary adhesive 44 in accordance with a preferred embodiment of the present invention, and the resulting improvement in the geometry of distorted solder joints 61 and the coplanarity of flex circuitry 30 and CSP 12.


In various circuit module configurations, one or more integrated circuit packages may have depopulated contact locations or deactivated contacts that can be removed to create depopulated contact locations. Flex circuitry on which such integrated circuit packages are mounted may have populated and depopulated contact locations corresponding to the contacts of such integrated circuit packages. In addition or alternatively, the flex circuitry may have vacant areas disposed proximal to an integrated circuit package or other rigid component. For example, FIG. 7A discloses an embodiment having flex circuitry 30 having two contact arrays, each 3 by 15 in dimension. Also shown on flex circuitry 30 are various contact array locations populated with contacts 24, various contact array locations 38 having no contacts and thus depopulated of contacts, and vacant area 39 between the respective contact arrays.



FIG. 7B depicts supplemental adhesive 46 disposed on flex circuitry 30 in accordance with a preferred embodiment of the present invention. In the illustrated embodiment, supplemental adhesive 46 is disposed to form supplemental adhesive bonds on vacant area 39 of flex circuitry 30 between the respective contact arrays and locations 38 of flex circuitry 30 depopulated of contacts. FIG. 8 depicts a side view of such embodiment.


Circuit modules frequently have components bonded together by an adhesive. Previous configurations of such circuit modules know in the art use bonds that comprised only a thermoset adhesive film or epoxy. Such configurations typically require components to clamped or otherwise held under load during thermal cure of the adhesive or epoxy, which could be a slow and complicated process. Alternate configurations using an adhesive that sets or cures rapidly typically exhibit adhesive bonds having undesirable flexibility, elasticity, or compliance at transient or operating temperatures.


In various embodiments of the invention, a circuit module has bonded components in which the bond comprises plural adhesive types. For example, various embodiments disclosed herein bond components with a rapid bond adhesive and a structural bond adhesive. Such embodiments may be employed to advantage with many of the wide range of CSP and leaded package configurations available in the art. Modules in accordance with various preferred embodiments of the present invention may comprise plural base elements exclusively, as in a memory circuit module having plural memory integrated circuit packages as base elements 12, or may comprise one or more base elements deployed with support elements, as in a system circuit module having a microprocessor as base element 12 and memory and other support circuitry packaged in a variety of configurations as support elements depicted in FIGS. 9D, 9F, and 9G for example as support elements 14 and 16. Those of skill in the art will readily appreciate, that the invention can employed to advantage with a variety of combinations of packages including leaded packages and CSPs and other configurations of packaged ICs.



FIG. 9A depicts a preferred embodiment of the present invention having two base elements 12 disposed in a stacked configuration connected by flex circuitry 30. As discussed above, in this embodiment supplemental adhesive 46 is disposed as indicated between flex circuitry 30 and each of base elements 12. Base elements 12 are bonded in this embodiment by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9B depicts a preferred embodiment of the present invention having base element 12 and a CSP support element 16 disposed in a stacked configuration on upper major surface 18 of base element 12. As discussed above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12 and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9B, those of skill in the art will appreciate its configuration from the disclosure above. Base element 12 and support element 16 are bonded in this embodiment by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9C depicts a preferred embodiment of the present invention in which a base element 12 is disposed in a stacked configuration with a leaded support element 16. As discussed above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12 and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9C, those of skill in the art will appreciate its configuration from the disclosure above. Base element 12 and support element 16 are bonded in this embodiment by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9D depicts a circuit module 10 devised in accordance with a preferred embodiment of the invention comprising base element 12 disposed in a stacked configuration with support elements 14 and 16. This embodiment aggregates base element 12 and support element 14 each deployed as CSPs with support element 16 deployed as a leaded package device having leads 31. In accordance with the discussion above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12, support element 14, and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9D, those of skill in the art will appreciate its configuration from the disclosure above. Base element 12 is bonded to support element 14 and support element 16, respectively, by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9E depicts an alternative preferred embodiment of the invention employed to aggregate leaded packages. Depicted base element 12 and support element 16 are each deployed as a leaded package device having leads 31. In accordance with the discussion above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12 and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9B, those of skill in the art will appreciate its configuration from the disclosure above. Base element 12 and support element 16 are bonded in this embodiment by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9F depicts a preferred embodiment of the present invention that employs a CSP base element 12 and CSP support elements 14 and 16. Heat spreader 34 is disposed between base element 12 and support elements 14 and 16. As depicted in FIG. 9F, heat spreader 34 is in contact with a portion of casing 36 of an environment in which circuit module 10 is deployed. As discussed above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12, support element 14, and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9F, those of skill in the art will appreciate its configuration from the disclosure above. Each of base element 12, support element 14, and support element 16 are respectively bonded to heat spreader 34 by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIG. 9G depicts base element 12 and support elements 14 and 16 each deployed as CSPs, with support elements 14 and 16 extending beyond the physical boundaries of base element 12. As discussed above, in this embodiment supplemental adhesive 46 is disposed to bond base element 12, support element 14, and support element 16, respectively, to flex circuitry 30. Although supplemental adhesive 46 disposed to bond base element 12 to flex circuitry 30 is not illustrated in FIG. 9G, those of skill in the art will appreciate its configuration from the disclosure above. Base element 12 is bonded to support element 14 and support element 16, respectively, by rapid bond adhesive 47 and structural bond adhesive 48, as more fully discussed below with respect to FIGS. 10-15.



