System and method for forming a gate dielectric

Abstract
A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming. The pre-treating includes providing an inert gas flow in a process zone surrounding the HF-last surface, reacting hydrogen with an oxidizer in the process zone for a very short duration, and providing an inert gas flew in the process zone after the reacting.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to forming gate dielectric in field effect transistors, and particularly to forming metal oxide/metal silicate gate dielectric films using chemical vapor deposition.


2. Description of the Related Art


The present invention is especially useful in forming complementary metal oxide semiconductor (CMOS) integrated-circuit devices and will be described in that context. Other applications will also be mentioned. CMOS technology has enabled the microelectronic industry to simultaneously meet several technological requirements to fuel market expansion. This has been accomplished largely by a calculated reduction (scaling) of the dimensions of the field-effect transistor (FET). FIG. 1 illustrates portions of a cross sectional view of a field effect transistor (FET) pair in a typical complimentary metal oxide semiconductor (CMOS) device. Device 100 comprises a silicon wafer 155 doped with a p-type material, a p-type epitaxial silicon layer 165 on wafer 155, a p-type well region 120 and an n-type well region 150 defined in epitaxial layer 165, an n-type transistor (NMOS FET) 110 defined in p-well 120 and a p-type transistor (PMOS FET) 140 defined in n-well 150. Region 180 electrically isolates NMOS 110 and PMOS 140 transistors and region 160 electrically isolates the pair of transistors 110 and 140 from other semiconductor devices on substrate 155.


NMOS transistor 110 comprises a gate region 122, a source region 114 and a drain region 116. The source and drain regions are n-type regions on opposite sides of gate region 122. Channel region 118 is interposed between source region 114 and drain region 116. A gate dielectric layer 112 separates channel region 118 and gate region 122. Gate dielectric 112 electrically insulates gate region 122 from channel region 118. The gate region comprises a conductor material, typically doped polycrystalline silicon (polysilicon) or amorphous silicon. The dopant may be an n-type dopant such as a phosphorus or a p-type dopant such as boron. When an appropriate voltage is applied between p-type silicon wafer 155 and gate region 122, electrons from p-well 120 move into region 118 directly below dielectric 112 thereby creating an n-type channel 118. A voltage applied between source 114 and drain 116 causes current to flow between source 114 and drain 116.


PMOS transistor 140 comprises a gate region 152, a source region 144 and a drain region 146. The source and drain regions are p-type regions on opposite sides of gate region 152. Channel region 148 is interposed between source region 144 and drain region 146. A gate dielectric 142 separates channel region 148 and gate region 152. Dielectric 142 electrically insulates gate region 152 from channel region 148. The gate region comprises a conductor material typically doped polysilicon or amorphous silicon. Again, the dopant may be an n-type or p-type material. When an appropriate voltage is applied between p-type silicon wafer 155 and gate region 152, holes from n-well 150 move into region 148 directly below dielectric layer 142 thereby creating a p-type channel 148. A voltage applied between source 144 and drain 146 causes current to flow between source 144 and drain 146.


With the rapid shrinking of the transistor feature size, the gate dielectric thickness has also decreased. For several decades, silicon dioxide has been the material of choice for the gate dielectric layer. Silicon dioxide offers a stable high-quality Si—SiO2 interface and superior electrical isolation properties.


However, as the dimensions of the transistor continue to decrease, the continued use of silicon dioxide as a dielectric gate material is problematic. The fundamental problem is the need to keep the capacitance of the gate high while the area of the gate is shrinking faster than the thickness of the gate dielectric. The capacitance C of the gate is given by C=kE0A/d, wherein A is the area of the gate, d is the thickness of the dielectric layer, k is the dielectric constant, and E0 is the permittivity of free space. In order to ensure higher gate oxide capacitance, the silicon dioxide layer thickness proportionately has been decreased to less than 2 nanometers as the area of the gate has been decreasing. However, future generations will likely require a further reduction to below 1.0 nanometer. The primary issue is that as thickness decreases, leakage current increases. This leakage in current is due primarily to the ability of the electrons to go through the thinner SiO2 dielectric layer. In an example, current density for a 1.5 nanometer thick SiO2 layer at 1 V is 1 A/cm2; however, as the SiO2 thickness decreases to 1 nanometer, the leakage-current density approaches 100 A/cm2 at the same operating voltage.


Consequently, there is a need for an alternative gate dielectric material that can be used in a large enough physical thickness to reduce current leakage density and still provide a high gate capacitance. In order to achieve this, the alternative gate dielectric material must have a dielectric constant that is higher than that of silicon dioxide. Typically, the thickness of such an alternative dielectric material layer is expressed in terms of the equivalent oxide thickness (EOT). Thus, the equivalent oxide thickness (EOT) of an alternative dielectric layer in a particular capacitor is the thickness that the alternative dielectric layer would have if its dielectric constant were that of silicon dioxide.


Another consideration in selecting an alternative dielectric material is the mobility of charge carries in the transistor channel. The material selected for the dielectric film affects the mobility of the carriers in the transistor channel, thereby affecting overall transistor performance. It is desirable to find an alternative dielectric material for which the mobility of carriers in the transistor channel is equivalent to or higher than that for silicon dioxide gate dielectric films. For future generation transistors, a peak mobility of 400 cm2/Vs or greater is desirable.


