The present disclosure relates to electronic components and methods, and, in particular embodiments, to a thermally enhanced stacked package, e.g., using high conductivity (x and y plane) lateral heat spreaders as fins.
Package on Package (PoP) is an integrated circuit packaging technique to allow vertically combining discrete logic and memory ball grid array (BGA) packages. Two or more packages are installed on top of one another, i.e. stacked, with a standard interface to route signals between them. This allows higher density, for example in the mobile telephone/PDA market.
A system-in-a-package or system in package (SiP), also known as a chip stack multi-chip module, includes a number of integrated circuits enclosed in a single package or module. In some examples, the electronics in the SiP performs all or most of the functions of an electronic system, and are typically used inside a mobile phone, digital music player, etc. Integrated circuit dies containing integrated circuits may be stacked vertically on a substrate and to the package with bond wires. They are internally connected by fine wires that are bonded to the package. Alternatively, with a flip chip technology, solder bumps are used to join stacked chips together. SiP dies are stacked vertically, unlike slightly less dense multi-chip modules, which place dies horizontally alongside one another. SiP connects the dies with standard off-chip wire bonds or with solder bumps, unlike slightly denser three-dimensional (3D) integrated circuits that connect stacked silicon dies with conductors running through the die.
An example SiP may contain several chips (e.g., such as a specialized processor, DRAM, flash memory) combined with passive components (e.g., resistors and capacitors) all mounted on the same substrate. This means that a complete functional unit can be built in a multi-chip package, so that few external components need to be added to make it work. This is particularly valuable in space constrained environments like MP3 players and mobile phones as it reduces the complexity of the printed circuit board and overall design. Despite its benefits, this technique may encounter yield issues because a defective chip in the package may result in a non-functional packaged integrated circuit, even if all other modules in that same package are functional.
Because of the relentless industry demand for added speed, power, and functionality in reduced package footprints, microelectronics packages are leaning towards 3D packaging. In that regard, thermal management has become a particular challenge. Heat dissipation from individual components may cause an increased rise in the integrated module temperature, especially when a high power component (e.g., logic) is integrated into the module. Further, some components (e.g., memory) are relatively sensitive to the thermal environment.
Aspects of this disclosure offer a 3D package approach with significantly better thermal management at a substantially lower price.
In an embodiment, a package-on-package (PoP) device includes a first package, a heat spreader, and a second package. The first package has a first chip mounted on a first substrate. The heat spreader is stacked on the first package and is in thermal contact with the first chip. The second package stacked on the heat spreader.
In an embodiment, a package-on-package (PoP) device includes a first package, a heat spreader, and a second package. The first package has a first chip mounted on a first substrate. The first heat spreader is stacked on the first package and is in thermal contact with the first chip. The second package is stacked on the first heat spreader and includes a second chip mounted on a second substrate.
In an embodiment, a method of constructing a package-on-package (PoP) device includes stacking a heat spreader on a first package, the heat spreader in thermal contact with a first chip mounted on the first package, and stacking a second package on the heat spreader.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
a-6i collectively illustrate an embodiment of a process of forming an embodiment PoP device incorporating heat spreaders; and
The making and using of the present embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative and do not limit the scope of the disclosure.
The present disclosure will be described with respect to stacked packages, namely, Package-on-Package (PoP), Package-in-Package (PiP), and System-in-Package (SiP) devices. The concepts of the present disclosure may also be applied, however, to other semiconductor devices or processes in general.
Referring collectively to
The first package 16 includes a first chip 22 (a.k.a., die) mounted on a first printed circuit board (PCB) substrate 24. The first chip 22 may be, for example, a logic chip or a memory chip. The first PCB substrate 24 may include various traces, contact pads, vias, and other circuitry or features which, for ease of illustration, have not been shown in
The first heat spreader 18 is generally stacked on the first PCB substrate 24 of the first package 16. In such a configuration, the first heat spreader 18 is in thermal contact with the first chip 22. In an embodiment, a thermally conductive pad 26 (a.k.a., a thermal interface material) is disposed between the first heat spreader 18 and the first chip 22 of the first package 16. In an embodiment, the thermally conductive pad 26 is formed from, for example, a phase change material, a thermally conductive gel, grease, and so on. In an embodiment, the first heat spreader 18 includes a central portion that drops or extends downwardly into the cavity in order to directly contact the first chip 22. In such cases, the thermally conductive pad 26 may also be used or, in the alternative, omitted.