FIGS. 10 and 11 depict a preferred embodiment of a circuit module having bonded components in which the bond comprises plural adhesive types. In this embodiment, plural CSPs 12 are connected to flex circuitry 30 using supplemental adhesive 46 as discussed above. A rapid bond adhesive 47 and a structural bond adhesive 48 are applied to the upper major surface 18 of a CSP 12 as indicated, thus resulting in the disposition of respective adhesive bonds. Flex circuitry 30 is folded so that upper major surfaces 18 of each CSP 12 are adjacent and brought into contact as shown in FIG. 11 under an initial application of force sufficient to bond CSPs 12 with rapid bond adhesive 47. Accordingly, additional adhesive bonds are disposed on CSP 12 not receiving the initial application of rapid bond adhesive 47 and a structural bond adhesive 48. While CSPs 12 are held in such configuration by rapid bond adhesive 47, structural bond adhesive 48 is allowed to set or cure and create another bond between CSPs 12.


Rapid bond adhesive 47 preferably is a pressure sensitive adhesive that quickly forms a bond and maintains the bond during successive solder reflow operations used to form high-temperature solder joints, sources of which are known in the art. Structural bond adhesive 48 preferably is thermoplastic bonding film with high shear and peel strength, sources of which also are known in the art. During assembly the application of heat and the termoplastic properties of such structural bond adhesive 48 allow structural bond adhesive 48 to conform to and fill bounded volumes defined by rapid bond adhesive 47 and/or other structures. In addition, components can be debonded with the application of heat and force to perform any required rework of the circuit module. Accordingly, embodiments using such types of rapid bond adhesive 47 and structural bond adhesive 48 offer quick and uncomplicated assembly along with a more stable and rigid bond at transient or operating temperatures.



FIG. 12 depicts additional preferred embodiments of the invention. In each of these embodiments, rapid bond adhesive 47 is applied to the upper major surface 18 of a CSP 12 as indicated, resulting in the disposition of an adhesive bond. Again, rapid bond adhesive 47 preferably is a pressure sensitive adhesive that quickly forms a bond and maintains the bond during successive solder reflow operations used to form high-temperature solder joints. Structural bond adhesive 48 also is applied as indicated to dispose another adhesive bond, but in these embodiments structural bond adhesive 48 is a thermoset adhesive or epoxy or an RTV adhesive, sources of which are known in the art. As with previously described embodiments, flex circuitry 30 then is folded so that upper major surfaces 18 of each CSP 12 are adjacent and brought into contact (similar to the depiction of FIG. 11) under an initial application of force sufficient to bond CSPs 12 with rapid bond adhesive 47, thus disposing respective adhesive bonds on CSP 12 not receiving the initial application of rapid bond adhesive 47 and a structural bond adhesive 48. While CSPs 12 are held in such configuration by rapid bond adhesive 47, structural bond adhesive 48 is allowed to set or cure and create another bond between CSPs 12. Depending on the structural bond adhesive 48 used, a rapid-cure system or ultraviolet light curing system alternatively may be employed to decrease the cure time. Such rapid-cure systems and ultraviolet light curing systems are known in the art.