SUMMARY OF THE INVENTION

The present invention comprises forming a metal oxide, metal silicate, or combination metal oxide-metal silicate dielectric stack on a semiconductor wafer.


In one embodiment, the method comprises pre-treating the semiconductor wafer, e.g., to remove oxide, with hydrofluoric acid to form an HF-last surface and then pre-treating the HF-last surface with ozonated water for a specified time period. After pre-treating, a dielectric stack is formed on the pre-treated surface using a chemical vapor deposition process. A flow of NH3 is then provided in a process zone surrounding the semiconductor wafer. In one embodiment, after providing the NH3 flow, a polycrystalline or amorphous silicon gate is formed over the dielectric stack using a LPCVD process.


In another embodiment, the method of forming a dielectric stack on a semiconductor wafer comprises pre-treating the semiconductor wafer with hydrofluoric acid to form an HF-last surface, pre-treating the HF-last surface with NH3, forming the dielectric stack on the pre-treated surface, and providing a flow of N2 in a process zone surrounding the semiconductor wafer after forming the dielectric stack.


In yet another embodiment, the method of forming a dielectric stack on a semiconductor wafer comprises pre-treating the semiconductor wafer with hydrofluoric acid to form an HF-last surface, pre-treating the HF-last surface using an in-situ steam generation process, forming the dielectric stack on the pre-treated surface, and annealing the semiconductor wafer after forming the dielectric stack. The in-situ steam generation process comprises providing an inert gas flow in a process zone surrounding the HF-last surface, reacting hydrogen with an oxidizer in the process zone surrounding the HF-last surface for a very short duration, and providing an inert gas flow in the process zone after the reacting step. Preferably, the dielectric stack comprises layers of hafnium oxide, hafnium silicate layers, or a combination thereof formed using a MOCVD process.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention, and other features contemplated and claimed herein, are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.


Additional objects and features of the invention will be more readily apparent from the following detailed description and appended claims when taken in conjunction with the drawings, in which:



FIG. 1 illustrates portions of a cross sectional view of field effect transistor (FET) pair in a typical complimentary metal oxide semiconductor (CMOS) device.



FIG. 2 illustrates a cross-sectional view of a portion of a transistor having a dielectric stack.



FIG. 3 illustrates the processing steps used to form a hafnium oxide and hafnium silicate gate dielectric stack.



FIG. 4 illustrates the general chemical structure for the hafnium oxide precursors of the form Hf(NRR′)4.



FIG. 5 illustrates the chemical structure of the TDEAH precursor.



FIG. 6 illustrates the general chemical structure for precursors of the form SiR1R2R3R4.



FIG. 7 illustrates the chemical structure of the TDMAS precursor.



FIG. 8 illustrates the processing steps used to form a hafnium oxide and hafnium silicate gate dielectric stack.



FIG. 9 illustrates the processing steps that may be used for forming the dielectric stack using a flash in-situ steam generation (ISSG) pre-treatment process.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 2 illustrates a cross-sectional view of a portion of a field effect (FET) 200 transistor having a dielectric stack in accordance with an embodiment of the invention. FET 200 comprises a source 250, a drain 240, a gate 210, a dielectric stack 260 and a channel 270 interposed between source 250 and drain 240. Preferably, the transistor is formed on a silicon wafer and the gate is made of polycrystalline or amorphous silicon. In a PMOS FET, source 250 and drain 240 comprise a p-type silicon and in an NMOS FET, source 250 and drain 240 comprise an n-type silicon.


In one embodiment, dielectric stack 260 comprises at least two layers, where each layer comprises either a metal oxide layer or a metal silicate layer. In the embodiment shown, there is a metal oxide layer 230 and a metal silicate layer 220. The stack is formed using any metal that is capable of forming a high-k layer, e.g., HfO2, ZrO2. A high-k layer comprises a dielectric material having a dielectric constant greater than 4. Preferably, metal oxide layer 230 and metal silicate layer 220 comprise any metal that can form amino precursors. More preferably, metal oxide layer 230 comprises hafnium oxide and the metal silicate layer 220 comprises hafnium silicate. In one embodiment, the hafnium oxide layer thickness is about 3 nanometers and the hafnium silicate layer thickness is about 1 nanometer. Such a dielectric stack has an EOT of about 1.12 nanometers. In another embodiment, the hafnium oxide layer thickness is about 4 nanometers and hafnium silicate layer thickness is about 1.5 nanometers. Such a dielectric stack has an EOT of about 1.61 nanometers. An EOT of 1.61 nanometers provides the desired peak mobility of 400 cm2/Vs. In yet another embodiment, the dielectric stack thickness is selected to provide both the desired capacitance corresponding to 1.12 nanometers EOT and the desired peak mobility of 400 cm2/Vs.


EXAMPLE 1


FIG. 3 illustrates the processing steps used in accordance with the invention to form a hafnium oxide, hafnium silicate, or combination thereof gate dielectric stack having an EOT of about 1.12 nanometers. At step 310, an HF-last surface is formed on a semiconductor wafer by introducing a dilute hydrofluoric acid solution onto the wafer surface for a specified time period. In one embodiment, the wafer is immersed in a hydrofluoric acid bath for a time period of about 2 minutes to about 15 minutes. More preferably, the wafer is immersed in a 2% hydrofluoric acid bath for about 2 minutes.


