This application relates to the general field of Integrated Circuit (IC) devices and fabrication methods, and more particularly to multilayer or Three Dimensional Integrated Circuit (3D-IC) devices and fabrication methods.
Over the past 40 years, there has been a dramatic increase in functionality and performance of Integrated Circuits (ICs). This has largely been due to the phenomenon of “scaling”; i.e., component sizes within ICs have been reduced (“scaled”) with every successive generation of technology. There are two main classes of components in Complementary Metal Oxide Semiconductor (CMOS) ICs, namely transistors and wires. With “scaling”, transistor performance and density typically improve and this has contributed to the previously-mentioned increases in IC performance and functionality. However, wires (interconnects) that connect together transistors degrade in performance with “scaling”. The situation today is that wires dominate the performance, functionality and power consumption of ICs.
3D stacking of semiconductor devices or chips is one avenue to tackle the wire issues. By arranging transistors in 3 dimensions instead of 2 dimensions (as was the case in the 1990s), the transistors in ICs can be placed closer to each other. This reduces wire lengths and keeps wiring delay low.
There are many techniques to construct 3D stacked integrated circuits or chips including:
An early work on monolithic 3D was presented in U.S. Pat. No. 7,052,941 and follow-on work in related patents includes U.S. Pat. No. 7,470,598. A technique which has been used over the last 20 years to build SOI wafers, called “Smart-Cut” or “Ion-Cut”, was presented in U.S. Pat. No. 7,470,598 as one of the options to perform layer transfer for the formation of a monolithic 3D device. Yet in a related patent disclosure, by the same inventor of U.S. Pat. No. 7,470,598, U.S. application Ser. No. 12/618,542 it states: “In one embodiment of the previous art, exfoliating implant method in which ion-implanting Hydrogen into the wafer surface is known. But this exfoliating implant method can destroy lattice structure of the doped layer 400 by heavy ion-implanting. In this case, to recover the destroyed lattice structure, a long time thermal treatment in very high temperature is required. This long time/high temperature thermal treatment can severely deform the cell devices of the lower region.” Moreover, in U.S. application Ser. No. 12/635,496 by the same inventor is stated: [0034] Among the technologies to form the detaching layer, one of the well-known technologies is Hydrogen Exfoliating Implant. This method has a critical disadvantage which can destroy lattice structures of the substrate because it uses high amount of ion implantation. In order to recover the destroyed lattice structures, the substrate should be cured by heat treatment in very high temperature long time. This kind of high temperature heat treatment can damage cell devices in the lower regions.” Furthermore, in U.S. application Ser. No. 13/175,652 it is stated: “Among the technologies to form the detaching layer 207, one technology is called as exfoliating implant in which gas phase ions such as hydrogen is implanted to form the detaching layer, but in this technology, the crystal lattice structure of the multiple doped layers 201, 203, 205 can be damaged. In order to recover the crystal lattice damage, a thermal treatment under very high temperature and longtime should be performed, and this can strongly damage the cell devices underneath.” In fact the Inventor had posted a video infomercial on his corporate website, and was up-loaded on YouTube on Jun. 1, 2011, clearly stating in reference to the Smart Cut process: “The wafer bonding and detaching method is well-known SOI or Semiconductor-On-Insulator technology. Compared to conventional bulk semiconductor substrates, SOI has been introduced to increase transistor performance. However, it is not designed for 3D IC either. Let me explain the reasons . . . . The dose of hydrogen is too high and, therefore, semiconductor crystalline lattices are demolished by the hydrogen ion bombardment during the hydrogen ion implantation. Therefore, typically annealing at more than 1,100 Celsius is required for curing the lattice damage after wafer detaching. Such high temperature processing certainly destroys underlying devices and interconnect layers. Without high temperature annealing, the transferred layer should be the same as a highly defective amorphous layer. It seems that there is no way to cure the lattice damage at low temperatures. BeSang has disruptive 3D layer formation technology and it enables formation of defect-free single crystalline semiconductor layer at low temperatures . . . .”
In at least one embodiment presented herein, an innovative method to repair the crystal lattice damage caused by the hydrogen implant is described.
Regardless of the technique used to construct 3D stacked integrated circuits or chips, heat removal is a serious issue for this technology. For example, when a layer of circuits with power density P is stacked atop another layer with power density P, the net power density is 2P. Removing the heat produced due to this power density is a significant challenge. In addition, many heat producing regions in 3D stacked integrated circuits or chips have a high thermal resistance to the heat sink, and this makes heat removal even more difficult.
Several solutions have been proposed to tackle this issue of heat removal in 3D stacked integrated circuits and chips. These are described in the following paragraphs.
Publications have suggested passing liquid coolant through multiple device layers of a 3D-IC to remove heat. This is described in “Microchannel Cooled 3D Integrated Systems”, Proc. Intl. Interconnect Technology Conference, 2008 by D. C. Sekar, et al., and “Forced Convective Interlayer Cooling in Vertically Integrated Packages,” Proc. Intersoc. Conference on Thermal Management (ITHERM), 2008 by T. Brunschweiler, et al.
Thermal vias have been suggested as techniques to transfer heat from stacked device layers to the heat sink. Use of power and ground vias for thermal conduction in 3D-ICs has also been suggested. These techniques are described in “Allocating Power Ground Vias in 3D ICs for Simultaneous Power and Thermal Integrity” ACM Transactions on Design Automation of Electronic Systems (TODAES), May 2009 by Hao Yu, Joanna Ho and Lei He.
Other techniques to remove heat from 3D Integrated Circuits and Chips will be beneficial.
Additionally the 3D technology according to some embodiments of the invention may enable some very innovative IC alternatives with reduced development costs, increased yield, and other illustrative benefits.
The invention may be directed to multilayer or Three Dimensional Integrated Circuit (3D IC) devices and fabrication methods.
In one aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer over the first silicon layer; a second metal layer over the first metal layer; a first level including a plurality of transistors over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer over the first level; a fourth metal layer over the third metal layer, where the fourth metal layer is aligned to the first metal layer with less than 40 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm.
In another aspect, a semiconductor device, the device including: a first silicon layer including first single crystal silicon; a first metal layer over the first silicon layer; a second metal layer over the first metal layer; a first level including a plurality of transistors over the second metal layer, where the plurality of transistors include second single crystal silicon; a third metal layer over the first level; a fourth metal layer over the third metal layer, where the fourth metal layer is aligned to the first metal layer with less than 40 nm alignment error; and a via disposed through the first level, where the via includes tungsten.
In another aspect, a 3D semiconductor device, the device including: a first level overlaid by a second level, the first level including first circuits, where the first circuits include single crystal first transistors and include first interconnections, where the second level includes second circuits, the second circuits include single crystal second transistors and include second interconnections, where the first circuit is aligned to the second circuit with less than 200 nm misalignment; and a Global Power distribution network, where the first level includes at least one Local Power distribution network, where the Global Power distribution network distributes power to the Local Power distribution network, where the Global Power distribution network includes wires including an at least 50% greater conductivity than wires of the Local Power distribution network.
In another aspect, a semiconductor device, the device including: a first silicon layer including single crystal silicon; a first metal layer over the first silicon layer; second metal layer over the first metal layer; a first level including a plurality of transistors over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer over the first level; a fourth metal layer over the third metal layer, where the fourth metal layer is aligned to the first metal layer with less than 40 nm alignment error; a global power distribution network and a local power distribution network, where the global power distribution network includes the fourth metal layer, and where the local power distribution network includes the third metal layer.
In another aspect, a method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than ten microns, where the device includes an upper most semiconductor level, where the upper most semiconductor level includes Input/Output (“I/O”) circuits designed to connect the device to external devices, and where the bonding is hybrid bonding.
In another aspect, a method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than ten microns; and forming heat removal paths designed to remove heat from the second circuits to an external surface of the 3D semiconductor device, where the bonding is hybrid bonding.
In another aspect, a method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than thirty microns, where the bonding includes oxide to oxide bonds, where the bonding includes metal to metal bonds, and where at least one of the metal to metal bond structures has a pitch of less than 1 micron from another of the metal to metal bond structures.
In another aspect, a method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than thirty microns, where the device includes an upper most semiconductor level, where the upper most semiconductor level includes Input/Output (“I/O”) circuits designed to connect the device to external devices, and where the bonding is hybrid bonding.
In another aspect, a method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than thirty microns; and forming heat removal paths designed to remove heat from the second circuits to an external surface of the 3D semiconductor device, where the bonding is hybrid bonding.
In another aspect, a semiconductor device, the device including: a first silicon layer including first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a power distribution network, where the power distribution network includes the third metal layer, and a plurality of connection paths from the power distribution network to the plurality of transistors.
In another aspect, a semiconductor device, the device including: a first silicon layer including first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a via disposed through the first level; and connection pads disposed over a portion of the fourth metal layer, where the connection pads are capable to include connection to external devices.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the first level, where the first level thickness is less than two microns.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon and plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer, a second level including a plurality of second transistors, the first level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the second level, where the second level thickness is less than two microns, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than the typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer, a second level including a plurality of second transistors, the first level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the second level, where the via has a diameter of less than 450 nm, where the fifth metal layer include global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including a first silicon layer including a first single crystal silicon and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level including a plurality of second transistors, the first level disposed over the third metal layer, a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the second level, where the via has a diameter of less than 450 nm, where at least one of the plurality of second transistors includes a metal gate, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including: a first silicon layer comprising a first single crystal silicon and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level comprising a plurality of second transistors, the second level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer, a connection path from the fifth metal layer to the second metal layer, where the connection path includes a via disposed through the second level, where the via has a diameter of less than 450 nm, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including: a first silicon layer comprising a first single crystal silicon and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level comprising a plurality of second transistors, the second level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer; a connection path from the fifth metal layer to the second metal layer, where the connection path includes a via disposed through the second level, where the via has a diameter of less than 450 nm, where a typical thickness of the second metal layer is greater than a typical thickness of the third metal layer by at least 50%, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including: a first silicon layer comprising a first single crystal silicon and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level comprising a plurality of second transistors, the second level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer; a connection path from the fifth metal layer to the second metal layer, where the connection path includes a via disposed through the second level, where the via has a diameter of less than 450 nm, where the second level includes an array of memory cells, where each of the memory cells includes at least one of the plurality of second transistors, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the first level, where the first level thickness is less than two microns.
In another aspect, a semiconductor device, the device including: a first silicon layer including first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a via disposed through the first level; and connection pads disposed over a portion of the fourth metal layer, where the connection pads are capable to include connection to external devices.
In another aspect, a semiconductor device, the device including: a first silicon layer including first single crystal silicon; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a power distribution network, where the power distribution network includes the third metal layer, and a plurality of connection paths from the power distribution network to the plurality of transistors.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first single crystal silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the first level, where the fourth metal layer provides a global power distribution, and where a typical thickness of the fourth metal layer is at least 50% greater than a typical thickness of the third metal.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first single crystal silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a via disposed through the first level; and connection pads disposed under a portion of the first metal layer, where the connection pads are capable to include connection to external devices.
In another aspect, a semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first single crystal silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error, and where at least one of the plurality of transistors includes a two sided gate.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 100 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm, where the fourth metal layer provides a global power distribution, and where a typical thickness of the fourth metal layer is at least 50% greater than a typical thickness of the third metal.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a via disposed through the first level; and where the fourth metal layer is formed into heat removal paths designed to remove heat from the plurality of transistors to an external surface of the device.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 100 nm alignment error; and connection pads disposed above a portion of the fourth metal layer, where the connection pads are capable to include connection to external devices.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm, where the fourth metal layer provides a global power distribution, and where the via is directly connected to at least one of the plurality of transistors.
In another aspect, a semiconductor device, the device including: a substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, where at least a portion of the third metal layer and a portion of the fourth metal layer are part of heat removal paths, and where the heat removal paths are designed to remove heat from the plurality of transistors to an external surface of the device.