FIGS. 13-15 depicts an additional preferred embodiments of the invention. In this embodiment, rapid bond adhesive 47 is applied to the upper major surface 18 of a CSP 12 as indicated in FIGS. 13 and 14. FIG. 14B depicts a cross section along line 14B-14B shown in FIG. 14A. Again, rapid bond adhesive 47 preferably is a pressure sensitive adhesive that quickly forms a bond and maintains the bond during successive solder reflow operations used to form high-temperature solder joints. As with previously described embodiments, flex circuitry 30 then is folded so that upper major surfaces 18 of each CSP 12 are adjacent and brought into contact (similar to the depiction of FIG. 11) under an initial application of force sufficient to bond CSPs 12 with rapid bond adhesive 47. After the bond of rapid bond adhesive 47 is established, structural bond adhesive 48 is injected into gaps between upper major surfaces 18 of CSP 12, resulting in the disposition of additional adhesive bonds on each of the CSPs. In this embodiment, structural bond adhesive 48 comprises a thermoset, snap-cure, or ultraviolet light curable adhesive known in the art.


Although the present invention has been described in detail, it will be apparent to those skilled in the art that the invention may be embodied in a variety of specific forms and that various changes, substitutions, alterations, and additions can be made without departing from the spirit and scope of the invention. The described embodiments are only illustrative and not restrictive, and therefore do not restrict or limit the scope of the invention, which is defined by the following claims.

Claims
  • 1. A circuit module comprising: a first integrated circuit in stacked conjunction witha second integrated circuit;the first integrated circuit and the second integrated circuit being disposed in stacked alignment maintained by a first adhesive bond comprising rapid bond adhesive;a second adhesive bond disposed on the first integrated circuit and the second integrated circuit comprising structural bond adhesive; anda flex circuit having plural contact arrays, said flex being attached to the first integrated circuit with supplemental adhesive disposed between the plural contact arrays.
  • 2. The circuit module of claim 1 in which the rapid bond adhesive comprises a pressure sensitive adhesive that bonds quickly and maintains the bond through repeated exposure to temperatures required to form high-temperature solder joints.
  • 3. The circuit module of claim 1 in which the structural bond adhesive comprises thermoplastic bonding film with high shear and peel strength.
  • 4. The circuit module of claim 1 in which the structural bond adhesive comprises a snap-cure or ultraviolet light curable adhesive.
  • 5. The circuit module of claim 1 in which the structural bond adhesive comprises a thermoset adhesive or epoxy or an RTV adhesive.
  • 6. A circuit module comprising: a first integrated circuit of a first type in a stacked conjunction with two integrated circuits of a second type;a first adhesive bond disposed on the first integrated circuit comprising rapid bond adhesive;a second adhesive bond disposed on the two integrated circuits of second type; anda flex circuit connecting the first integrated circuit of first type and the two integrated circuits of second type, said flex circuit having at least two contact arrays and said flex circuit being attached to said two integrated circuits of second type with supplemental adhesive disposed on the flex circuit between said at least two contact arrays.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/958,584, filed Oct. 5, 2004, pending, which is a continuation of U.S. patent application Ser. No. 10/136,890, filed May 2, 2002, now U.S. Pat. No. 6,940,729 B2, issued Sep. 6, 2005, each of which is incorporated herein by reference. This application also is a continuation-in-part of U.S. patent application Ser. No. 10/873,847, filed Jun. 22, 2004, now U.S. Pat. No. 7,094,632, which is a continuation of U.S. patent application Ser. No. 10/631,886, filed Jul. 11, 2003, now U.S. Pat. No. 7,026,708, which is a continuation-in-part of U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, now U.S. Pat. No. 6,914,324 B2, issued Jul. 5, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. Pat. No. 6,576,992 B2, issued Jun. 10, 2003, each of which is incorporated herein by reference. U.S. patent application Ser. No. 10/631,886 also is a continuation-in-part of U.S. patent application Ser. No. 10/457,608, filed Jun. 9, 2003, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. patent application Ser. No. 6,576,992 B2, issued Jun. 10, 2003. U.S. patent application Ser. No. 10/457,608 is incorporated herein by reference.