Next, the wafer is placed in a thermal chamber for pre-treating at 1 to 100 Torr. A step 320, NH3 is introduced onto the HF-last surface for a specified time period and at a specified temperature. Step 320 adds a nitride “coating” or “layer” that aids in preventing the dopant of the gate layer (210 in FIG. 2) from diffusing into the channel (270 in FIG. 2). Preferably, the specified time period is in the range of about 5 seconds to about 120 seconds and the specified temperature is in the range of about 400° C. to about 1,100° C. More preferably, the specified time period is about 30 seconds and the specified temperature is about 600° C. at 30 Torr.


The wafer is then transported from the thermal chamber to a deposition chamber. A hafnium oxide or hafnium silicate layer is then formed at step 330 using deposition processes such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. Preferably, the hafnium oxide or hafnium silicate layer is formed using a MOCVD process.


If a hafnium oxide layer is preferred, O2, N2 and a hafnium oxide precursor are introduced onto the wafer surface. The hafnium oxide precursor is any precursor of the alkylamido or alkylamino ligand group. In one embodiment, the hafnium oxide precursor is selected from a group comprising amino or amido precursors of the form Hf(NRR′)4 where

    • R=H, CH3, C2H5, C3H7, alkyl, and aryl and
    • R′=H, CH3, C2H5, C3H7, alkyl, and aryl.

      FIG. 4 illustrates the general chemical structure for the hafnium oxide precursors of the form Hf(NRR′)4. Preferably, the hafnium oxide precursor is tetrakis(diethylamido)hafnium (TDEAH). FIG. 5 illustrates the chemical structure of the TDEAH precursor.


TDEAH is flowed onto the wafer surface at a rate in the range of about 1 mg/min to about 50 mg/min. Preferably, TDEAH is flowed onto the wafer surface at a rate of about 7 mg/min. O2 is flowed onto the wafer surface at a rate in the range of about 30 sccm to about 3,000 sccm. Preferably, O2 is flowed onto the wafer surface at a rate of about 1,000 sccm. N2 is flowed onto the wafer surface at a rate in the range of about 30 sccm to about 3,000 sccm. Preferably, N2 is flowed onto the wafer surface at a rate of about 1,500 sccm. O2, N2 and TDEAH are introduced onto the wafer surface either simultaneously or sequentially or a combination thereof.


The hafnium oxide layer is formed at temperatures in the range of about 225° C. to about 700° C. Preferably, the hafnium oxide layer is formed at about 485° C. The pressure in the deposition chamber is in the range of about 1.5 Torr to about 8 Torr. Preferably, the pressure is about 4 Torr. The hafnium oxide layer formed has a thickness in the range of about 5 Å to about 50 Å. Preferably, the hafnium oxide layer formed has a thickness of about 30 Å.


In one embodiment, the wafer is transported to a second chamber after forming the hafnium oxide layer in a first chamber. The process conditions of the first chamber are then adjusted for forming the hafnium silicate layer. The wafer is then transported back to the first chamber for forming the second layer. Alternatively, the wafer can remain in the same chamber for sequential deposition of the second layer. The choice of whether to use single- or multiple-chamber deposition depends on a number of factors including the deposition process chosen for each layer (e.g., MOCVD for one layer and ALD for another or MOCVD for both layers), the capabilities or limitations of the system (transfer speed between chambers, temperature ramping capabilities), whether the wafers are being processed in a development or production environment, and/or whether an anneal process is performed between the deposition of the two dielectric layers.


Alternatively, the hafnium silicate layer may be formed at step 330 using deposition processes such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. Preferably, the hafnium silicate layer is formed using a MOCVD process, where O2, N2, and hafnium silicate precursors are introduced onto the wafer surface and the process temperature is about 480° C. to about 600° C. and the pressure is adjusted to about 4 Torr.


The hafnium silicate precursors are precursors of the alkylamido or alkylamino ligand group. The hafnium silicate precursors are selected from precursors of the form Hf(NRR′)4 and SiR1R2R3R4 where


R=H, CH3, C2H5, C3H7, alkyl, and aryl;


R′=H, CH3, C2H5, C3H7, alkyl, and aryl;


R1=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl;


R2=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl;


R3=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl; and


R4=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl.


The general chemical structure for the precursors of the form Hf(NRR′)4 is shown in FIG. 4. FIG. 6 illustrates the general chemical structure for precursors of the form SiR1R2R3R4. Preferably, the hafnium silicate precursors are tetrakis(diethylamido)hafnium (TDEAH) and tetrakis(dimethylamido)silicon (TDMAS). FIG. 7 illustrates the chemical structure of the TDMAS precursor. The chemical structure for the TDEAH precursor is shown in FIG. 5.


TDEAH is flowed onto the wafer surface at a rate in the range of about 1 mg/min to about 50 mg/min. Preferably, TDEAH is flowed onto the wafer surface at a rate of about 6 mg/min. TDMAS is flowed onto the wafer surface at a rate of about 1 mg/min to about 50 mg/min. Preferably, TDMAS is flowed at a rate of 50 mg/min. O2 is flowed onto the wafer surface at a rate of about 30 sccm to about 1,000 sccm, preferably about 1,000 sccm, and N2 is flowed onto the wafer surface at a rate of about 30 sccm to about 3,000 sccm, preferably about 1,500 sccm. O2, N2, TDEAH and TDMAS are introduced onto the wafer surface either simultaneously or sequentially or a combination thereof.