In another aspect, a semiconductor device, the device including: a substrate; a first metal layer disposed over the substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; a global power distribution network; and a local power distribution network, where the global power distribution network includes the fourth metal layer, where the local power distribution network includes the third metal layer, and where a typical thickness of the fourth metal layer is at least 50% greater than a typical thickness of the third metal.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors each include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm, where the fourth metal layer provides a global power distribution, and where the device includes at least one power supply circuit.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors each include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, where a portion of the third metal layer and/or a portion of the fourth metal layer are part of heat removal paths, and where an average thickness of the fourth metal layer is greater than an average thickness of the second metal layer by at least 40%.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; a global power distribution network; a local power distribution network, where the global power distribution network includes the fourth metal layer, and where the local power distribution network includes the third metal layer; and connection pads disposed over a portion of the fourth metal layer, where the connection pads are capable to provide connection to external devices.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors each include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm, where the fourth metal layer provides a global power distribution, and where processing of the device includes use of a carrier wafer.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a single crystal layer and a plurality of transistors, the first level disposed over the second metal layer, where an average thickness of the single crystal layer is less than one micron; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; and a via disposed through the first level, and where processing of the single crystal layer to the thickness includes use of at least one etch rate selectivity.
In another aspect, a semiconductor device, the device including: a first substrate; a first metal layer disposed over the first substrate; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 200 nm alignment error; a global power distribution network; a local power distribution network, where the global power distribution network includes the fourth metal layer, and where the local power distribution network includes the third metal layer; and at least one direct contact, where the at least one direct contact connects at least one of the plurality of transistors to the third metal layer.
In another aspect, a semiconductor device, the device including: a first level including a first single crystal layer, the first level including a plurality of first transistors and at least one first metal layer, where the at least one first metal layer overlays the first single crystal layer, and where the at least one first metal layer includes interconnects between the first transistors thus including formation of first control circuits; a second metal layer overlaying the at least one first metal layer; a second level overlaying the second metal layer, the second level including a plurality of second transistors; a third level overlaying the second level, the third level including a plurality of third transistors, where the first control circuits include at least one sense amplifier, where the second level includes a plurality of first memory cells, the first memory cells each including at least one of the second transistors, where the third level includes a plurality of second memory cells, the second memory cells each including at least one of the third transistors, where at least one of the second memory cells is at least partially disposed atop of the control circuits, and where the first control circuits are connected to control data written to at least one of the second memory cells; a third metal layer disposed above the third level; and a fourth metal layer disposed above the third metal layer; where the second transistors include second transistor gate locations, where the third transistors include third transistors gate locations, where the third transistor gate locations are aligned to the second transistor gate locations within less than 100 nm but more than 0.2 nm alignment error, being formed following two independently aligned lithography steps, where the fourth metal layer has an average thickness which is at least twice an average thickness of the second metal layer, and where the fourth metal layer includes a global power distribution grid.
In another aspect, a semiconductor device, the device including: a first level including a first single crystal layer, the first level including a plurality of first transistors and at least one first metal layer, where the at least one first metal layer overlays the first single crystal layer, and where the at least one first metal layer includes interconnects between the first transistors thus including formation of first control circuits; a second metal layer overlaying the at least one first metal layer; a second level overlaying the second metal layer, the second level including a plurality of second transistors; a third level overlaying the second level, the third level including a plurality of third transistors, where the second level includes a plurality of first memory cells, the first memory cells each including at least one of the second transistors, where the third level includes a plurality of second memory cells, the second memory cells each including at least one of the third transistors, where at least one of the second memory cells is at least partially disposed atop of the first control circuits, and where the first control circuits are connected to control data written to at least one of the second memory cells; a third metal layer disposed above the third level; and a fourth metal layer disposed above the third metal layer, where the second transistors include second transistor gate locations, where the third transistors include third transistor gate locations, where the third transistor gate locations are aligned to the second transistor gate locations within less than 100 nm but more than 0.2 nm alignment error, being formed following two independently aligned lithography steps, and where the fourth metal layer has an average thickness which is at least twice an average thickness of the second metal layer.
In another aspect, a semiconductor device, the device including: a first level including a first single crystal layer, the first level including a plurality of first transistors and at least one first metal layer, where the at least one first metal layer overlays the first single crystal layer, and where the at least one first metal layer includes interconnects between the first transistors thus including formation of first control circuits; a second metal layer overlaying the at least one first metal layer; a second level overlaying the second metal layer, the second level including a plurality of second transistors; a third level overlaying the second level, the third level including a plurality of third transistors, where the second level includes a plurality of first memory cells, the first memory cells each including at least one of the second transistors, where the third level includes a plurality of second memory cells, the second memory cells each including at least one of the third transistors, where at least one of the second memory cells is at least partially disposed atop of the first control circuits, and where the first control circuits are connected to control data written to at least one of the second memory cells; a third metal layer disposed above the third level; a fourth metal layer disposed above the third metal layer; where the second transistors include second transistor channels, where the third transistors include third transistor channels, where at least one of the second transistor channels is aligned to at least one of the third transistor channels with a greater than 1 nm but less than 40 nm alignment error, where the second transistor channel lithography step was different than the third transistor channel lithography step, and where the fourth metal layer has an average thickness which is at least twice an average thickness of the second metal layer; and a conductive path from the fourth metal layer to the second metal layer, where the conductive path includes a via disposed through the third level, and where the via has a diameter of less than 500 nm.
Various embodiments of the invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Various embodiments of the invention are now described with reference to the drawing figures. Persons of ordinary skill in the art will appreciate that the description and figures illustrate rather than limit the invention and that in general the figures are not drawn to scale for clarity of presentation. Such skilled persons will also realize that many more embodiments are possible by applying the inventive principles contained herein and that such embodiments fall within the scope of the invention which is not to be limited except by the appended claims.
Some drawing figures may describe process flows for building devices. The process flows, which may be a sequence of steps for building a device, may have many structures, numerals and labels that may be common between two or more adjacent steps. In such cases, some labels, numerals and structures used for a certain step's figure may have been described in the previous steps' figures.
Silicon layer 0204 and silicon layer 0216 may be may be substantially absent of semiconductor dopants to form an undoped silicon region or layer, or doped, such as, for example, with elemental or compound species that form a p+, or p, or p−, or n+, or n, or n− silicon layer or region. The heat removal apparatus 0202 may include an external surface from which heat transfer may take place by methods such as air cooling, liquid cooling, or attachment to another heat sink or heat spreader structure.
Typically, many contacts may be made among the supply and ground distribution networks and first silicon layer 0304. Due to this, there could exist a low thermal resistance among the power/ground distribution network and the heat removal apparatus 0302. Since power/ground distribution networks may be typically constructed of conductive metals and could have low effective electrical resistance, the power/ground distribution networks could have a low thermal resistance as well. Each logic/memory cell or gate on the 3D integrated circuit (such as, for example, second transistor 0314) is typically connected to VDD and ground, and therefore could have contacts to the power and ground distribution network. The contacts could help transfer heat efficiently (for example, with low thermal resistance) from each logic/memory cell or gate on the 3D integrated circuit (such as, for example, second transistor 0314) to the heat removal apparatus 0302 through the power/ground distribution network and the silicon layer 0304. Silicon layer 0304 and silicon layer 0316 may be may be substantially absent of semiconductor dopants to form an undoped silicon region or layer, or doped, such as, for example, with elemental or compound species that form a p+, or p, or p−, or n+, or n, or n− silicon layer or region. The heat removal apparatus 0302 may include an external surface from which heat transfer may take place by methods such as air cooling, liquid cooling, or attachment to another heat sink or heat spreader structure.
Defect annealing, such as furnace thermal or optical annealing, of thin layers of the crystalline materials generally included in 3D-ICs to the temperatures that may lead to substantial dopant activation or defect anneal, for example above 600° C., may damage or melt the underlying metal interconnect layers of the stacked 3D-IC, such as copper or aluminum interconnect layers. An embodiment of the invention is to form 3D-IC structures and devices wherein a heat spreading, heat conducting and/or optically reflecting or absorbent material layer or layers (which may be called a shield) is incorporated between the sensitive metal interconnect layers and the layer or regions being optically irradiated and annealed, or annealed from the top of the 3D-IC stack using other methods. An exemplary generalized process flow is shown in
As illustrated in
As illustrated in
Bonding surfaces, donor bonding surface 401 and acceptor bonding surface 411, may be prepared for wafer bonding by depositions (such as silicon oxide), polishes, plasma, or wet chemistry treatments to facilitate successful wafer to wafer bonding. The insulation layer, such as deposited bonding oxides and/or before bonding preparation existing oxides, between the donor wafer transferred layer and the acceptor wafer topmost metal layer, may include thicknesses of less than 1 um, less than 500 nm, less than 400 nm, less than 300 nm, less than 200 nm, or less than 100 nm.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Formation of CMOS in one transferred layer and the orthogonal connect strip methodology may be found as illustrated in at least FIGS. 30-33, 73-80, and 94 and related specification sections of U.S. Pat. No. 8,273,610, and may be applied to at least the
A planar fully depleted n-channel MOSFET (FD-MOSFET) with an optional integrated heat shield/spreader suitable for a monolithic 3D IC may be constructed as follows. The FD-MOSFET may provide an improved transistor variability control and conduction channel electrostatic control, as well as the ability to utilize an updoped channel, thereby improving carrier mobility. In addition, the FD-MOSFET does not demand doping or pocket implants in the channel to control the electrostatic characteristics and tune the threshold voltages. Sub-threshold slope, DIBL, and other short channel effects are greatly improved due to the firm gate electrostatic control over the channel. Moreover, a heat spreading, heat conducting and/or optically reflecting material layer or layers may be incorporated between the sensitive metal interconnect layers and the layer or regions being optically irradiated and annealed to repair defects in the crystalline 3D-IC layers and regions and to activate semiconductor dopants in the crystalline layers or regions of a 3D-IC without harm to the sensitive metal interconnect and associated dielectrics.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A thermal conduction path may be constructed from the devices in the upper layer, the transferred donor layer and formed transistors, to the acceptor wafer substrate and associated heat sink. The thermal conduction path from the FD-MOSFET transistor device and other devices on the top (second) crystalline layer, for example, raised S/D regions 532, to the acceptor wafer heat sink 597 may include source & drain contacts 540, second device layer metal interconnect 561, TL V 560, shield path connect 585 (shown as twice), shield path via 583 (shown as twice), metal interconnect 581, first (acceptor) layer metal interconnect 591, acceptor wafer transistors and devices 593, and acceptor substrate 595. The elements of the thermal conduction path may include materials that have a thermal conductivity greater than 10 W/m-K, for example, copper (about 400 W/m-K), aluminum (about 237 W/m-K), and Tungsten (about 173 W/m-K), and may include material with thermal conductivity lower than 10 W/m-K but have a high heat transfer capacity due to the wide area available for heat transfer and thickness of the structure (Fourier's Law), such as, for example, acceptor substrate 595. The elements of the thermal conduction path may include materials that are thermally conductive but may not be substantially electrically conductive, for example, Plasma Enhanced Chemical Vapor Deposited Diamond Like Carbon-PECVD DLC (about 1000 W/m-K), and Chemical Vapor Deposited (CVD) graphene (about 5000 W/m-K). The acceptor wafer interconnects may be substantially surrounded by BEOL isolation 596 dielectric. The heat removal apparatus, which may include acceptor wafer heat sink 597, may include an external surface from which heat transfer may take place by methods such as air cooling, liquid cooling, or attachment to another heat sink or heat spreader structure.