US Referenced Citations (536)
Number Name Date Kind
3294988 Packard Dec 1966 A
3372310 Kantor Mar 1968 A
3411122 Schiller et al. Nov 1968 A
3436604 Hyltin Apr 1969 A
3654394 Gordon Apr 1972 A
3704455 Scarbrough Nov 1972 A
3718842 Abbott, III et al. Feb 1973 A
3727064 Bottini Apr 1973 A
3746934 Stein Jul 1973 A
3766439 Isaacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
3806767 Lehrfeld Apr 1974 A
3983547 Almasi Sep 1976 A
4079511 Grabbe Mar 1978 A
4103318 Schwede Jul 1978 A
4169642 Mouissie Oct 1979 A
4288841 Gogal Sep 1981 A
4342069 Link Jul 1982 A
4381421 Coats et al. Apr 1983 A
4398235 Lutz et al. Aug 1983 A
4406508 Sadigh-Behzadi Sep 1983 A
4420794 Anderson Dec 1983 A
4429349 Zachry Jan 1984 A
4513368 Houseman Apr 1985 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4656605 Clayton Apr 1987 A
4672421 Lin Jun 1987 A
4682207 Akasaki et al. Jul 1987 A
4696525 Coller et al. Sep 1987 A
4709300 Landis Nov 1987 A
4712129 Orcutt Dec 1987 A
4722691 Gladd et al. Feb 1988 A
4724611 Hagihara Feb 1988 A
4727513 Clayton Feb 1988 A
4733461 Nakano Mar 1988 A
4758875 Fujisaki et al. Jul 1988 A
4763188 Johnson Aug 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4839717 Phy et al. Jun 1989 A
4850892 Clayton et al. Jul 1989 A
4855810 Gelb et al. Aug 1989 A
4862249 Carlson Aug 1989 A
4884237 Mueller et al. Nov 1989 A
4891789 Quattrini et al. Jan 1990 A
4903169 Kitagawa et al. Feb 1990 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4972580 Nakamura Nov 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
4992849 Corbett et al. Feb 1991 A
4992850 Corbett et al. Feb 1991 A
5012323 Farnworth Apr 1991 A
5014115 Moser May 1991 A
5014161 Lee et al. May 1991 A
5016138 Woodman May 1991 A
5025306 Johnson et al. Jun 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5041902 McShane Aug 1991 A
5050039 Edfors Sep 1991 A
5053853 Haj-Ali-Ahmadi et al. Oct 1991 A
5057903 Olla Oct 1991 A
5064782 Nishiguchi Nov 1991 A
5065277 Davidson Nov 1991 A
5068708 Newman Nov 1991 A
5081067 Shimizu et al. Jan 1992 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5109318 Funari et al. Apr 1992 A
5117282 Salatino May 1992 A
5119269 Nakayama Jun 1992 A
5122862 Kajihara et al. Jun 1992 A
5138430 Gow, III et al. Aug 1992 A
5138434 Wood et al. Aug 1992 A
5140405 King et al. Aug 1992 A
5158912 Kellerman et al. Oct 1992 A
5159434 Kohno et al. Oct 1992 A
5159535 Desai et al. Oct 1992 A
5168926 Watson et al. Dec 1992 A
5173840 Kodai et al. Dec 1992 A
5191404 Wu et al. Mar 1993 A
5198888 Sugano et al. Mar 1993 A
5198965 Curtis et al. Mar 1993 A
5208729 Cipolla et al. May 1993 A
5214307 Davis May 1993 A
5219377 Poradish Jun 1993 A
5219794 Satoh et al. Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229641 Katayama Jul 1993 A
5229916 Frankeny et al. Jul 1993 A
5229917 Harris et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5240588 Uchida Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewiez et al. Aug 1993 A
5243133 Engle et al. Sep 1993 A
5247423 Lin et al. Sep 1993 A
5252855 Ogawa et al. Oct 1993 A
5252857 Kane et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5262927 Chia et al. Nov 1993 A
5266746 Nishihara et al. Nov 1993 A
5268815 Cipolla et al. Dec 1993 A
5276418 Klosowiak et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281852 Normington Jan 1994 A
5289062 Wyland Feb 1994 A
5289346 Carey et al. Feb 1994 A
5311401 Gates, Jr. et al. May 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
4437235 Burns Aug 1994 A
5337388 Jacobowitz et al. Aug 1994 A
5343075 Nishino Aug 1994 A
5343366 Cipolla et al. Aug 1994 A