The hafnium silicate layer is formed at temperatures in the range of about 325° C. to about 700° C. and pressure is in the range of about 1.5 Torr to about 8 Torr. Preferably, the hafnium silicate layer is formed at about 600° C. at a pressure of about 4 Torr. The hafnium silicate layer thickness is about 5-20 Å, preferably 10 Å. The SiO2 concentration of the hafnium silicate layer is from about 5 mol % to about 80 mol %. More preferably, the SiO2 concentration is about 10 mol %.


Thus, either a hafnium oxide or hafnium silicate layer can be formed at steps 330 and 340. Should, for example, hafnium oxide be used to form both layers, it is preferred that the hafnium oxide layers have differing compositions or stoichiometry, for example, a first layer comprised of HfO2 and a second layer comprised of Hf2O3. Similarly, should both layers be comprised of hafnium silicate, it is preferable that the hafnium silicate layers have differing compositions and/or stoichiometry.


After forming the hafnium silicate layer or hafnium oxide layer at step 340, the wafer is transported back to the thermal chamber for further processing at 1 to 100 Torr. At step 350, N2 is introduced onto the wafer surface for a specified time period and at a specified temperature. Preferably, the specified time period is in the range of about 5 seconds to about 60 seconds at temperatures in the range of about 400° C. to about 1,100° C. More preferably, N2 is introduced onto the wafer surface for about 60 seconds at a temperature of about 800° C. at 10 Torr.


In one embodiment, a gate electrode is next formed at step 360 on the hafnium oxide or hafnium silicate layer. The gate electrode layer may be made of polycrystalline or amorphous silicon and is formed using a chemical vapor deposition process such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. In one embodiment, the gate electrode is formed using an LPCVD process where silane or disilane is flowed onto the wafer at temperatures in the range of about 400° C. to about 900° C. Preferably, the gate electrode is formed at a temperature of about 570° C.


In some embodiments, a nitride layer may be formed on the hafnium oxide or hafnium silicate layer before formation of the polysilicon gate (i.e., to form a layer between the hafnium silicate layer 220 and the polysilicon gate 210, see FIG. 2). This embodiment is illustrated at step 850 of FIG. 8. Alternatively, for example, a nitride layer may be formed between the channel 270 and the hafnium oxide layer 220. This embodiment is shown at step 320 of FIG. 3. The nitride layer prevents dopant diffusion from the gate electrode into the silicon channel. In such embodiments, the polysilicon gate electrode 210 is implanted with dopants such as boron and phosphorus; and the structure is then annealed at ˜1000° C. for activation and distribution of the dopant in the polysilicon layer. It is undesirable for dopant to diffuse from the gate electrode layer 210 into the silicon channel 270. In small doses, such diffusion can affect threshold voltages, and in larger doses such diffusion can increase leakage currents. Either case drastically affects transistor performance.


EXAMPLE 2


FIG. 8 illustrates the processing steps used in accordance with the invention to form a hafnium oxide and hafnium silicate gate dielectric stack having a peak mobility of about 400 cm2/Vs. At step 810, an HF-last surface is formed on a semiconductor wafer by introducing a dilute hydrofluoric acid solution onto the wafer surface for a specified time period. In one embodiment, the wafer is immersed in a hydrofluoric acid bath for a time period of about 1 minute to about 15 minutes. More preferably, the wafer is immersed in a 2% hydrofluoric acid bath for about 2 minutes.


Next, at step 820, the HF-last surface is exposed to ozonated water by, for example, immersing the wafer in an ozonated water bath. Preferably, the ozone concentration in the ozonated water is in the range of about 10 ppm to about 30 ppm. Preferably, the ozone concentration in the water is about 20 ppm. Preferably, the HF-last surface is exposed to the ozonated water for about 5 minutes to about 15 minutes. More preferably, the HF-last surface is exposed to the ozonated water for about 10 minutes.


The wafer is next placed in a deposition chamber. A hafnium oxide layer is then formed at step 830 using deposition processes such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. Preferably, the hafnium oxide layer is formed using a MOCVD process.


O2, N2 and a hafnium oxide precursor are introduced onto the wafer surface. The hafnium oxide precursor is any precursor of the alkylamido or alkylamino ligand group. In one embodiment, the hafnium oxide precursor is selected from a group comprising amino or amido precursors of the form Hf(NRR′)4 where

    • R=H, CH3, C2H5, C3H7, alkyl, and aryl and
    • R′=H, CH3, C2H5, C3H7, alkyl, and aryl.

      FIG. 4 illustrates the general chemical structure for the hafnium oxide precursors of the form Hf(NRR′)4. Preferably, the hafnium oxide precursor is tetrakis(diethylamido)hafnium (TDEAH). FIG. 5 illustrates the chemical structure of the TDEAH precursor.


TDEAH is flowed onto the wafer surface at a rate of about 1 mg/min to about 50 mg/min, preferably about 7 mg/min, O2 is flowed onto the wafer surface from about 30 sccm to about 3,000 sccm, preferably 30 sccm, and N2 is flowed onto the wafer surface at a rate of about 30 scorn to about 3,000 sccm, preferably about 1500 sccm. O2, N2 and TDEAH are introduced onto the wafer surface either simultaneously or sequentially or a combination thereof.


The hafnium oxide layer is formed at temperatures in the range of about 225° C. to about 700° C., preferably, at about 485° C. The pressure in the deposition chamber is in the range of about 3 Torr to about 8 Torr, preferably about 4 Torr. Preferably, the hafnium oxide layer formed has a thickness of about 2-5 nanometers, and preferably about 4 nanometers.