Furthermore, some or all of the layers utilized as shield/heat sink layer 588, which may include shapes of material such as the strips or fingers as illustrated in
TL Vs 560 may be formed through the transferred layers. As the transferred layers may be thin, on the order of about 200 nm or less in thickness, the TL Vs may be easily manufactured as a typical metal to metal via may be, and said TL V may have state of the art diameters such as nanometers or tens to a few hundreds of nanometers, such as, for example about 150 nm or about 100 nm or about 50 nm. The thinner the transferred layers, the smaller the thru layer via diameter obtainable, which may result from maintaining manufacturable via aspect ratios. The thickness of the layer or layers transferred according to some embodiments of the invention may be designed as such to match and enable the most suitable obtainable lithographic resolution (and enable the use of conventional state of the art lithographic tools), such as, for example, less than about 10 nm, 14 nm, 22 nm or 28 nm linewidth resolution and alignment capability, such as, for example, less than about 5 nm, 10 nm, 20 nm, or 40 nm alignment accuracy/precision/error, of the manufacturing process employed to create the thru layer vias or any other structures on the transferred layer or layers.
As illustrated in
Formation of CMOS in one transferred layer and the orthogonal connect strip methodology may be found as illustrated in at least FIGS. 30-33, 73-80, and 94 and related specification sections of U.S. Pat. No. 8,273,610, and may be applied to at least the
Persons of ordinary skill in the art will appreciate that the illustrations in
In many applications it is desired to use a combination of N type transistors and P type transistors. While using two overlaid layers, at least one layer of P type transistors on top of at least one layer of N type transistors, has been previously described herein and n referenced patent applications, it might be desired to have those transistors connected by the same overlaying interconnection layers coupling to one transistor layer. In U.S. Pat. No. 8,273,610, the contents of which are incorporated herein by reference, there are at least two flows to provide such. The flows could be adapted to vertical transistors just as well. The first flow suggests using repeating rows of N type and P type and is detailed in at least FIGS. 20-35 and FIGS. 73-79 of U.S. Pat. No. 8,273,610. An alternative flow suggests using layers within the strata in a vertical manner, and is described in at least FIG. 95 of U.S. Pat. No. 8,273,610.
While concepts in this document have been described with respect to 3D-ICs with two stacked device layers, those of ordinary skill in the art will appreciate that it can be valid for 3D-ICs with more than two stacked device layers. Additionally, some of the concepts may be applied to 2D ICs.
An additional embodiment of the invention is to utilize the underlying interconnection layer or layers to provide connections and connection paths (electrical and/or thermal) for the overlying transistors. While the common practice in the IC industry is that interconnection layers are overlaying the transistors that they connect, the 3D IC technology may include the possibility of constructing connections underneath (below) the transistors as well. For example, some of the connections to, from, and in-between transistors in a layer of transistors may be provided by the interconnection layer or layers above the transistor layer; and some of the connections to, from, and in-between the transistors may be provided by the interconnection layer or layers below the transistor layer or layers. In general there is an advantage to have the interconnect closer to the transistors that they are connecting and using both sides of the transistors—both above and below—provides enhanced “closeness” to the transistors. In addition, there may be less interconnect routing congestion that would impede the efficient or possible connection of a transistor to transistors in other layers and to other transistors in the same layer.
The connection layers may, for example, include power delivery, heat removal, macro-cell connectivity, and routing between macro-cells.
One method to solve the issue of high-temperature source-drain junction processing is to make transistors without junctions i.e. Junction-Less Transistors (JLTs). An embodiment of this invention uses JLTs as a building block for 3D stacked semiconductor circuits and chips.
Step (K):
A floating-body DRAM has thus been constructed, with (1) horizontally-oriented transistors—i.e., current flowing in substantially the horizontal direction in transistor channels, (2) some of the memory cell control lines, e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut.
While many of today's memory technologies rely on charge storage, several companies are developing non-volatile memory technologies based on resistance of a material changing. Examples of these resistance-based memories include phase change memory, Metal Oxide memory, resistive RAM (RRAM), memristors, solid-electrolyte memory, ferroelectric RAM, conductive bridge RAM, and MRAM. Background information on these resistive-memory types is given in “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 449-464, July 2008 by Burr, G. W.; Kurdi, B. N.; Scott, J. C.; Lam, C. H.; Gopalakrishnan, K.; Shenoy, R. S.
While resistive memories described previously form a class of non-volatile memory, others classes of non-volatile memory exist. NAND flash memory forms one of the most common non-volatile memory types. It can be constructed of two main types of devices: floating-gate devices where charge is stored in a floating gate and charge-trap devices where charge is stored in a charge-trap layer such as Silicon Nitride. Background information on charge-trap memory can be found in “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009 by Bakir and Meindl (“Bakir”) and “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by Hang-Ting Lue, et al. The architectures shown in
A 3D charge-trap memory has thus been constructed, with (1) horizontally-oriented transistors—i.e. current flowing in substantially the horizontal direction in transistor channels, (2) some of the memory cell control lines—e.g., bit lines BL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers for transistors, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut. This use of single-crystal silicon obtained with ion-cut is a key differentiator from past work on 3D charge-trap memories such as “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by Hang-Ting Lue, et al. that used polysilicon.
While the 3D DRAM and 3D resistive memory implementations herein have been described with single crystal silicon constructed with ion-cut technology, other options exist. One could construct them with selective epi technology. Procedures for doing these will be clear to those skilled in the art.
The monolithic 3D integration concepts described in this patent application can lead to novel embodiments of poly-silicon-based memory architectures as well. Poly silicon based architectures could potentially be cheaper than single crystal silicon based architectures when a large number of memory layers need to be constructed. While the below concepts are explained by using resistive memory architectures as an example, it will be clear to one skilled in the art that similar concepts can be applied to NAND flash memory and DRAM architectures described previously in this patent application.
In many applications it is desired to use a combination of N type transistors and P type transistors. While using two overlaid layers, at least one layer of P type transistors on top of at least one layer of N type transistors, has been previously described herein and in referenced patent applications, it might be desired to have those transistors connected by the same overlaying interconnection layers coupling to one transistor layer. In U.S. Pat. No. 8,273,610, the contents of which are incorporated herein by reference, there are at least two flows to provide such. The flows could be adapted to vertical transistors just as well. The first flow suggests using repeating rows of N type and P type and is detailed in at least FIGS. 20-35 and FIGS. 73-79 of U.S. Pat. No. 8,273,610. An alternative flow suggests using layers within the strata in a vertical manner, and is described in at least FIG. 95 of U.S. Pat. No. 8,273,610.
While some concepts in this document have been described with respect to 3D-ICs with two stacked device layers, those of ordinary skill in the art will appreciate that it can be valid for 3D-ICs with more than two stacked device layers. Additionally, some of the concepts may be applied to 2D ICs.
An additional embodiment of the invention is to utilize the underlying interconnection layer or layers to provide connections and connection paths (electrical and/or thermal) for the overlying transistors. While the common practice in the IC industry is that interconnection layers are overlaying the transistors that they connect, the 3D IC technology may include the possibility of constructing connections underneath (below) the transistors as well. For example, some of the connections to, from, and in-between transistors in a layer of transistors may be provided by the interconnection layer or layers above the transistor layer; and some of the connections to, from, and in-between the transistors may be provided by the interconnection layer or layers below the transistor layer or layers. In general there is an advantage to have the interconnect closer to the transistors that they are connecting and using both sides of the transistors—both above and below—provides enhanced “closeness” to the transistors. In addition, there may be less interconnect routing congestion that would impede the efficient or possible connection of a transistor to transistors in other layers and to other transistors in the same layer.
The connection layers may, for example, include power delivery, heat removal, macro-cell connectivity, and routing between macro-cells. As illustrated in
An important advantage is that the connections could be made above and below the transistor layers. A Macro-cell library could use under the transistor layer connections and over the transistor layer connections. A router can use under the transistor layer connections and over the transistor layer connections, and power delivery could use under the transistor layer connections and over the transistor layer connections. Some of the connections could be solely for the transistor of that layer and other connections could include connections to other transistor or device layers.
As illustrated in
As illustrated in
As illustrated in
The process flow may involve first processing the connection layers such as presented in
As illustrated in
The design flow of a 3D IC that incorporates the “below-transistor” connections, such as are described for example, with respect to
For the case of connecting below-transistor routing layers to the conventional above-transistor routing layers, each connection may pass through generic connections 4250 to cross the transistor-forming layers. Such contacts may already exist for many nets that directly connect to transistor sources, drains, and gates; and hence, such nets can be relatively freely routed using both below- and above-transistors interconnection routing layers. Other nets that may not normally include generic connections 4250 in their structure may be routed on either side of the transistor layer but not both, as crossing the transistor layer may incur creating additional generic connections 4250; and hence, potentially congest the transistor layer.
Consequently, a good approach for routing in such a situation may be to use the below-transistor layers for short-distance wiring and create wiring library macros that may tend to be short-distanced in nature. Macro outputs, on the other hand, frequently need to additionally connect to remote locations and should be made available at contacts, such as generic connections 4250, that are to be used on both sides of the transistor layer. When routing, nets that are targeted for both below and above the transistor layer and that do not include contacts such as generic connections 4250 may need special prioritized handling that may split them into two or more parts and insert additional contact[s] in the transistor layer before proceeding to route the design. An additional advantage of the availability and use of an increased number of routing layers on both sides of the transistor layer is the router's greater ability to use relaxed routing rules while not increasing routing congestion. For example, relaxing routing rules such as wider traces, wherein 1.5× or more the width of those traces used for the same layer in one sided routing for the same process node could be utilized in the two sided routing (above and below transistor layer), and may result in reduced resistance; and larger metal spacing, wherein 1.5× or more the space of those spaces used for the same layer in one sided routing for the same process node, could be utilized in the two sided routing (above and below transistor layer), and may result in decreased crosstalk and capacitance.
Persons of ordinary skill in the art will appreciate that the illustrations in
Some embodiments of the invention may include alternative techniques to build IC (Integrated Circuit) devices including techniques and methods to construct 3D IC systems. Some embodiments of the invention may enable device solutions with far less power consumption than prior art. The device solutions could be very useful for the growing application of mobile electronic devices and mobile systems such as, for example, mobile phones, smart phone, and cameras, those mobile systems may also connect to the internet. For example, incorporating the 3D IC semiconductor devices according to some embodiments of the invention within the mobile electronic devices and mobile systems could provide superior mobile units that could operate much more efficiently and for a much longer time than with prior art technology.
Smart mobile systems may be greatly enhanced by complex electronics at a limited power budget. The 3D technology described in the multiple embodiments of the invention would allow the construction of low power high complexity mobile electronic systems. For example, it would be possible to integrate into a small form function a complex logic circuit with high density high speed memory utilizing some of the 3D DRAM embodiments of the invention and add some non-volatile 3D NAND charge trap or RRAM described in some embodiments of the invention. Mobile system applications of the 3DIC technology described herein may be found at least in FIG. 156 of U.S. Pat. No. 8,273,610, the contents of which are incorporated by reference.
In this document, the connection made between layers of, generally single crystal, transistors, which may be variously named for example as thermal contacts and vias, Thru Layer Via (TL V), TSV (Thru Silicon Via), may be made and include electrically and thermally conducting material or may be made and include an electrically non-conducting but thermally conducting material or materials. A device or method may include formation of both of these types of connections, or just one type. By varying the size, number, composition, placement, shape, or depth of these connection structures, the coefficient of thermal expansion exhibited by a layer or layers may be tailored to a desired value. For example, the coefficient of thermal expansion of the second layer of transistors may be tailored to substantially match the coefficient of thermal expansion of the first layer, or base layer of transistors, which may include its (first layer) interconnect layers.
Base wafers or substrates, or acceptor wafers or substrates, or target wafers substrates herein may be substantially comprised of a crystalline material, for example, mono-crystalline silicon or germanium, or may be an engineered substrate/wafer such as, for example, an SOI (Silicon on Insulator) wafer or GeOI (Germanium on Insulator) substrate.