5345205 Kornrumpf Sep 1994 A
5347159 Khandros et al. Sep 1994 A
5347428 Carson et al. Sep 1994 A
5357478 Kikuda et al. Oct 1994 A
5361228 Adachi et al. Nov 1994 A
5362656 McMahon Nov 1994 A
5375041 McMahon Dec 1994 A
5377077 Burns Dec 1994 A
5384690 Davis et al. Jan 1995 A
5386341 Olson et al. Jan 1995 A
5394010 Tazawa et al. Feb 1995 A
5394300 Yoshimura Feb 1995 A
5394303 Yamaji Feb 1995 A
5396573 Ecker et al. Mar 1995 A
5397916 Normington Mar 1995 A
5400003 Kledzik Mar 1995 A
5402006 O'Donley Mar 1995 A
5420751 Burns May 1995 A
5428190 Stopperan Jun 1995 A
5432630 Lebby et al. Jul 1995 A
5438224 Papageorge et al. Aug 1995 A
5446620 Burns et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5455740 Burns Oct 1995 A
5475920 Burns et al. Dec 1995 A
5477082 Buckley, III et al. Dec 1995 A
5479318 Burns Dec 1995 A
5484959 Burns Jan 1996 A
5491612 Nicewarner, Jr. et al. Feb 1996 A
5493476 Burns Feb 1996 A
5499160 Burns Mar 1996 A
5502333 Bertin et al. Mar 1996 A
5509197 Stone Apr 1996 A
5514907 Moshayedi May 1996 A
5516989 Uedo et al. May 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5541812 Burns Jul 1996 A
5543664 Burns Aug 1996 A
5561591 Burns Oct 1996 A
5566051 Burns Oct 1996 A
5567654 Beilstein et al. Oct 1996 A
5572065 Burns Nov 1996 A
5588205 Roane Dec 1996 A
5592364 Roane Jan 1997 A
5594275 Kwon et al. Jan 1997 A
5600178 Russell Feb 1997 A
5610833 Chang et al. Mar 1997 A
5612570 Eide et al. Mar 1997 A
5620782 Davis et al. Apr 1997 A
5631191 Durand et al. May 1997 A
5631193 Burns May 1997 A
5642055 Difrancesco Jun 1997 A
5644161 Burns Jul 1997 A
5644839 Stone Jul 1997 A
5646446 Nicewarner, Jr. et al. Jul 1997 A
5654877 Burns Aug 1997 A
5657537 Saia et al. Aug 1997 A
5661339 Clayton Aug 1997 A
5677569 Choi et al. Oct 1997 A
5686730 Laudon et al. Nov 1997 A
5708297 Clayton Jan 1998 A
5714802 Cloud et al. Feb 1998 A
5717556 Yanagida Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5731633 Clayton Mar 1998 A
5744827 Jeong et al. Apr 1998 A
5744862 Ishii Apr 1998 A
5749997 Tang et al. May 1998 A
5751553 Clayton May 1998 A
5754409 Smith May 1998 A
5763296 Casati et al. Jun 1998 A
5764497 Mizumo et al. Jun 1998 A
5776797 Nicewarner, Jr. et al. Jul 1998 A
5778522 Burns Jul 1998 A
5783464 Burns Jul 1998 A
5783870 Mostafazadeh et al. Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5790380 Frankeny Aug 1998 A
5790447 Laudon et al. Aug 1998 A
5801437 Burns Sep 1998 A
5801439 Fujisawa et al. Sep 1998 A
5802395 Connolly et al. Sep 1998 A
5804870 Burns Sep 1998 A
5805422 Otake et al. Sep 1998 A
5828125 Burns Oct 1998 A
5835988 Ishii Nov 1998 A
5841721 Kwon et al. Nov 1998 A
5852326 Khandros et al. Dec 1998 A
5869353 Levy et al. Feb 1999 A
5872051 Fallon et al. Feb 1999 A
5895969 Masuda et al. Apr 1999 A
5895970 Miyoshi et al. Apr 1999 A
5899705 Akram May 1999 A
5917709 Johnson et al. Jun 1999 A
5922061 Robinson Jul 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5933712 Bernhardt et al. Aug 1999 A
5949657 Karabatsos Sep 1999 A
5953214 Dranchak et al. Sep 1999 A
5953215 Karabatsos Sep 1999 A
5956234 Mueller Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bollesen Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6008538 Akram et al. Dec 1999 A
6013948 Akram et al. Jan 2000 A
6014316 Eide Jan 2000 A
6021048 Smith Feb 2000 A
6025642 Burns Feb 2000 A
6028352 Eide Feb 2000 A
6028365 Akram et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6038132 Tokunaga et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6049975 Clayton Apr 2000 A
6060339 Akram et al. May 2000 A