After forming the hafnium oxide layer, the wafer is transported from the deposition chamber another chamber. For example, the chamber may be an anneal chamber, a cool-down chamber or a loadlock chamber. Preferably, an anneal step is performed between deposition of the hafnium oxide layer and the hafnium silicate layer. Once the wafer is transferred, the temperature and pressure in the first deposition chamber are adjusted for forming the hafnium silicate layer. For an MOCVD process, the temperature is adjusted to about 600° C. and the pressure is adjusted to about 4 Torr. The wafer is then transported from the cool-down chamber to the deposition chamber. A hafnium silicate layer is then formed at step 840 using deposition processes such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. In another embodiment, the wafer is not transported to another chamber after forming the hafnium oxide layer, but the wafer remains in the deposition chamber while the process conditions of the deposition chamber are adjusted for forming the hafnium silicate layer. In this case, ramping the temperature from the processing temperature of the hafnium oxide processing conditions to the temperature of the hafnium silicate processing conditions provides an anneal-like environment and a separate anneal step may be eliminated.


Preferably, the hafnium silicate layer is formed using a MOCVD process. O2, N2, and hafnium silicate precursors are introduced onto the wafer surface. The hafnium silicate precursors are precursors of the alkylamido or alkylamino ligand group. The hafnium silicate precursors are selected from precursors of the form Hf(NRR′)4 and SiR1R2R3R4 where


R=H, CH3, C2H5, C3H7, alkyl, and aryl;


R′=H, CH3, C2H5, C3H7, alkyl, and aryl;


R1=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl;


R2=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl;


R3=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl; and


R4=H, NH2, N(CH3)2, N(C2H5)2, N(C3H7)2, NCO, alkoxy, amino, alkyl and aryl.


The general chemical structure for the precursors of the form Hf(NRR′)4 is shown in FIG. 4. FIG. 6 illustrates the general chemical structure for precursors of the form SiR1R2R3R4. Preferably, the hafnium silicate precursors are tetrakis(diethylamido)hafnium (TDEAH) and tetrakis(dimethylamido)silicon (TDMAS). FIG. 7 illustrates the chemical structure of the TDMAS precursor. The chemical structure for the TDEAH precursor is shown in FIG. 5.


TDEAH is flowed onto the wafer surface at a rate of about 1 mg/min to about 50 mg/min, preferably about 6 mg/min, TDMAS is flowed onto the wafer surface at a rate of about 1 mg/min to about 50 mg/min, preferably about 10 mg/min, O2 is flowed onto the wafer surface at a rate of about 30 sccm to about 3,000 sccm, preferably about 1,000 sccm, and N2 is flowed onto the wafer surface at a rate of about 30 sccm to about 3,000 sccm, preferably about 1,500 sccm. O2, N2, TDEAH and TDMAS are introduced onto the wafer surface either simultaneously or sequentially or a combination thereof.


The hafnium silicate layer is formed at temperatures in the range of about 325° C. to about 700° C. and at pressure in the range of about 3 Torr to about 8 Torr. Preferably, the hafnium silicate layer is formed at about 600° C. at a pressure of about 4 Torr. The hafnium silicate layer thickness is from 5 to 20 Å, preferably about 1.5 nanometers. The SiO2 concentration of the layer is about 5-80 mol %, preferably about 45 mol % to about 50 mol %. More preferably, the SiO2 concentration is about 50 mol %.


After forming the hafnium silicate layer, the wafer is transported from the deposition chamber to the thermal chamber for further processing. At step 850 NH3 is then introduced onto the wafer surface at 1 to 100 Torr for a specified time period and a specified temperature. Preferably, the specified time period is in the range of about 5 seconds to about 60 seconds. More preferably, the specified time period is about 60 seconds. Preferably, the specified temperature is in the range of about 400° C. to about 1,100° C. More preferably, the specified temperature is about 700° C. at 30 Torr.


In one embodiment, a polycrystalline-Si or amorphous-Si gate electrode is next formed at step 860 on the hafnium silicate layer. The gate electrode layer is formed using a chemical vapor deposition process such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. In one embodiment, the gate electrode is formed using an LPCVD process where silane or disilane is flowed onto the wafer at temperatures in the range of about 400° C. to about 900° C. Preferably, the gate electrode is formed at a temperature of about 550° C. As described supra, to avoid undesired dopant diffusion from the gate electrode into the silicon channel, the wafer may be treated with NH3 (step 850 of FIG. 8) after deposition of the dielectric layer 220 and before deposition of the polysilicon gate 210 (layers shown in FIG. 3). Such a treatment forms a nitride coating or layer that prevents dopant diffusion. Alternately, a nitride layer may be formed between the dielectric layer 230 and the silicon channel 270 by treating the wafer with NH3 (FIG. 3, step 330) after formation of the HF-last.


As described previously, as an alternative to forming first a hafnium oxide layer then forming a hafnium silicate layer, two hafnium oxide layers may be used or two hafnium silicate layers may be used, or first a hafnium silicate layer followed by a hafnium oxide layer may be used. Optionally, a third layer may be formed over the second layer as just described. Such a third layer would comprise hafnium silicate.