It will also be appreciated by persons of ordinary skill in the art that the invention is not limited to what has been particularly shown and described hereinabove. For example, drawings or illustrations may not show n or p wells for clarity in illustration. Moreover, transistor channels illustrated or discussed herein may include doped semiconductors, but may instead include undoped semiconductor material. Further, any transferred layer or donor substrate or wafer preparation illustrated or discussed herein may include one or more undoped regions or layers of semiconductor material. Rather, the scope of the invention includes both combinations and sub-combinations of the various features described hereinabove as well as modifications and variations which would occur to such skilled persons upon reading the foregoing description. Thus the invention is to be limited only by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 18/395,546, filed on Dec. 23, 2023, which is a continuation-in-part of U.S. patent application Ser. No. 18/236,325, filed on Aug. 21, 2023, now U.S. Pat. No. 11,916,045 issued on Feb. 27, 2024, which is a continuation-in-part of U.S. patent application Ser. No. 18/214,524, filed on Jun. 27, 2023, which is a continuation-in-part of U.S. patent application Ser. No. 18/141,415, filed on Apr. 29, 2023, now U.S. Pat. No. 11,784,169 issued on Oct. 10, 2023, which is a continuation-in-part of U.S. patent application Ser. No. 18/105,826, filed on Feb. 4, 2023, now U.S. Pat. No. 11,676,945 issued on Jun. 13, 2023, which is a continuation-in-part of U.S. patent application Ser. No. 17/986,831, filed on Nov. 14, 2022, now U.S. Pat. No. 11,605,616 issued on Mar. 14, 2023, which is a continuation-in-part of U.S. patent application Ser. No. 17/882,607, filed on Aug. 8, 2022, now U.S. Pat. No. 11,532,599 issued on Dec. 20, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 17/750,338, filed on May 21, 2022, now U.S. Pat. No. 11,450,646 issued on Sep. 20, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 17/680,297, filed on Feb. 25, 2022, now U.S. Pat. No. 11,424,222 issued on Aug. 23, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 17/536,019, filed on Nov. 27, 2021, now U.S. Pat. No. 11,309,292 issued on Apr. 19, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 17/334,928, filed on May 31, 2021, now U.S. Pat. No. 11,217,565 issued on Jan. 4, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 17/195,517, filed on Mar. 8, 2021, now U.S. Pat. No. 11,063,024 issued on Jul. 13, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/020,766, filed on Sep. 14, 2020, now U.S. Pat. No. 11,018,116 issued on May 25, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/683,244, filed on Nov. 13, 2019, now U.S. Pat. No. 10,811,395 issued on Oct. 20, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/409,840, filed on May 12, 2019, now U.S. Pat. No. 10,515,935 issued on Dec. 24, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 15/990,684, filed on May 28, 2018, now U.S. Pat. No. 10,297,580 issued on May 21, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 15/721,955, filed on Oct. 1, 2017, now U.S. Pat. No. 10,014,282 issued on Jul. 3, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/008,444, filed on Jan. 28, 2016, now U.S. Pat. No. 9,786,636 issued on Oct. 10, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 14/541,452, filed on Nov. 14, 2014, now U.S. Pat. No. 9,252,134 issued on Feb. 2, 2016, which is a continuation of U.S. patent application Ser. No. 14/198,041, filed on Mar. 5, 2014, now U.S. Pat. No. 8,921,970 issued on Dec. 30, 2014, which is a continuation of U.S. patent application Ser. No. 13/726,091, filed on Dec. 22, 2012, now U.S. Pat. No. 8,674,470 issued on Mar. 18, 2014. The entire contents of the foregoing applications & issued patents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3007090 | Rutz | Oct 1961 | A |
3819959 | Chang et al. | Jun 1974 | A |
4009483 | Clark | Feb 1977 | A |
4197555 | Uehara et al. | Apr 1980 | A |
4213139 | Rao et al. | Jul 1980 | A |
4400715 | Barbee et al. | Aug 1983 | A |
4487635 | Kugimiya et al. | Dec 1984 | A |
4510670 | Schwabe | Apr 1985 | A |
4522657 | Rohatgi et al. | Jun 1985 | A |
4612083 | Yasumoto et al. | Sep 1986 | A |
4643950 | Ogura et al. | Feb 1987 | A |
4704785 | Curran | Nov 1987 | A |
4711858 | Harder et al. | Dec 1987 | A |
4721885 | Brodie | Jan 1988 | A |
4732312 | Kennedy et al. | Mar 1988 | A |
4733288 | Sato | Mar 1988 | A |
4829018 | Wahlstrom | May 1989 | A |
4854986 | Raby | Aug 1989 | A |
4866304 | Yu | Sep 1989 | A |
4939568 | Kato et al. | Jul 1990 | A |
4956307 | Pollack et al. | Sep 1990 | A |
5012153 | Atkinson et al. | Apr 1991 | A |
5032007 | Silverstein et al. | Jul 1991 | A |
5047979 | Leung | Sep 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5093704 | Sato et al. | Mar 1992 | A |
5106775 | Kaga et al. | Apr 1992 | A |
5152857 | Ito et al. | Oct 1992 | A |
5162879 | Gill | Nov 1992 | A |
5189500 | Kusunoki | Feb 1993 | A |
5217916 | Anderson et al. | Jun 1993 | A |
5250460 | Yamagata et al. | Oct 1993 | A |
5258643 | Cohen | Nov 1993 | A |
5265047 | Leung et al. | Nov 1993 | A |
5266511 | Takao | Nov 1993 | A |
5277748 | Sakaguchi et al. | Jan 1994 | A |
5286670 | Kang et al. | Feb 1994 | A |
5294556 | Kawamura | Mar 1994 | A |
5308782 | Mazure et al. | May 1994 | A |
5312771 | Yonehara | May 1994 | A |
5317236 | Zavracky et al. | May 1994 | A |
5324980 | Kusunoki | Jun 1994 | A |
5355022 | Sugahara et al. | Oct 1994 | A |
5371037 | Yonehara | Dec 1994 | A |
5374564 | Bruel | Dec 1994 | A |
5374581 | Ichikawa et al. | Dec 1994 | A |
5424560 | Norman et al. | Jun 1995 | A |
5475280 | Jones et al. | Dec 1995 | A |
5478762 | Chao | Dec 1995 | A |
5485031 | Zhang et al. | Jan 1996 | A |
5498978 | Takahashi et al. | Mar 1996 | A |
5527423 | Neville et al. | Jun 1996 | A |
5535342 | Taylor | Jul 1996 | A |
5554870 | Fitch et al. | Sep 1996 | A |
5563084 | Ramm et al. | Oct 1996 | A |
5583349 | Norman et al. | Dec 1996 | A |
5583350 | Norman et al. | Dec 1996 | A |
5586291 | Lasker | Dec 1996 | A |
5594563 | Larson | Jan 1997 | A |
5604137 | Yamazaki et al. | Feb 1997 | A |
5617991 | Pramanick et al. | Apr 1997 | A |
5627106 | Hsu | May 1997 | A |
5656548 | Zavracky et al. | Aug 1997 | A |
5656553 | Leas et al. | Aug 1997 | A |
5659194 | Iwamatsu | Aug 1997 | A |
5670411 | Yonehara | Sep 1997 | A |
5681756 | Norman et al. | Oct 1997 | A |
5695557 | Yamagata et al. | Dec 1997 | A |
5701027 | Gordon et al. | Dec 1997 | A |
5707745 | Forrest et al. | Jan 1998 | A |
5714395 | Bruel | Feb 1998 | A |
5721160 | Forrest et al. | Feb 1998 | A |
5737748 | Shigeeda | Apr 1998 | A |
5739552 | Kimura et al. | Apr 1998 | A |
5744979 | Goetting | Apr 1998 | A |
5748161 | Lebby et al. | May 1998 | A |
5757026 | Forrest et al. | May 1998 | A |
5770483 | Kadosh | Jun 1998 | A |
5770881 | Pelella et al. | Jun 1998 | A |
5781031 | Bertin et al. | Jul 1998 | A |
5817574 | Gardner | Oct 1998 | A |
5829026 | Leung et al. | Oct 1998 | A |
5835396 | Zhang | Nov 1998 | A |
5854123 | Sato et al. | Dec 1998 | A |
5861929 | Spitzer | Jan 1999 | A |
5877034 | Ramm | Mar 1999 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5882987 | Srikrishnan | Mar 1999 | A |
5883525 | Tavana et al. | Mar 1999 | A |
5889903 | Rao | Mar 1999 | A |
5893721 | Huang et al. | Apr 1999 | A |
5915167 | Leedy | Jun 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5937312 | Lyer et al. | Aug 1999 | A |
5943574 | Tehrani et al. | Aug 1999 | A |
5952680 | Strite | Sep 1999 | A |
5952681 | Chen | Sep 1999 | A |
5965875 | Merrill | Oct 1999 | A |
5977579 | Noble | Nov 1999 | A |
5977961 | Rindal | Nov 1999 | A |
5980633 | Yamagata et al. | Nov 1999 | A |
5985742 | Henley et al. | Nov 1999 | A |
5994746 | Reisinger | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6001693 | Yeouchung et al. | Dec 1999 | A |
6009496 | Tsai | Dec 1999 | A |
6020252 | Aspar et al. | Feb 2000 | A |
6020263 | Shih et al. | Feb 2000 | A |
6027958 | Vu et al. | Feb 2000 | A |
6030700 | Forrest et al. | Feb 2000 | A |
6052498 | Paniccia | Apr 2000 | A |
6054370 | Doyle | Apr 2000 | A |
6057212 | Chan et al. | May 2000 | A |
6071795 | Cheung et al. | Jun 2000 | A |