6072233 Corisis et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6084293 Ohuchi Jul 2000 A
6084294 Tomita Jul 2000 A
6084778 Malhi Jul 2000 A
6091145 Clayton Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6102710 Beilin et al. Aug 2000 A
6111757 Dell et al. Aug 2000 A
6111761 Peana et al. Aug 2000 A
6114763 Smith Sep 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6130477 Chen et al. Oct 2000 A
6147398 Nakazato et al. Nov 2000 A
6157541 Hacke Dec 2000 A
6165817 Akram Dec 2000 A
6166443 Inaba et al. Dec 2000 A
6172874 Bartilson Jan 2001 B1
6178093 Bhatt et al. Jan 2001 B1
6180881 Isaak Jan 2001 B1
6186106 Glovatsky Feb 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6208546 Ikeda Mar 2001 B1
6214641 Akram Apr 2001 B1
6215181 Akram et al. Apr 2001 B1
6215687 Sugano et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222737 Ross Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6225688 Kim et al. May 2001 B1
6232659 Clayton May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6236565 Gordon May 2001 B1
6262476 Vidal Jul 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6265766 Moden Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6271058 Yoshida Aug 2001 B1
6272741 Kennedy et al. Aug 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6285560 Lyne Sep 2001 B1
6288907 Burns Sep 2001 B1
6288924 Sugano et al. Sep 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6303981 Moden Oct 2001 B1
6310392 Burns Oct 2001 B1
6313998 Kledzik Nov 2001 B1
6316825 Park et al. Nov 2001 B1
6320137 Bonser et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6329708 Komiyama Dec 2001 B1
6336262 Dalal et al. Jan 2002 B1
6343020 Lin et al. Jan 2002 B1
6347394 Ochoa et al. Feb 2002 B1
6349050 Woo et al. Feb 2002 B1
6351029 Isaak Feb 2002 B1
6358772 Miyoshi Mar 2002 B2
6360433 Ross Mar 2002 B1
6360935 Flake Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6370668 Garrett, Jr. et al. Apr 2002 B1
6376769 Chung Apr 2002 B1
6384339 Neuman May 2002 B1
6392162 Karabatsos May 2002 B1
6395391 Oka et al. May 2002 B1
6404043 Isaak Jun 2002 B1
6410857 Gonya Jun 2002 B1
6414384 Lo et al. Jul 2002 B1
6416386 Hembree Jul 2002 B2
6423622 Chen et al. Jul 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6426560 Kawamura et al. Jul 2002 B1
6428360 Hassanzadeh et al. Aug 2002 B2
6433418 Fujisawa et al. Aug 2002 B1
6437990 Degani et al. Aug 2002 B1
6441476 Emoto Aug 2002 B1
6444490 Bertin et al. Sep 2002 B2
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6447321 Perino et al. Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6462408 Wehrly, Jr. Oct 2002 B1
6462412 Kamei et al. Oct 2002 B2
6462423 Akram et al. Oct 2002 B1
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6469377 Kondo Oct 2002 B1
6472735 Isaak Oct 2002 B2
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6487078 Kledzik et al. Nov 2002 B2
6489178 Coyle et al. Dec 2002 B2
6489687 Hashimoto Dec 2002 B1
6492718 Ohmori Dec 2002 B2
6500697 Ahmad Dec 2002 B2
6502161 Perego et al. Dec 2002 B1
6504104 Hacke et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514793 Isaak Feb 2003 B2
6521530 Peters et al. Feb 2003 B2
6522018 Tay et al. Feb 2003 B1
6528870 Fukatsu et al. Mar 2003 B2
6531772 Akram et al. Mar 2003 B2
6532162 Schoenborn Mar 2003 B2
6538895 Worz et al. Mar 2003 B2
6544815 Isaak Apr 2003 B2
6549413 Karnezos et al. Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6552948 Woo et al. Apr 2003 B2
6559521 Tuttle May 2003 B2
6560117 Moon May 2003 B2
6566746 Isaak et al. May 2003 B2
6572387 Burns et al. Jun 2003 B2
6573593 Syri et al. Jun 2003 B1
6576992 Cady et al. Jun 2003 B1