Gate Formation using a Flash In-Situ Steam Generation (ISSG) Process

In the flash in-situ steam generation (ISSG) process in accordance with the invention, the reactants, hydrogen and an oxidizer, are introduced onto an HF-last wafer surface for a very short duration to form hydroxyl groups and water vapor in the thermal chamber The hydroxyl groups then bond to the HF-last surface, thereby enhancing high-k nucleation. In accordance with the invention, the growth of interfacial SiO2 between the silicon channel and the hafnium oxide layer is minimized due to a very short flash in-situ steam generation process and by introducing inert gases before and after the flash ISSG process.



FIG. 9 illustrates the processing steps that may be used in accordance with the invention for forming the dielectric stack using a flash in-situ steam generation (ISSG) pre-treatment process. At step 910, an HF-last surface is formed on a semiconductor wafer by introducing a dilute hydrofluoric acid solution onto the wafer surface for a specified time period. In one embodiment, the wafer is immersed in a hydrofluoric acid bath for a time period of about 1 minute to about 15 minutes. More preferably, the wafer is immersed in a 2% hydrofluoric acid bath for about 2 minutes.


After the HF-last processing, the wafer is placed in a thermal chamber. The HF-last surface is then pre-treated using a flash ISSG process. First, at step 920, an inert gas such as helium or nitrogen is introduced into the chamber for a specified time period. Then, at step 930, the reactants, hydrogen and an oxidizer such as O2 or N2O, are introduced into the chamber for a very short duration. The flow of reactants is then stopped at step 940 while the inert gas continues to flow onto the wafer surface at step 950. Table 1 provides some illustrative temperatures, flow rates and reactant flow times for a flash ISSG process.















TABLE 1











Reactant



Temp.

Oxidizer

Flow



(° C.)
H2 (sccm)
(sccm)
He (sccm)
Time(s)





















Example 1
750
8
2,980 (O2)
2,980
6


Example 2
750
15
2,980 (N2O)
2,980
6


Example 3
750
15
2,980 (O2)
2,980
6


Example 4
800
5
1,000 (O2)
0
3


Example 5
800
5
1,000 (N2O)
0
3









After the pre-treating, the wafer is transported to a deposition chamber. A metal oxide and a metal silicate layer are then formed on the pre-treated surface. Preferably, any metal that forms amino precursors, including alkoxides or halides, may be used to form the metal oxide and metal silicate layers. In one embodiment, hafnium oxide and hafnium silicate layers are formed at steps 960 and 970 using the processes described earlier in reference to FIGS. 3 and 8. Table 2 provides illustrative parameters for forming the hafnium oxide and hafnium silicate layers.
















TABLE 2












Pres-



Hf
Si
O2
N2
Temp.
sure



(mg/min)
(mg/min)
(sccm)
(sccm)
(° C.)
(Torr)






















Example 6
7
0
1,000
1,500
485
4


Example 7
6
50
1,750
750
425
3


Example 8
6
50
1,750
750
525
5.5


Example 9
6
50
1,750
750
575
8









After forming the metal oxide and metal silicate layers, the wafer is transported from the deposition chamber to the thermal chamber for post-deposition processing. In one embodiment, the post-deposition processing comprises the post-treatment processes described earlier in reference to FIGS. 3 and 8. In another embodiment, the post-deposition processing comprises annealing the wafer surface at step 980 in a thermal or plasma environment using H2, O2, N2O, NO, NH3, O3, N2, He or a combination thereof.


In one embodiment, a polycrystalline-Si or amorphous-Si gate electrode is next formed at step 990 after post-deposition processing. The gate electrode layer is formed using a deposition process such as MOCVD, LPCVD, PECVD, VPE, ALD or PVD. In one embodiment, the gate electrode is formed using an LPCVD process where silane or disilane is flowed onto the wafer at temperatures in the range of about 400° C. to about 900° C. Preferably, the gate electrode is formed at a temperature of about 550° C. To avoid undesired dopant diffusion, a nitride layer may be formed between the dielectric layer 220 and the polysilicon gate 210 prior to formation of the polysilicon gate. Alternately, a nitride layer may be formed between the dielectric layer 230 and the silicon channel 260.