6075268 | Gardner et al. | Jun 2000 | A |
6103597 | Aspar et al. | Aug 2000 | A |
6111260 | Dawson et al. | Aug 2000 | A |
6125217 | Paniccia et al. | Sep 2000 | A |
6153495 | Kub et al. | Nov 2000 | A |
6191007 | Matsui et al. | Feb 2001 | B1 |
6200878 | Yamagata | Mar 2001 | B1 |
6222203 | Ishibashi et al. | Apr 2001 | B1 |
6226197 | Nishimura | May 2001 | B1 |
6229161 | Nemati et al. | May 2001 | B1 |
6242324 | Kub et al. | Jun 2001 | B1 |
6242778 | Marmillion et al. | Jun 2001 | B1 |
6252465 | Katoh | Jun 2001 | B1 |
6259623 | Takahashi | Jul 2001 | B1 |
6261935 | See et al. | Jul 2001 | B1 |
6264805 | Forrest et al. | Jul 2001 | B1 |
6281102 | Cao et al. | Aug 2001 | B1 |
6294018 | Hamm et al. | Sep 2001 | B1 |
6306705 | Parekh et al. | Oct 2001 | B1 |
6321134 | Henley et al. | Nov 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
6331468 | Aronowitz et al. | Dec 2001 | B1 |
6331790 | Or-Bach et al. | Dec 2001 | B1 |
6331943 | Naji et al. | Dec 2001 | B1 |
6353492 | McClelland et al. | Mar 2002 | B2 |
6355501 | Fung et al. | Mar 2002 | B1 |
6355976 | Faris | Mar 2002 | B1 |
6358631 | Forrest et al. | Mar 2002 | B1 |
6365270 | Forrest et al. | Apr 2002 | B2 |
6376337 | Wang et al. | Apr 2002 | B1 |
6377504 | Hilbert | Apr 2002 | B1 |
6380046 | Yamazaki | Apr 2002 | B1 |
6392253 | Saxena | May 2002 | B1 |
6404043 | Isaak | Jun 2002 | B1 |
6417108 | Akino et al. | Jul 2002 | B1 |
6420215 | Knall et al. | Jul 2002 | B1 |
6423614 | Doyle | Jul 2002 | B1 |
6429481 | Mo et al. | Aug 2002 | B1 |
6429484 | Yu | Aug 2002 | B1 |
6430734 | Zahar | Aug 2002 | B1 |
6448615 | Forbes | Sep 2002 | B1 |
6475869 | Yu | Nov 2002 | B1 |
6476493 | Or-Bach et al. | Nov 2002 | B2 |
6479821 | Hawryluk et al. | Nov 2002 | B1 |
6483707 | Freuler et al. | Nov 2002 | B1 |
6507115 | Hofstee | Jan 2003 | B2 |
6515334 | Yamazaki et al. | Feb 2003 | B2 |
6515511 | Sugibayashi et al. | Feb 2003 | B2 |
6526559 | Schiefele et al. | Feb 2003 | B2 |
6528391 | Henley et al. | Mar 2003 | B1 |
6534352 | Kim | Mar 2003 | B1 |
6534382 | Sakaguchi et al. | Mar 2003 | B1 |
6544837 | Divakauni et al. | Apr 2003 | B1 |
6545314 | Forbes et al. | Apr 2003 | B2 |
6555901 | Yoshihara et al. | Apr 2003 | B1 |
6563139 | Hen | May 2003 | B2 |
6580124 | Cleeves | Jun 2003 | B1 |
6580289 | Cox | Jun 2003 | B2 |
6600173 | Tiwari | Jul 2003 | B2 |
6617694 | Kodaira et al. | Sep 2003 | B2 |
6620659 | Emmma et al. | Sep 2003 | B2 |
6624046 | Zavracky et al. | Sep 2003 | B1 |
6627518 | Inoue et al. | Sep 2003 | B1 |
6627985 | Huppenthal et al. | Sep 2003 | B2 |
6630713 | Geusic | Oct 2003 | B2 |
6635552 | Gonzalez | Oct 2003 | B1 |
6635588 | Hawryluk et al. | Oct 2003 | B1 |
6638834 | Gonzalez | Oct 2003 | B2 |
6642744 | Or-Bach et al. | Nov 2003 | B2 |
6653209 | Yamagata | Nov 2003 | B1 |
6653712 | Knall et al. | Nov 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6677204 | Cleeves et al. | Jan 2004 | B2 |
6686253 | Or-Bach | Feb 2004 | B2 |
6689660 | Noble | Feb 2004 | B1 |
6701071 | Wada et al. | Mar 2004 | B2 |
6703328 | Tanaka et al. | Mar 2004 | B2 |
6756633 | Wang et al. | Jun 2004 | B2 |
6756811 | Or-Bach | Jun 2004 | B2 |
6759282 | Campbell et al. | Jul 2004 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6774010 | Chu et al. | Aug 2004 | B2 |
6805979 | Ogura et al. | Oct 2004 | B2 |
6806171 | Ulyashin et al. | Oct 2004 | B1 |
6809009 | Aspar et al. | Oct 2004 | B2 |
6815781 | Vyvoda et al. | Nov 2004 | B2 |
6819136 | Or-Bach | Nov 2004 | B2 |
6821826 | Chan et al. | Nov 2004 | B1 |
6841813 | Walker et al. | Jan 2005 | B2 |
6844243 | Gonzalez | Jan 2005 | B1 |
6864534 | Ipposhi et al. | Mar 2005 | B2 |
6875671 | Faris | Apr 2005 | B2 |
6882572 | Wang et al. | Apr 2005 | B2 |
6888375 | Feng et al. | May 2005 | B2 |
6917219 | New | Jul 2005 | B2 |
6927431 | Gonzalez | Aug 2005 | B2 |
6930511 | Or-Bach | Aug 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6943407 | Ouyang et al. | Sep 2005 | B2 |
6949421 | Padmanabhan et al. | Sep 2005 | B1 |
6953956 | Or-Bach et al. | Oct 2005 | B2 |
6967149 | Meyer et al. | Nov 2005 | B2 |
6985012 | Or-Bach | Jan 2006 | B2 |
6989687 | Or-Bach | Jan 2006 | B2 |
6995430 | Langdo et al. | Feb 2006 | B2 |
6995456 | Nowak | Feb 2006 | B2 |
7015719 | Feng et al. | Mar 2006 | B1 |
7016569 | Mule et al. | Mar 2006 | B2 |
7018875 | Madurawe | Mar 2006 | B2 |
7019557 | Madurawe | Mar 2006 | B2 |
7043106 | West et al. | May 2006 | B2 |
7052941 | Lee | May 2006 | B2 |
7064579 | Madurawe | Jun 2006 | B2 |
7067396 | Aspar et al. | Jun 2006 | B2 |
7067909 | Reif et al. | Jun 2006 | B2 |
7068070 | Or-Bach | Jun 2006 | B2 |
7068072 | New et al. | Jun 2006 | B2 |
7078739 | Nemati et al. | Jul 2006 | B1 |
7094667 | Bower | Aug 2006 | B1 |
7098691 | Or-Bach et al. | Aug 2006 | B2 |
7105390 | Brask et al. | Sep 2006 | B2 |
7105871 | Or-Bach et al. | Sep 2006 | B2 |
7109092 | Tong | Sep 2006 | B2 |
7110629 | Bjorkman et al. | Sep 2006 | B2 |
7111149 | Eilert | Sep 2006 | B2 |
7112815 | Prall | Sep 2006 | B2 |
7115945 | Lee et al. | Oct 2006 | B2 |
7115966 | Ido et al. | Oct 2006 | B2 |
7141853 | Campbell et al. | Nov 2006 | B2 |
7148119 | Sakaguchi et al. | Dec 2006 | B1 |
7157787 | Kim et al. | Jan 2007 | B2 |
7157937 | Apostol et al. | Jan 2007 | B2 |
7166520 | Henley | Jan 2007 | B1 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7173369 | Forrest et al. | Feb 2007 | B2 |
7180091 | Yamazaki et al. | Feb 2007 | B2 |
7180379 | Hopper et al. | Feb 2007 | B1 |
7183611 | Bhattacharyya | Feb 2007 | B2 |
7189489 | Kunimoto et al. | Mar 2007 | B2 |
7205204 | Ogawa et al. | Apr 2007 | B2 |
7209384 | Kim | Apr 2007 | B1 |
7217636 | Atanackovic | May 2007 | B1 |
7223612 | Sarma | May 2007 | B2 |
7242012 | Leedy | Jul 2007 | B2 |
7245002 | Akino et al. | Jul 2007 | B2 |
7256104 | Ito et al. | Aug 2007 | B2 |
7259091 | Schuehrer et al. | Aug 2007 | B2 |
7265421 | Madurawe | Sep 2007 | B2 |
7271420 | Cao | Sep 2007 | B2 |
7274207 | Sugawara et al. | Sep 2007 | B2 |
7282951 | Huppenthal et al. | Oct 2007 | B2 |
7284226 | Kondapalli | Oct 2007 | B1 |
7296201 | Abramovici | Nov 2007 | B2 |
7304355 | Zhang | Dec 2007 | B2 |
7312109 | Madurawe | Dec 2007 | B2 |
7312487 | Alam et al. | Dec 2007 | B2 |
7314788 | Shaw | Jan 2008 | B2 |
7335573 | Takayama et al. | Feb 2008 | B2 |
7337425 | Kirk | Feb 2008 | B2 |
7338884 | Shimoto et al. | Mar 2008 | B2 |
7342415 | Teig et al. | Mar 2008 | B2 |
7351644 | Henley | Apr 2008 | B2 |
7358601 | Plants et al. | Apr 2008 | B1 |
7362133 | Madurawe | Apr 2008 | B2 |
7369435 | Forbes | May 2008 | B2 |
7371660 | Henley et al. | May 2008 | B2 |
7378702 | Lee | May 2008 | B2 |
7381989 | Kim | Jun 2008 | B2 |
7385283 | Wu | Jun 2008 | B2 |
7393722 | Issaq et al. | Jul 2008 | B1 |
7402483 | Yu et al. | Jul 2008 | B2 |
7402897 | Leedy | Jul 2008 | B2 |
7419844 | Lee et al. | Sep 2008 | B2 |
7432185 | Kim | Oct 2008 | B2 |
7436027 | Ogawa et al. | Oct 2008 | B2 |
7439773 | Or-Bach et al. | Oct 2008 | B2 |
7446563 | Madurawe | Nov 2008 | B2 |
7459752 | Doris et al. | Dec 2008 | B2 |
7459763 | Issaq et al. | Dec 2008 | B1 |
7459772 | Speers | Dec 2008 | B2 |
7463062 | Or-Bach et al. | Dec 2008 | B2 |
7463502 | Stipe | Dec 2008 | B2 |
7470142 | Lee | Dec 2008 | B2 |
7470598 | Lee | Dec 2008 | B2 |
7476939 | Okhonin et al. | Jan 2009 | B2 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7485968 | Enquist et al. | Feb 2009 | B2 |
7486563 | Waller et al. | Feb 2009 | B2 |
7488980 | Takafuji et al. | Feb 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7495473 | McCollum et al. | Feb 2009 | B2 |
7498675 | Farnworth et al. | Mar 2009 | B2 |
7499352 | Singh | Mar 2009 | B2 |
7499358 | Bauser | Mar 2009 | B2 |
7508034 | Takafuji et al. | Mar 2009 | B2 |
7514748 | Fazan et al. | Apr 2009 | B2 |
7521806 | Trezza | Apr 2009 | B2 |
7525186 | Kim et al. | Apr 2009 | B2 |
2009019 | Madurawe et al. | May 2009 | A1 |
7535089 | Fitzgerald | May 2009 | B2 |
7541616 | Fazan et al. | Jun 2009 | B2 |
7547589 | Iriguchi | Jun 2009 | B2 |
7553745 | Lim | Jun 2009 | B2 |
7557367 | Rogers et al. | Jul 2009 | B2 |
7558141 | Katsumata et al. | Jul 2009 | B2 |
7563659 | Kwon et al. | Jul 2009 | B2 |
7566855 | Olsen et al. | Jul 2009 | B2 |
7566974 | Konevecki | Jul 2009 | B2 |
7586778 | Ho et al. | Sep 2009 | B2 |
7589375 | Jang et al. | Sep 2009 | B2 |