6588095 Pan Jul 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6608763 Burns et al. Aug 2003 B1
6614664 Lee Sep 2003 B2
6617510 Schreiber et al. Sep 2003 B2
6620651 He et al. Sep 2003 B2
6624507 Nguyen et al. Sep 2003 B1
6627984 Bruce et al. Sep 2003 B2
6629855 North et al. Oct 2003 B1
6646333 Hogerl Nov 2003 B1
6646335 Emoto Nov 2003 B2
6646936 Hamamatsu et al. Nov 2003 B2
6651320 Yagi et al. Nov 2003 B1
6657134 Spielberger et al. Dec 2003 B2
6660561 Forthun Dec 2003 B2
6661092 Shibata et al. Dec 2003 B2
6670700 Hashimoto Dec 2003 B1
6673651 Ohuchi et al. Jan 2004 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6689634 Lyne Feb 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6707148 Mostafazedeh et al. Mar 2004 B1
6707684 Andric et al. Mar 2004 B1
6709893 Moden et al. Mar 2004 B2
6710437 Takahashi et al. Mar 2004 B2
6720652 Akram et al. Apr 2004 B2
6721185 Dong et al. Apr 2004 B2
6721226 Woo et al. Apr 2004 B2
6724076 Kahlisch et al. Apr 2004 B1
6726346 Shoji Apr 2004 B2
6737891 Karabatsos May 2004 B2
6744656 Sugano et al. Jun 2004 B2
6746894 Fee et al. Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6756661 Tsuneda et al. Jun 2004 B2
6760220 Canter et al. Jul 2004 B2
6762495 Reyes et al. Jul 2004 B1
6762769 Moon et al. Jul 2004 B2
6765288 Damberg Jul 2004 B2
6768660 Kong et al. Jul 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6776797 Blom Aug 2004 B1
6778404 Bolken et al. Aug 2004 B1
6781240 Choi et al. Aug 2004 B2
6803651 Chiang Oct 2004 B1
6812567 Kim et al. Nov 2004 B2
6821029 Grung et al. Nov 2004 B1
6833981 Suwabe et al. Dec 2004 B2
6833984 Belgacem Dec 2004 B1
6838761 Karnezos Jan 2005 B2
6839266 Garrett, Jr. et al. Jan 2005 B1
6841855 Jaeck et al. Jan 2005 B2
6841868 Akram et al. Jan 2005 B2
6849949 Lyu et al. Feb 2005 B1
6850414 Benisek et al. Feb 2005 B2
6858910 Coyle et al. Feb 2005 B2
6867496 Hashimoto Mar 2005 B1
6869825 Chiu Mar 2005 B2
6873039 Beroz et al. Mar 2005 B2
6873534 Bhakta et al. Mar 2005 B2
6876074 Kim Apr 2005 B2
6878571 Isaak et al. Apr 2005 B2
6879047 Heo Apr 2005 B1
6884653 Larson Apr 2005 B2
6891729 Ko et al. May 2005 B2
6893897 Sweterlitsch May 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6908792 Bruce et al. Jun 2005 B2
6910268 Miller Jun 2005 B2
6913949 Pflughaupt et al. Jul 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
6927471 Salmon Aug 2005 B2
6927484 Thomas et al. Aug 2005 B2
6940158 Haba et al. Sep 2005 B2
6940729 Cady et al. Sep 2005 B2
6956883 Kamoto Oct 2005 B2
6965166 Hikita et al. Nov 2005 B2
6977440 Pflughaupt et al. Dec 2005 B2
6978538 DiStefano et al. Dec 2005 B2
6984885 Harada et al. Jan 2006 B1
6998704 Yamazaki et al. Feb 2006 B2
7023701 Stocken et al. Apr 2006 B2
7053485 Bang et al. May 2006 B2
7071547 Kang et al. Jul 2006 B2
7081373 Roeters et al. Jul 2006 B2
7104804 Batinovich Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7129571 Kang Oct 2006 B2
7149095 Warner et al. Dec 2006 B2
7180167 Partridge et al. Feb 2007 B2
7235871 Corisis Jun 2007 B2
7246431 Bang et al. Jul 2007 B2
7291906 Cha et al. Nov 2007 B2
7371609 Partridge et al. May 2008 B2
20010001085 Hassanzadeh et al. May 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010013423 Dalal et al. Aug 2001 A1
20010015487 Forthun Aug 2001 A1
20010020740 Moden et al. Sep 2001 A1
20010026009 Tsuneda et al. Oct 2001 A1
20010028588 Yamada et al. Oct 2001 A1
20010035572 Isaak Nov 2001 A1
20010040793 Inaba Nov 2001 A1
20010052637 Akram et al. Dec 2001 A1
20020001216 Sugano et al. Jan 2002 A1
20020006032 Karabatsos Jan 2002 A1
20020030975 Moon et al. Mar 2002 A1