Various modifications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. For example, although the specific embodiments are described using a hafnium oxide and hafnium silicate dielectric gate stack, those skilled in the art will appreciate that the dielectric stack may be formed using any metal that is capable of forming films with the desired capacitance and mobility. Additionally, although the specific embodiments use metal oxide and metal silicate films, other film compositions that provide the desired capacitance and mobility may also be used to form the dielectric stack.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method for forming a dielectric stack material on a substrate, comprising: treating the substrate with hydrofluoric acid to form an HF-last surface;pre-treating the HF-last surface with an oxidation process for a specified time period to form a pre-treated surface, wherein the oxidation process comprises exposing the substrate to in situ steam generated from hydrogen gas (H2) and oxygen gas (O2) or from hydrogen gas and nitrous oxide;forming a dielectric stack on the pre-treated surface, wherein the dielectric stack comprises at least one material selected from the group consisting of hafnium oxide, hafnium silicate, and combinations thereof; andexposing the substrate to a nitridation process to form a nitride layer on the dielectric stack.
  • 2. The method of claim 1, wherein the dielectric stack comprises a hafnium silicate layer deposited on a hafnium oxide layer.
  • 3. The method of claim 2, wherein the hafnium oxide layer and the hafnium silicate layer are each formed using a deposition process independently selected from the group consisting of chemical vapor deposition, atomic layer deposition, and combinations thereof.
  • 4. The method of claim 3, wherein the deposition process comprises exposing the substrate to a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and combinations thereof.
  • 5. The method of claim 4, wherein the deposition process comprises exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
  • 6. The method of claim 5, wherein the substrate is exposed to an annealing process subsequent the formation of the dielectric stack.
  • 7. A method for forming a dielectric stack material on a substrate, comprising: pre-treating the substrate with an oxidation process for a specified time period to form a pre-treated surface, wherein the oxidation process comprises exposing the substrate to in situ steam generated from hydrogen gas (H2) and oxygen gas (O2) or from hydrogen gas and nitrous oxide;forming a hafnium oxide layer on the pre-treated surface;forming a hafnium silicate layer on the hafnium oxide layer to form a dielectric stack; andexposing the substrate to a nitridation process to form a nitride layer on the dielectric stack.
  • 8. The method of claim 7, wherein the hafnium oxide layer and the hafnium silicate layer are each formed using a deposition process independently selected from the group consisting of chemical vapor deposition, atomic layer deposition, and combinations thereof.
  • 9. The method of claim 8, wherein the deposition process comprises exposing the substrate to a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and combinations thereof.
  • 10. The method of claim 9, wherein the deposition process comprises exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
  • 11. The method of claim 10, wherein the substrate is exposed to an annealing process subsequent the formation of the dielectric stack.
  • 12. The method of claim 11, wherein the substrate comprises a HF-last surface prior to forming the pre-treated surface.
  • 13. A method for forming a dielectric stack material on a substrate, comprising: treating the substrate with hydrofluoric acid to form an HF-last surface;pre-treating the HF-last surface to form a pre-treated surface with a pre-treatment process selected from the group consisting of an oxidation process and a combination of a first nitridation process and an oxidation process, wherein the oxidation process comprises exposing the substrate to in situ steam generated from hydrogen gas (H2) and oxygen gas (O2) or from hydrogen gas and nitrous oxide;forming a dielectric stack on the pre-treated surface, wherein the dielectric stack comprises hafnium silicate and hafnium oxide;exposing the substrate to a second nitridation process to form a nitride layer on the dielectric stack; andforming a polycrystalline-Si layer or an amorphous-Si layer over the dielectric stack.
  • 14. The method of claim 13, wherein the polycrystalline-Si layer or the amorphous-Si layer is formed by exposing the substrate to silane or disilane during a vapor deposition process at a temperature within a range from about 400° C. to about 900° C.
  • 15. The method of claim 13, wherein the dielectric stack comprises a hafnium silicate layer deposited on a hafnium oxide layer.
  • 16. The method of claim 15, wherein the hafnium oxide layer and the hafnium silicate layer are each formed using a deposition process independently selected from the group consisting of chemical vapor deposition, atomic layer deposition, and combinations thereof.
  • 17. The method of claim 16, wherein the deposition process comprises exposing the substrate to a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and combinations thereof.
  • 18. The method of claim 17, wherein the deposition process comprises exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
  • 19. The method of claim 18, wherein the substrate is exposed to an annealing process subsequent the formation of the dielectric stack.
  • 20. The method of claim 1, further comprising forming a polycrystalline-Si layer or an amorphous-Si layer over the dielectric stack subsequent to the second nitridation process.
  • 21. The method of claim 20, wherein the polycrystalline-Si layer or the amorphous-Si layer is formed by exposing the substrate to silane or disilane during a vapor deposition process at a temperature within a range from about 400° C. to about 900° C.
  • 22. The method of claim 7, further comprising forming a polycrystalline-Si layer or an amorphous-Si layer over the dielectric stack subsequent to the second nitridation process.
  • 23. The method of claim 22, wherein the polycrystalline-Si layer or the amorphous-Si layer is formed by exposing the substrate to silane or disilane during a vapor deposition process at a temperature within a range from about 400° C. to about 900° C.
  • 24. The method of claim 1, wherein the hafnium oxide layer or the hafnium silicate layer is formed by an atomic layer deposition process which exposes to substrate a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently methyl or ethyl.
  • 25. The method of claim 24, wherein the hafnium silicate layer is formed by exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
  • 26. The method of claim 7, wherein the hafnium oxide layer or the hafnium silicate layer is formed by an atomic layer deposition process which exposes to substrate a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently methyl or ethyl.
  • 27. The method of claim 26, wherein the hafnium silicate layer is formed by exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
  • 28. The method of claim 13, wherein the hafnium oxide layer or the hafnium silicate layer is formed by an atomic layer deposition process which exposes to substrate a hafnium precursor having the chemical formula (RR′N)4Hf, wherein R and R′ are independently methyl or ethyl.
  • 29. The method of claim 28, wherein the hafnium silicate layer is formed by exposing the substrate to a silicon precursor having the chemical formula R1R2R3R4Si, wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, dimethylamino, diethylamino, dipropylamino, and combinations thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/256,563, filed Sep. 27, 2002, and issued as U.S. Pat. No. 6,858,547, which claims benefit of U.S. Provisional Patent Application Ser. No. 60/388,928, filed Jun. 14, 2002. Each of the aforementioned related patent applications is herein incorporated by reference.