7608848 | Ho et al. | Oct 2009 | B2 |
7612411 | Walker | Nov 2009 | B2 |
7615462 | Kim et al. | Nov 2009 | B2 |
7622367 | Nuzzo et al. | Nov 2009 | B1 |
7632738 | Lee | Dec 2009 | B2 |
7633162 | Lee | Dec 2009 | B2 |
7666723 | Frank et al. | Feb 2010 | B2 |
7670912 | Yeo | Mar 2010 | B2 |
7671371 | Lee | Mar 2010 | B2 |
7671460 | Lauxtermann et al. | Mar 2010 | B2 |
7674687 | Henley | Mar 2010 | B2 |
7687372 | Jain | Mar 2010 | B2 |
7687872 | Cazaux | Mar 2010 | B2 |
7688619 | Lung et al. | Mar 2010 | B2 |
7692202 | Bensch | Apr 2010 | B2 |
7692448 | Solomon | Apr 2010 | B2 |
7692944 | Bernstein et al. | Apr 2010 | B2 |
7697316 | Lai et al. | Apr 2010 | B2 |
7709932 | Nemoto et al. | May 2010 | B2 |
7718508 | Lee | May 2010 | B2 |
7719876 | Chevallier | May 2010 | B2 |
7723207 | Alam et al. | May 2010 | B2 |
7728326 | Yamazaki et al. | Jun 2010 | B2 |
7732301 | Pinnington et al. | Jun 2010 | B1 |
7741673 | Tak et al. | Jun 2010 | B2 |
7742331 | Watanabe | Jun 2010 | B2 |
7745250 | Han | Jun 2010 | B2 |
7749884 | Mathew et al. | Jul 2010 | B2 |
7750669 | Spangaro | Jul 2010 | B2 |
7755622 | Yvon | Jul 2010 | B2 |
7759043 | Tanabe et al. | Jul 2010 | B2 |
7768115 | Lee et al. | Aug 2010 | B2 |
7772039 | Kerber | Aug 2010 | B2 |
7772096 | DeSouza et al. | Aug 2010 | B2 |
7774735 | Sood | Aug 2010 | B1 |
7776715 | Wells et al. | Aug 2010 | B2 |
7777330 | Pelley et al. | Aug 2010 | B2 |
7786460 | Lung et al. | Aug 2010 | B2 |
7786535 | Abou-Khalil et al. | Aug 2010 | B2 |
7790524 | Abadeer et al. | Sep 2010 | B2 |
7795619 | Hara | Sep 2010 | B2 |
7799675 | Lee | Sep 2010 | B2 |
7800099 | Yamazaki et al. | Sep 2010 | B2 |
7800148 | Lee et al. | Sep 2010 | B2 |
7800163 | Izumi et al. | Sep 2010 | B2 |
7800199 | Oh et al. | Sep 2010 | B2 |
7816721 | Yamazaki | Oct 2010 | B2 |
7843718 | Koh et al. | Nov 2010 | B2 |
7846814 | Lee | Dec 2010 | B2 |
7863095 | Sasaki et al. | Jan 2011 | B2 |
7864568 | Fujisaki et al. | Jan 2011 | B2 |
7867822 | Lee | Jan 2011 | B2 |
7888764 | Lee | Feb 2011 | B2 |
7910432 | Tanaka et al. | Mar 2011 | B2 |
7915164 | Konevecki et al. | Mar 2011 | B2 |
7919845 | Karp | Apr 2011 | B2 |
7965102 | Bauer et al. | Jun 2011 | B1 |
7968965 | Kim | Jun 2011 | B2 |
7969193 | Wu et al. | Jun 2011 | B1 |
7973314 | Yang | Jul 2011 | B2 |
7982250 | Yamazaki et al. | Jul 2011 | B2 |
7983065 | Samachisa | Jul 2011 | B2 |
8008732 | Kiyotoshi | Aug 2011 | B2 |
8013399 | Thomas et al. | Sep 2011 | B2 |
8014166 | Yazdani | Sep 2011 | B2 |
8014195 | Okhonin et al. | Sep 2011 | B2 |
8022493 | Bang | Sep 2011 | B2 |
8030780 | Kirby et al. | Oct 2011 | B2 |
8031544 | Kim et al. | Oct 2011 | B2 |
8032857 | Mollrath | Oct 2011 | B2 |
8044448 | Kamigaichi et al. | Oct 2011 | B2 |
8044464 | Yamazaki et al. | Oct 2011 | B2 |
8068364 | Maejima | Nov 2011 | B2 |
8106520 | Keeth et al. | Jan 2012 | B2 |
8107276 | Breitwisch et al. | Jan 2012 | B2 |
8114757 | Or-Bach | Feb 2012 | B1 |
8129256 | Farooq et al. | Mar 2012 | B2 |
8129258 | Hosier et al. | Mar 2012 | B2 |
8130547 | Widjaja et al. | Mar 2012 | B2 |
8136071 | Solomon | Mar 2012 | B2 |
8138502 | Nakamura et al. | Mar 2012 | B2 |
8153513 | Henley | Apr 2012 | B2 |
8153520 | Chandrashekar | Apr 2012 | B1 |
8158515 | Farooq et al. | Apr 2012 | B2 |
8178919 | Fujiwara et al. | May 2012 | B2 |
8183630 | Batude et al. | May 2012 | B2 |
8184463 | Saen et al. | May 2012 | B2 |
8185685 | Selinger | May 2012 | B2 |
8203187 | Lung et al. | Jun 2012 | B2 |
8208279 | Lue | Jun 2012 | B2 |
8209649 | Mcllrath | Jun 2012 | B2 |
8228684 | Losavio et al. | Jul 2012 | B2 |
8266560 | Mcllrath | Aug 2012 | B2 |
8264065 | Su et al. | Sep 2012 | B2 |
8288816 | Komori et al. | Oct 2012 | B2 |
8294199 | Yahashi et al. | Oct 2012 | B2 |
8324680 | Izumi et al. | Dec 2012 | B2 |
8338882 | Tanaka et al. | Dec 2012 | B2 |
8343851 | Kim et al. | Jan 2013 | B2 |
8354308 | Kang et al. | Jan 2013 | B2 |
8355273 | Liu | Jan 2013 | B2 |
8374033 | Kito et al. | Feb 2013 | B2 |
8426294 | Lung et al. | Apr 2013 | B2 |
8432719 | Lue | Apr 2013 | B2 |
8432751 | Hafez | Apr 2013 | B2 |
8455941 | Ishihara et al. | Jun 2013 | B2 |
8470689 | Desplobain et al. | Jun 2013 | B2 |
8497512 | Nakamura et al. | Jul 2013 | B2 |
8501564 | Suzawa | Aug 2013 | B2 |
8507972 | Oota et al. | Aug 2013 | B2 |
8508994 | Okhonin | Aug 2013 | B2 |
8513725 | Sakuma et al. | Aug 2013 | B2 |
8514623 | Widjaja et al. | Aug 2013 | B2 |
8516408 | Dell | Aug 2013 | B2 |
8566762 | Morimoto et al. | Aug 2013 | B2 |
8525342 | Chandrasekaran | Oct 2013 | B2 |
8546956 | Nguyen | Oct 2013 | B2 |
8603888 | Liu | Dec 2013 | B2 |
8611388 | Krasulick et al. | Dec 2013 | B2 |
8619490 | Yu | Dec 2013 | B2 |
8630326 | Krasulick et al. | Jan 2014 | B2 |
8643162 | Madurawe | Feb 2014 | B2 |
8650516 | Mollrath | Feb 2014 | B2 |
8654584 | Kim et al. | Feb 2014 | B2 |
8674470 | Or-Bach | Mar 2014 | B1 |
8679861 | Bose | Mar 2014 | B2 |
8736068 | Bartley et al. | May 2014 | B2 |
8773562 | Fan | Jul 2014 | B1 |
8775998 | Morimoto | Jul 2014 | B2 |
8824183 | Samachisa et al. | Sep 2014 | B2 |
8841777 | Farooq | Sep 2014 | B2 |
8853785 | Augendre | Oct 2014 | B2 |
8896054 | Sakuma et al. | Nov 2014 | B2 |
8901613 | Sekar | Dec 2014 | B2 |
8928119 | Leedy | Jan 2015 | B2 |
8971114 | Kang | Mar 2015 | B2 |
9105689 | Fanelli | Aug 2015 | B1 |
9172008 | Hwang | Oct 2015 | B2 |
9227456 | Chien | Jan 2016 | B2 |
9230973 | Pachamuthu et al. | Jan 2016 | B2 |
9269608 | Fanelli | Feb 2016 | B2 |
9334582 | See | May 2016 | B2 |
9391090 | Manorotkul et al. | Jul 2016 | B2 |
9472568 | Shin et al. | Oct 2016 | B2 |
9564450 | Sakuma et al. | Feb 2017 | B2 |
9570683 | Jo | Feb 2017 | B1 |
9589982 | Cheng et al. | Mar 2017 | B1 |
9595530 | Zhou | Mar 2017 | B1 |
9627287 | Engelhardt et al. | Apr 2017 | B2 |
9673257 | Takaki | Jun 2017 | B1 |
9997530 | Yon et al. | Jun 2018 | B2 |
10199354 | Modi et al. | Feb 2019 | B2 |
20010000005 | Forrest et al. | Mar 2001 | A1 |
20010014391 | Forrest et al. | Aug 2001 | A1 |
20010028059 | Emma et al. | Oct 2001 | A1 |
20020024140 | Nakajima et al. | Feb 2002 | A1 |
20020025604 | Tiwari | Feb 2002 | A1 |
20020074668 | Hofstee et al. | Jun 2002 | A1 |
20020081823 | Cheung et al. | Jun 2002 | A1 |
20020090758 | Henley et al. | Jul 2002 | A1 |
20020096681 | Yamazaki et al. | Jul 2002 | A1 |
20020113289 | Cordes et al. | Aug 2002 | A1 |
20020132465 | Leedy | Sep 2002 | A1 |
20020140091 | Callahan | Oct 2002 | A1 |
20020141233 | Hosotani et al. | Oct 2002 | A1 |
20020153243 | Forrest et al. | Oct 2002 | A1 |
20020153569 | Katayama | Oct 2002 | A1 |
20020175401 | Huang et al. | Nov 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20020190232 | Chason | Dec 2002 | A1 |
20020199110 | Kean | Dec 2002 | A1 |
20030015713 | Yoo | Jan 2003 | A1 |
20030032262 | Dennison et al. | Feb 2003 | A1 |
20030059999 | Gonzalez | Mar 2003 | A1 |
20030060034 | Beyne et al. | Mar 2003 | A1 |
20030061555 | Kamei | Mar 2003 | A1 |
20030067043 | Zhang | Apr 2003 | A1 |
20030076706 | Andoh | Apr 2003 | A1 |
20030102079 | Kalvesten et al. | Jun 2003 | A1 |
20030107117 | Antonell et al. | Jun 2003 | A1 |
20030113963 | Wurzer | Jun 2003 | A1 |
20030119279 | Enquist | Jun 2003 | A1 |
20030139011 | Cleeves et al. | Jul 2003 | A1 |
20030153163 | Letertre | Aug 2003 | A1 |
20030157748 | Kim et al. | Aug 2003 | A1 |
20030160888 | Yoshikawa | Aug 2003 | A1 |
20030173631 | Murakami | Sep 2003 | A1 |
20030206036 | Or-Bach | Nov 2003 | A1 |
20030213967 | Forrest et al. | Nov 2003 | A1 |
20030224582 | Shimoda et al. | Dec 2003 | A1 |
20030224596 | Marxsen et al. | Dec 2003 | A1 |
20040007376 | Urdahl et al. | Jan 2004 | A1 |
20040014299 | Moriceau et al. | Jan 2004 | A1 |
20040033676 | Coronel et al. | Feb 2004 | A1 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040047539 | Okubora et al. | Mar 2004 | A1 |
20040061176 | Takafuji et al. | Apr 2004 | A1 |
20040113207 | Hsu et al. | Jun 2004 | A1 |
20040143797 | Nguyen | Jul 2004 | A1 |
20040150068 | Leedy | Aug 2004 | A1 |
20040150070 | Okada | Aug 2004 | A1 |
20040152272 | Fladre et al. | Aug 2004 | A1 |
20040155301 | Zhang | Aug 2004 | A1 |
20040156172 | Lin et al. | Aug 2004 | A1 |
20040156233 | Bhattacharyya | Aug 2004 | A1 |
20040164425 | Urakawa | Aug 2004 | A1 |
20040166649 | Bressot et al. | Aug 2004 | A1 |