In an embodiment, the first heat spreader 18 is formed using carbon fibers 28. The carbon fibers 28 may be held together using an adhesive or other suitable material. In an embodiment, the first heat spreader 18 may be formed using other thermally conductive metals or materials such as, for example, copper, aluminum, or diamond.
In an embodiment, the first heat spreader 18 is provided with copper filled vias 30 (
In those embodiments where the first heat spreader 18 is formed using carbon fibers 28 and is copper plated, the first heat spreader 18 may have a density of about 1.85 grams per cubic centimeter (gm/cm3). In an embodiment, the density is about 2.7 gm/cm3 for anodized aluminum and about 8.92 gm/cm3 for plated copper, which may also be suitably used. Therefore, in some embodiments the PoP device 10 employing the first heat spreader 18 formed from carbon fibers 28 may be particularly suitable for use in weight sensitive applications (e.g., military and aerospace devices).
The first heat spreader 18 also has a thermal conductivity in the lateral direction (the x and y directions) of between about 600 Watts per meter per Kelvin (W/(m-K)) and about 1,500 W/(m-K). In an embodiment, the thermal conductivity is about 220 W/(m-K) for anodized aluminum and about 394 for plated copper, which may also be suitably used. Therefore, the first heat spreader 18 is able to laterally dissipate heat away from the first chip 22 very efficiently.
In addition, the first heat spreader 18 has a coefficient of thermal expansion of about 5 parts per million per degree Celsius (ppm/° C.). In an embodiment, the thermal expansion is about 27 ppm/° C. for anodized aluminum and about 17 ppm/° C. for plated copper, which may also be suitably used. Another benefit is that the cost of fabricating the first heat spreader 18 using the carbon fibers 28 is approximately the same as the cost of forming a heat spreader using, for example, anodized aluminum.
Those skilled in the art will appreciate that the properties and/or characteristics of the first heat spreader 18 may be further improved or modified based on, for example, the alignment of the carbon fibers 28 in the first heat spreader 18, the percentage of carbon fibers 28 in the first heat spreader 18, whether the carbon fibers 28 have been enhanced to increase the surface area, and so forth.
As shown in
As shown in
Still referring to
The second and third packages 20, 48 may be the same or substantially the same as the first package 16. In addition, the second and third heat spreaders 46, 50 may be the same or substantially the same as the first heat spreader 18. In the alternative, the second and third packages 20, 48 may be different than the first package 16 and the second and third heat spreaders 46, 50 may be different than the first heat spreader 18.
While the PoP device 10 of
Referring now to
Referring now to
a-6i collectively illustrate an embodiment of a process of forming an embodiment PoP device 10 incorporating heat spreaders (e.g., first, second, and third heat spreaders 18, 46, 50). In
As shown in
Next, the first, second, and third PCB substrates 24, 44, 58 are flipped shown in
In
With the first, second, and third PCB substrates 24, 44, 58 stacked as generally shown in
In
Because of its lighter density, high thermal conductivity, and lower cost, the PoP device 10 incorporating one or more of the heat spreaders is very desirable for mobile devices, laptops and tablets, 200G and 400G routers, power amplifiers, infrastructure equipment, power modules, insulated gate bipolar transistors, and so on. Indeed, the PoP device 10 offers significantly improved thermal management at a substantially reduced cost relative to known package devices.
Embodiments of the invention allow the use of multiple heat spreaders close to each power chip to enhance thermal transfer. Also the way the heat spreaders are arranged, each one of them individually act as a lateral fin to take complete advantage of the convective air flow present in most of the router products. Embodiments of the invention can allow the assembly of smaller sized thermal packages that cannot be constructed with existing heat sink technology. These products can benefit from the advantage of saving space and improving thermal management. For example, substantially better thermal management can be achieved at a significantly reduced cost.
While the disclosure has been made with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This patent application claims priority to U.S. Provisional Application No. 61/490,513, filed on May 26, 2011, entitled “Thermally Enhanced Stacked Package,” which is incorporated by reference herein as if reproduced in its entirety.
Number | Date | Country | |
---|---|---|---|
61490513 | May 2011 | US |