20020030995 Shoji Mar 2002 A1
20020044423 Primavera et al. Apr 2002 A1
20020048849 Isaak Apr 2002 A1
20020076919 Peters et al. Jun 2002 A1
20020094603 Isaak Jul 2002 A1
20020101261 Karabatsos Aug 2002 A1
20020114143 Morrison et al. Aug 2002 A1
20020126951 Sutherland et al. Sep 2002 A1
20020139577 Miller Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020180022 Emoto Dec 2002 A1
20020185731 Akram et al. Dec 2002 A1
20020196612 Gall et al. Dec 2002 A1
20030002262 Benisek et al. Jan 2003 A1
20030016710 Kamoto Jan 2003 A1
20030020153 Bruce et al. Jan 2003 A1
20030026155 Yamagata Feb 2003 A1
20030035328 Hamamatsu et al. Feb 2003 A1
20030045025 Coyle et al. Mar 2003 A1
20030049886 Salmon Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030081387 Schulz May 2003 A1
20030081392 Cady et al. May 2003 A1
20030089978 Miyamoto et al. May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030096497 Moore et al. May 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030109078 Takahashi et al. Jun 2003 A1
20030113998 Ross Jun 2003 A1
20030116835 Miyamoto et al. Jun 2003 A1
20030146518 Hikita et al. Aug 2003 A1
20030159278 Peddle Aug 2003 A1
20030164551 Lee et al. Sep 2003 A1
20030168725 Warner et al. Sep 2003 A1
20040000708 Rapport et al. Jan 2004 A1
20040004281 Bai et al. Jan 2004 A1
20040012991 Kozaru Jan 2004 A1
20040021211 Damberg Feb 2004 A1
20040031972 Pflughaupt et al. Feb 2004 A1
20040045159 DiStefano et al. Mar 2004 A1
20040065963 Karnezos Apr 2004 A1
20040075991 Haba et al. Apr 2004 A1
20040099938 Kang et al. May 2004 A1
20040104470 Bang et al. Jun 2004 A1
20040115866 Bang et al. Jun 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040157362 Beroz et al. Aug 2004 A1
20040203190 Pflughaupt et al. Oct 2004 A1
20040217461 Damberg Nov 2004 A1
20040217471 Haba Nov 2004 A1
20040238931 Haba et al. Dec 2004 A1
20040245617 Damberg et al. Dec 2004 A1
20040267409 De Lorenzo et al. Dec 2004 A1
20050018495 Bhakta et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050040508 Lee Feb 2005 A1
20050047250 Ruckerbauer et al. Mar 2005 A1
20050108468 Hazelnut et al. May 2005 A1
20050133897 Baek et al. Jun 2005 A1
20050251586 Lin Nov 2005 A1
Foreign Referenced Citations (32)
Number Date Country
004215467 Nov 1992 DE
004214102 Dec 1992 DE
0298-211(A) Jan 1989 EP
0426-303 (A2) Oct 1990 EP
461-639(A) Dec 1991 EP
58-96756(A) Jun 1983 JP
58-112348(A) Jul 1983 JP
359088863 (A) May 1984 JP
60-254762 (A) Dec 1985 JP
60254762 Dec 1985 JP
361047659 (A) Mar 1986 JP
62-230027 (A) Aug 1987 JP
4-209562 (A) Jul 1992 JP
404368167 (A) Dec 1992 JP
50-29534 (A) Feb 1993 JP
63-153849 (A) Jun 1998 JP
2000-88921 Mar 2000 JP
2000307029 (A) Nov 2000 JP
3602000 Nov 2000 JP
2001077294 (A) Mar 2001 JP
2001085592 (A) Mar 2001 JP
2001332683 (A) Nov 2001 JP
2003037246 (A) Feb 2003 JP
2003086760 (A) Mar 2003 JP
2003086761 (A) Mar 2003 JP
2003-309246 (A) Oct 2003 JP
2003309247 (A) Oct 2003 JP
2003347475 (A) Dec 2003 JP
2003347503 (A) Dec 2003 JP
WO9744824 Nov 1997 WO
WO 9948140 Mar 1998 WO
WO 03037053 May 2003 WO
Related Publications (1)
Number Date Country
20060092614 A1 May 2006 US
Continuations (3)
Number Date Country
Parent 10136890 May 2002 US
Child 10958584 US
Parent 11263627 US
Child 10958584 US
Parent 10631886 Jul 2003 US
Child 10873847 US
Continuation in Parts (6)
Number Date Country
Parent 10958584 Oct 2004 US
Child 11263627 US
Parent 10873847 Jun 2004 US
Child 11263627 US
Parent 10453398 Jun 2003 US
Child 10631886 US
Parent 10005581 Oct 2001 US
Child 10453398 US
Parent 10457608 Jun 2003 US
Child 10631886 US
Parent 10005581 Oct 2001 US
Child 10457608 US