20040174732 | Morimoto | Sep 2004 | A1 |
20040175902 | Rayssac et al. | Sep 2004 | A1 |
20040178819 | New | Sep 2004 | A1 |
20040195572 | Kato et al. | Oct 2004 | A1 |
20040219765 | Reif et al. | Nov 2004 | A1 |
20040229444 | Couillard | Nov 2004 | A1 |
20040259312 | Schlosser et al. | Dec 2004 | A1 |
20040262635 | Lee | Dec 2004 | A1 |
20040262772 | Ramanathan et al. | Dec 2004 | A1 |
20050003592 | Jones | Jan 2005 | A1 |
20050010725 | Eilert | Jan 2005 | A1 |
20050023656 | Leedy | Feb 2005 | A1 |
20050045919 | Kaeriyama et al. | Mar 2005 | A1 |
20050067620 | Chan et al. | Mar 2005 | A1 |
20050067625 | Hata | Mar 2005 | A1 |
20050073060 | Datta et al. | Apr 2005 | A1 |
20050082526 | Bedell et al. | Apr 2005 | A1 |
20050098822 | Mathew | May 2005 | A1 |
20050110041 | Boutros et al. | May 2005 | A1 |
20050121676 | Fried et al. | Jun 2005 | A1 |
20050121789 | Madurawe | Jun 2005 | A1 |
20050130351 | Leedy | Jun 2005 | A1 |
20050130429 | Rayssac et al. | Jun 2005 | A1 |
20050148137 | Brask et al. | Jul 2005 | A1 |
20050176174 | Leedy | Aug 2005 | A1 |
20050218521 | Lee | Oct 2005 | A1 |
20050225237 | Winters | Oct 2005 | A1 |
20050266659 | Ghyselen et al. | Dec 2005 | A1 |
20050273749 | Kirk | Dec 2005 | A1 |
20050280061 | Lee | Dec 2005 | A1 |
20050280090 | Anderson et al. | Dec 2005 | A1 |
20050280154 | Lee | Dec 2005 | A1 |
20050280155 | Lee | Dec 2005 | A1 |
20050280156 | Lee | Dec 2005 | A1 |
20050282019 | Fukushima et al. | Dec 2005 | A1 |
20060014331 | Tang et al. | Jan 2006 | A1 |
20060024923 | Sarma et al. | Feb 2006 | A1 |
20060033110 | Alam et al. | Feb 2006 | A1 |
20060033124 | Or-Bach et al. | Feb 2006 | A1 |
20060043367 | Chang et al. | Feb 2006 | A1 |
20060049449 | Lino | Mar 2006 | A1 |
20060065953 | Kim et al. | Mar 2006 | A1 |
20060067122 | Verhoeven | Mar 2006 | A1 |
20060071322 | Kitamura | Apr 2006 | A1 |
20060071332 | Speers | Apr 2006 | A1 |
20060083280 | Tauzin et al. | Apr 2006 | A1 |
20060108613 | Song | May 2006 | A1 |
20060108627 | Choi | May 2006 | A1 |
20060113522 | Lee et al. | Jun 2006 | A1 |
20060118935 | Kamiyama et al. | Jun 2006 | A1 |
20060121690 | Pogge et al. | Jun 2006 | A1 |
20060150137 | Madurawe | Jul 2006 | A1 |
20060158511 | Harrold | Jul 2006 | A1 |
20060170046 | Hara | Aug 2006 | A1 |
20060179417 | Madurawe | Aug 2006 | A1 |
20060181202 | Liao et al. | Aug 2006 | A1 |
20060189095 | Ghyselen et al. | Aug 2006 | A1 |
20060194401 | Hu et al. | Aug 2006 | A1 |
20060195729 | Huppenthal et al. | Aug 2006 | A1 |
20060207087 | Jafri et al. | Sep 2006 | A1 |
20060224814 | Kim et al. | Oct 2006 | A1 |
20060237777 | Choi | Oct 2006 | A1 |
20060249859 | Eiles et al. | Nov 2006 | A1 |
20060275962 | Lee | Dec 2006 | A1 |
20070004150 | Huang | Jan 2007 | A1 |
20070014508 | Chen et al. | Jan 2007 | A1 |
20070035329 | Madurawe | Feb 2007 | A1 |
20070063259 | Derderian et al. | Mar 2007 | A1 |
20070072391 | Pocas et al. | Mar 2007 | A1 |
20070076509 | Zhang | Apr 2007 | A1 |
20070077694 | Lee | Apr 2007 | A1 |
20070077743 | Rao et al. | Apr 2007 | A1 |
20070090416 | Doyle et al. | Apr 2007 | A1 |
20070102737 | Kashiwabara et al. | May 2007 | A1 |
20070103191 | Sugawara et al. | May 2007 | A1 |
20070108523 | Ogawa et al. | May 2007 | A1 |
20070109831 | RaghuRam | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070111406 | Joshi et al. | May 2007 | A1 |
20070132049 | Stipe | Jun 2007 | A1 |
20070132369 | Forrest et al. | Jun 2007 | A1 |
20070135013 | Faris | Jun 2007 | A1 |
20070141781 | Park | Jun 2007 | A1 |
20070158659 | Bensce | Jul 2007 | A1 |
20070158831 | Cha et al. | Jul 2007 | A1 |
20070176214 | Kwon et al. | Aug 2007 | A1 |
20070187775 | Okhonin et al. | Aug 2007 | A1 |
20070190746 | Ito et al. | Aug 2007 | A1 |
20070194453 | Chakraborty et al. | Aug 2007 | A1 |
20070206408 | Schwerin | Sep 2007 | A1 |
20070210336 | Madurawe | Sep 2007 | A1 |
20070211535 | Kim | Sep 2007 | A1 |
20070215903 | Sakamoto et al. | Sep 2007 | A1 |
20070218622 | Lee et al. | Sep 2007 | A1 |
20070228383 | Bernstein et al. | Oct 2007 | A1 |
20070252201 | Kito et al. | Nov 2007 | A1 |
20070252203 | Zhu et al. | Nov 2007 | A1 |
20070262457 | Lin | Nov 2007 | A1 |
20070275520 | Suzuki | Nov 2007 | A1 |
20070281439 | Bedell et al. | Dec 2007 | A1 |
20070283298 | Bernstein et al. | Dec 2007 | A1 |
20070287224 | Alam et al. | Dec 2007 | A1 |
20070296073 | Wu | Dec 2007 | A1 |
20070297232 | Iwata | Dec 2007 | A1 |
20080001204 | Lee | Jan 2008 | A1 |
20080003818 | Seidel et al. | Jan 2008 | A1 |
20080030228 | Amarilio | Feb 2008 | A1 |
20080032463 | Lee | Feb 2008 | A1 |
20080038902 | Lee | Feb 2008 | A1 |
20080048239 | Huo | Feb 2008 | A1 |
20080048327 | Lee | Feb 2008 | A1 |
20080054359 | Yang et al. | Mar 2008 | A1 |
20080067573 | Jang et al. | Mar 2008 | A1 |
20080070340 | Borrelli et al. | Mar 2008 | A1 |
20080072182 | He et al. | Mar 2008 | A1 |
20080099780 | Tran | May 2008 | A1 |
20080099819 | Kito et al. | May 2008 | A1 |
20080108171 | Rogers et al. | May 2008 | A1 |
20080123418 | Widjaja | May 2008 | A1 |
20080124845 | Yu et al. | May 2008 | A1 |
20080128745 | Mastro et al. | Jun 2008 | A1 |
20080128780 | Nishihara | Jun 2008 | A1 |
20080135949 | Lo et al. | Jun 2008 | A1 |
20080136455 | Diamant et al. | Jun 2008 | A1 |
20080142937 | Chen et al. | Jun 2008 | A1 |
20080142959 | DeMulder et al. | Jun 2008 | A1 |
20080143379 | Norman | Jun 2008 | A1 |
20080150579 | Madurawe | Jun 2008 | A1 |
20080160431 | Scott et al. | Jul 2008 | A1 |
20080160726 | Lim et al. | Jul 2008 | A1 |
20080165521 | Bernstein et al. | Jul 2008 | A1 |
20080175032 | Tanaka et al. | Jul 2008 | A1 |
20080179678 | Dyer et al. | Jul 2008 | A1 |
20080180132 | Ishikawa | Jul 2008 | A1 |
20080185648 | Jeong | Aug 2008 | A1 |
20080191247 | Yin et al. | Aug 2008 | A1 |
20080191312 | Oh et al. | Aug 2008 | A1 |
20080194068 | Temmler et al. | Aug 2008 | A1 |
20080203452 | Moon et al. | Aug 2008 | A1 |
20080213982 | Park et al. | Sep 2008 | A1 |
20080220558 | Zehavi et al. | Sep 2008 | A1 |
20080220565 | Hsu et al. | Sep 2008 | A1 |
20080224260 | Schmit et al. | Sep 2008 | A1 |
20080237591 | Leedy | Oct 2008 | A1 |
20080239818 | Mokhlesi | Oct 2008 | A1 |
20080242028 | Mokhlesi | Oct 2008 | A1 |
20080248618 | Ahn et al. | Oct 2008 | A1 |
20080251862 | Fonash et al. | Oct 2008 | A1 |
20080254561 | Yoo | Oct 2008 | A2 |
20080254572 | Leedy | Oct 2008 | A1 |
20080254623 | Chan | Oct 2008 | A1 |
20080261378 | Yao et al. | Oct 2008 | A1 |
20080266960 | Kuo | Oct 2008 | A1 |
20080272492 | Tsang | Nov 2008 | A1 |
20080277778 | Furman | Nov 2008 | A1 |
20080283873 | Yang | Nov 2008 | A1 |
20080283875 | Mukasa et al. | Nov 2008 | A1 |
20080284611 | Leedy | Nov 2008 | A1 |
20080296681 | Georgakos et al. | Dec 2008 | A1 |
20080315253 | Yuan | Dec 2008 | A1 |
20080315351 | Kakehata | Dec 2008 | A1 |
20090001469 | Yoshida et al. | Jan 2009 | A1 |
20090001504 | Takei et al. | Jan 2009 | A1 |
20090016716 | Ishida | Jan 2009 | A1 |
20090026541 | Chung | Jan 2009 | A1 |
20090026618 | Kim | Jan 2009 | A1 |
20090032899 | Irie | Feb 2009 | A1 |
20090032951 | Andry et al. | Feb 2009 | A1 |
20090039918 | Madurawe | Feb 2009 | A1 |
20090052827 | Durfee et al. | Feb 2009 | A1 |
20090055789 | Mcllrath | Feb 2009 | A1 |
20090057879 | Garrou et al. | Mar 2009 | A1 |
20090061572 | Hareland et al. | Mar 2009 | A1 |
20090064058 | Mcllrath | Mar 2009 | A1 |
20090065827 | Hwang | Mar 2009 | A1 |
20090066365 | Solomon | Mar 2009 | A1 |
20090066366 | Solomon | Mar 2009 | A1 |
20090070721 | Solomon | Mar 2009 | A1 |
20090070727 | Solomon | Mar 2009 | A1 |
20090078970 | Yamazaki | Mar 2009 | A1 |
20090079000 | Yamazaki et al. | Mar 2009 | A1 |
20090081848 | Erokhin | Mar 2009 | A1 |
20090087759 | Matsumoto et al. | Apr 2009 | A1 |
20090096009 | Dong et al. | Apr 2009 | A1 |
20090096024 | Shingu et al. | Apr 2009 | A1 |
20090108318 | Yoon et al. | Apr 2009 | A1 |
20090115042 | Koyanagi | May 2009 | A1 |
20090134397 | Yokoi et al. | May 2009 | A1 |
20090144669 | Bose et al. | Jun 2009 | A1 |
20090144678 | Bose et al. | Jun 2009 | A1 |
20090146172 | Pumyea | Jun 2009 | A1 |
20090159870 | Lin et al. | Jun 2009 | A1 |
20090160482 | Karp et al. | Jun 2009 | A1 |
20090161401 | Bigler et al. | Jun 2009 | A1 |
20090162993 | Yui et al. | Jun 2009 | A1 |
20090166627 | Han | Jul 2009 | A1 |