US Referenced Citations (175)
Number Name Date Kind
4693208 Sakai Sep 1987 A
5290609 Horlike et al. Mar 1994 A
5374570 Nasu et al. Dec 1994 A
5521126 Okamura et al. May 1996 A
5807792 Ilg et al. Sep 1998 A
5916365 Sherman Jun 1999 A
6013553 Wallace et al. Jan 2000 A
6020243 Wallace et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6060755 Ma et al. May 2000 A
6124158 Dautartas et al. Sep 2000 A
6144060 Park et al. Nov 2000 A
6174809 Kang et al. Jan 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6238734 Senzai et al. May 2001 B1
6270572 Kim et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6291283 Wilk Sep 2001 B1
6291867 Wallace et al. Sep 2001 B1
6297172 Kashiwagi Oct 2001 B1
6297539 Ma et al. Oct 2001 B1
6299294 Regan Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6342277 Sherman Jan 2002 B1
6348386 Gilmer Feb 2002 B1
6348420 Raaijmakers et al. Feb 2002 B1
6372598 Kang et al. Apr 2002 B2
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6399208 Baum et al. Jun 2002 B1
6399491 Jeon et al. Jun 2002 B2
6416577 Suntoloa et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6452229 Krivokapic Sep 2002 B1
6462367 Marsh et al. Oct 2002 B2
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6492283 Raaijmakers et al. Dec 2002 B2
6534395 Werkhoven et al. Mar 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607973 Jeon Aug 2003 B1
6620723 Byun et al. Sep 2003 B1
6632279 Ritala et al. Oct 2003 B1
6674138 Halliyal et al. Jan 2004 B1
6713846 Senzaki Mar 2004 B1
6790755 Jeon Sep 2004 B2
6803272 Halliyal et al. Oct 2004 B1
6815285 Choi et al. Nov 2004 B2
6858547 Metzner et al. Feb 2005 B2
6897106 Park et al. May 2005 B2
6930060 Chon et al. Aug 2005 B2
6969539 Gordon et al. Nov 2005 B2
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010021589 Wilk Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010024871 Yagi Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010029092 Park et al. Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20020000598 Kang et al. Jan 2002 A1
20020005556 Cartier et al. Jan 2002 A1
20020008297 Park et al. Jan 2002 A1
20020014647 Seidl et al. Feb 2002 A1
20020015790 Baum et al. Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020043666 Parson et al. Apr 2002 A1
20020047151 Kim et al. Apr 2002 A1
20020064970 Chooi et al. May 2002 A1
20020074588 Lee Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081826 Rotondaro et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020093046 Moriya et al. Jul 2002 A1
20020093781 Bachhofer et al. Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020142500 Foglietti et al. Oct 2002 A1
20020146895 Ramdani et al. Oct 2002 A1
20020151152 Shimamoto et al. Oct 2002 A1
20020153579 Yamamoto Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020175393 Baum et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020195643 Harada Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030060057 Raaijmakers et al. Mar 2003 A1
20030068437 Nakamura et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030082296 Elers et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030096473 Shih et al. May 2003 A1
20030104710 Visokay et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030109114 Niwa Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030133861 Bowen et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030186561 Law et al. Oct 2003 A1
20030188682 Tois et al. Oct 2003 A1
20030189232 Law et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030232501 Kher et al. Dec 2003 A1
20030232506 Metzner et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030234417 Raaijmakers et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040007747 Visokay et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009675 Eissa et al. Jan 2004 A1
20040016973 Rotondaro et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023462 Rotondaro et al. Feb 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040029321 Ang et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040036111 Nishikawa et al. Feb 2004 A1
20040038554 Ahn et al. Feb 2004 A1
20040040501 Vaartstra et al. Mar 2004 A1
20040043149 Gordon et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040043630 Vaartstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040157391 Park et al. Aug 2004 A1
20040203254 Conley et al. Oct 2004 A1
20040214354 Marsh et al. Oct 2004 A1
20040216670 Gutsche et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20040256664 Chou et al. Dec 2004 A1
20050006799 Gregg et al. Jan 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050130438 Rotondaro Jun 2005 A1
20050153571 Senzaki Jul 2005 A1
20050233156 Senzaki et al. Oct 2005 A1
20050255243 Senzaki Nov 2005 A1
Foreign Referenced Citations (36)
Number Date Country
0 464 515 Jan 1992 EP
0 973 191 Jan 2000 EP
1146141 Oct 2001 EP
1170804 Jan 2002 EP
1321973 Jun 2003 EP
2355727 Oct 2000 GB
05-251339 Sep 1993 JP
06-196809 Jul 1994 JP
2002-060944 Feb 2002 JP
2002-69641 Mar 2002 JP
2002-93804 Mar 2002 JP
2002-167672 Jun 2002 JP
2002-172767 Jun 2002 JP
2001-111000 Dec 2002 JP
0 973 189 Jan 2000 PE
WO 9929924 Jun 1999 WO
WO 0013235 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0070674 Nov 2000 WO
WO 0115220 Mar 2001 WO
WO 0125502 Apr 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0182390 Nov 2001 WO
WO 0199166 Dec 2001 WO
WO 0201628 Jan 2002 WO
WO 0209167 Jan 2002 WO
WO 0227063 Apr 2002 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 2004010471 Jan 2004 WO
Related Publications (1)
Number Date Country
20050009371 A1 Jan 2005 US
Provisional Applications (1)
Number Date Country
60388928 Jun 2002 US
Continuations (1)
Number Date Country
Parent 10256563 Sep 2002 US
Child 10913941 US