20090174018 | Dungan | Jul 2009 | A1 |
20090179268 | Abou-Khalil et al. | Jul 2009 | A1 |
20090185407 | Park | Jul 2009 | A1 |
20090194152 | Liu et al. | Aug 2009 | A1 |
20090194768 | Leedy | Aug 2009 | A1 |
20090194829 | Chung | Aug 2009 | A1 |
20090194836 | Kim | Aug 2009 | A1 |
20090204933 | Rezgui | Aug 2009 | A1 |
20090212317 | Kolodin et al. | Aug 2009 | A1 |
20090212397 | Tuttle | Aug 2009 | A1 |
20090218627 | Zhu | Sep 2009 | A1 |
20090221110 | Lee et al. | Sep 2009 | A1 |
20090224330 | Hong | Sep 2009 | A1 |
20090224364 | Oh et al. | Sep 2009 | A1 |
20090224391 | Lin | Sep 2009 | A1 |
20090230462 | Tanaka et al. | Sep 2009 | A1 |
20090234331 | Langereis et al. | Sep 2009 | A1 |
20090236749 | Otemba et al. | Sep 2009 | A1 |
20090242893 | Tomiyasu | Oct 2009 | A1 |
20090242935 | Fitzgerald | Oct 2009 | A1 |
20090250686 | Sato et al. | Oct 2009 | A1 |
20090262572 | Krusin-Elbaum | Oct 2009 | A1 |
20090262583 | Lue | Oct 2009 | A1 |
20090263942 | Ohnuma et al. | Oct 2009 | A1 |
20090267233 | Lee | Oct 2009 | A1 |
20090268983 | Stone et al. | Oct 2009 | A1 |
20090272989 | Shum et al. | Nov 2009 | A1 |
20090290434 | Kurjanowicz | Nov 2009 | A1 |
20090294822 | Batude et al. | Dec 2009 | A1 |
20090294836 | Kiyotoshi | Dec 2009 | A1 |
20090294861 | Thomas et al. | Dec 2009 | A1 |
20090294990 | Ishino et al. | Dec 2009 | A1 |
20090302294 | Kim | Dec 2009 | A1 |
20090302387 | Joshi et al. | Dec 2009 | A1 |
20090302394 | Fujita | Dec 2009 | A1 |
20090309152 | Knoefler et al. | Dec 2009 | A1 |
20090315095 | Kim | Dec 2009 | A1 |
20090317950 | Okihara | Dec 2009 | A1 |
20090321830 | Maly | Dec 2009 | A1 |
20090321853 | Cheng | Dec 2009 | A1 |
20090321948 | Wang et al. | Dec 2009 | A1 |
20090325343 | Lee | Dec 2009 | A1 |
20100001282 | Mieno | Jan 2010 | A1 |
20100006969 | Park | Jan 2010 | A1 |
20100013049 | Tanaka | Jan 2010 | A1 |
20100025766 | Nuttinck et al. | Feb 2010 | A1 |
20100025825 | Degraw et al. | Feb 2010 | A1 |
20100031217 | Sinha et al. | Feb 2010 | A1 |
20100032635 | Schwerin | Feb 2010 | A1 |
20100038699 | Katsumata et al. | Feb 2010 | A1 |
20100038743 | Lee | Feb 2010 | A1 |
20100045849 | Yamasaki | Feb 2010 | A1 |
20100052134 | Werner et al. | Mar 2010 | A1 |
20100058580 | Yazdani | Mar 2010 | A1 |
20100059796 | Scheuerlein | Mar 2010 | A1 |
20100059864 | Mahler et al. | Mar 2010 | A1 |
20100078770 | Purushothaman et al. | Apr 2010 | A1 |
20100081232 | Furman et al. | Apr 2010 | A1 |
20100089627 | Huang et al. | Apr 2010 | A1 |
20100090188 | Fatasuyama | Apr 2010 | A1 |
20100112753 | Lee | May 2010 | A1 |
20100112810 | Lee et al. | May 2010 | A1 |
20100117048 | Lung et al. | May 2010 | A1 |
20100123202 | Hofmann | May 2010 | A1 |
20100123480 | Kitada et al. | May 2010 | A1 |
20100133695 | Lee | Jun 2010 | A1 |
20100133704 | Marimuthu et al. | Jun 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100139836 | Horikoshi | Jun 2010 | A1 |
20100140790 | Setiadi et al. | Jun 2010 | A1 |
20100155932 | Gambino | Jun 2010 | A1 |
20100157117 | Wang | Jun 2010 | A1 |
20100159650 | Song | Jun 2010 | A1 |
20100181600 | Law | Jul 2010 | A1 |
20100190334 | Lee | Jul 2010 | A1 |
20100193884 | Park et al. | Aug 2010 | A1 |
20100193964 | Farooq et al. | Aug 2010 | A1 |
20100219392 | Awaya | Sep 2010 | A1 |
20100221867 | Bedell et al. | Sep 2010 | A1 |
20100224876 | Zhu | Sep 2010 | A1 |
20100224915 | Kawashima et al. | Sep 2010 | A1 |
20100225002 | Law et al. | Sep 2010 | A1 |
20100232200 | Shepard | Sep 2010 | A1 |
20100252934 | Law | Oct 2010 | A1 |
20100264551 | Farooq | Oct 2010 | A1 |
20100276662 | Colinge | Nov 2010 | A1 |
20100289144 | Farooq | Nov 2010 | A1 |
20100295083 | Celler | Nov 2010 | A1 |
20100297844 | Yelehanka | Nov 2010 | A1 |
20100307572 | Bedell et al. | Dec 2010 | A1 |
20100308211 | Cho et al. | Dec 2010 | A1 |
20100308863 | Gliese et al. | Dec 2010 | A1 |
20100320514 | Tredwell | Dec 2010 | A1 |
20100320526 | Kidoh et al. | Dec 2010 | A1 |
20100328826 | Salman | Dec 2010 | A1 |
20100330728 | McCarten | Dec 2010 | A1 |
20100330752 | Jeong | Dec 2010 | A1 |
20110001172 | Lee | Jan 2011 | A1 |
20110003438 | Lee | Jan 2011 | A1 |
20110024724 | Frolov et al. | Feb 2011 | A1 |
20110026263 | Xu | Feb 2011 | A1 |
20110027967 | Beyne | Feb 2011 | A1 |
20110037052 | Schmidt et al. | Feb 2011 | A1 |
20110042696 | Smith et al. | Feb 2011 | A1 |
20110049336 | Matsunuma | Mar 2011 | A1 |
20110050125 | Medendorp et al. | Mar 2011 | A1 |
20110053332 | Lee | Mar 2011 | A1 |
20110101537 | Barth et al. | May 2011 | A1 |
20110102014 | Madurawe | May 2011 | A1 |
20110111560 | Purushothaman | May 2011 | A1 |
20110115023 | Cheng | May 2011 | A1 |
20110128777 | Yamazaki | Jun 2011 | A1 |
20110134683 | Yamazaki | Jun 2011 | A1 |
20110143506 | Lee | Jun 2011 | A1 |
20110147791 | Norman et al. | Jun 2011 | A1 |
20110147849 | Augendre et al. | Jun 2011 | A1 |
20110159635 | Doan et al. | Jun 2011 | A1 |
20110170331 | Oh | Jul 2011 | A1 |
20110204917 | O'Neill | Aug 2011 | A1 |
20110221022 | Toda | Sep 2011 | A1 |
20110222356 | Banna | Sep 2011 | A1 |
20110227158 | Zhu | Sep 2011 | A1 |
20110241082 | Bernstein et al. | Oct 2011 | A1 |
20110284946 | Kiyotoshi | Nov 2011 | A1 |
20110284992 | Zhu | Nov 2011 | A1 |
20110286283 | Lung et al. | Nov 2011 | A1 |
20110304765 | Yogo et al. | Dec 2011 | A1 |
20110309432 | Ishihara et al. | Dec 2011 | A1 |
20110314437 | Mollrath | Dec 2011 | A1 |
20120001184 | Ha et al. | Jan 2012 | A1 |
20120003808 | Lee | Jan 2012 | A1 |
20120003815 | Lee | Jan 2012 | A1 |
20120013013 | Sadaka et al. | Jan 2012 | A1 |
20120025388 | Law et al. | Feb 2012 | A1 |
20120032250 | Son et al. | Feb 2012 | A1 |
20120034759 | Sakaguchi et al. | Feb 2012 | A1 |
20120063090 | Hsiao et al. | Mar 2012 | A1 |
20120074466 | Setiadi et al. | Mar 2012 | A1 |
20120086100 | Andry | Apr 2012 | A1 |
20120126197 | Chung | May 2012 | A1 |
20120146193 | Stuber et al. | Jun 2012 | A1 |
20120161310 | Brindle et al. | Jun 2012 | A1 |
20120169319 | Dennard | Jul 2012 | A1 |
20120178211 | Hebert | Jul 2012 | A1 |
20120181654 | Lue | Jul 2012 | A1 |
20120182801 | Lue | Jul 2012 | A1 |
20120187444 | Oh | Jul 2012 | A1 |
20120193785 | Lin | Aug 2012 | A1 |
20120223428 | Pendse | Sep 2012 | A1 |
20120241919 | Mitani | Sep 2012 | A1 |
20120286822 | Madurawe | Nov 2012 | A1 |
20120304142 | Morimoto | Nov 2012 | A1 |
20120317528 | Mcllrath | Dec 2012 | A1 |
20120319728 | Madurawe | Dec 2012 | A1 |
20130020707 | Or-Bach | Jan 2013 | A1 |
20130026663 | Radu et al. | Jan 2013 | A1 |
20130037802 | England | Feb 2013 | A1 |
20130049796 | Pang | Feb 2013 | A1 |
20130070506 | Kajigaya | Mar 2013 | A1 |
20130082235 | Gu et al. | Apr 2013 | A1 |
20130095580 | Or-Bach | Apr 2013 | A1 |
20130097574 | Balabanov et al. | Apr 2013 | A1 |
20130100743 | Lue | Apr 2013 | A1 |
20130128666 | Avila | May 2013 | A1 |
20130187720 | Ishii | Jul 2013 | A1 |
20130193550 | Sklenard et al. | Aug 2013 | A1 |
20130196500 | Batude et al. | Aug 2013 | A1 |
20130203248 | Ernst et al. | Aug 2013 | A1 |
20130207243 | Fuergut | Aug 2013 | A1 |
20130241026 | Or-Bach | Sep 2013 | A1 |
20130263393 | Mazumder | Oct 2013 | A1 |
20130337601 | Kapur | Dec 2013 | A1 |
20140015136 | Gan et al. | Jan 2014 | A1 |
20140030871 | Arriagada et al. | Jan 2014 | A1 |
20140035616 | Oda et al. | Feb 2014 | A1 |
20140048867 | Toh | Feb 2014 | A1 |
20140099761 | Kim et al. | Apr 2014 | A1 |
20140103959 | Andreev | Apr 2014 | A1 |
20140117413 | Madurawe | May 2014 | A1 |
20140120695 | Ohtsuki | May 2014 | A1 |
20140131885 | Samadi et al. | May 2014 | A1 |
20140137061 | Mcllrath | May 2014 | A1 |
20140145347 | Samadi et al. | May 2014 | A1 |
20140146630 | Xie et al. | May 2014 | A1 |
20140149958 | Samadi et al. | May 2014 | A1 |
20140151774 | Rhie | Jun 2014 | A1 |
20140191357 | Lee | Jul 2014 | A1 |
20140225218 | Du | Aug 2014 | A1 |
20140225235 | Du | Aug 2014 | A1 |
20140252306 | Du | Sep 2014 | A1 |
20140253196 | Du et al. | Sep 2014 | A1 |
20140264228 | Toh | Sep 2014 | A1 |
20140357054 | Son et al. | Dec 2014 | A1 |
20150021785 | Lin | Jan 2015 | A1 |
20150034898 | Wang | Feb 2015 | A1 |
20150243887 | Saitoh | Aug 2015 | A1 |
20150255418 | Gowda | Sep 2015 | A1 |
20150279829 | Kuo | Oct 2015 | A1 |
20150340369 | Lue | Nov 2015 | A1 |
20160049201 | Lue | Feb 2016 | A1 |
20160104780 | Mauder | Apr 2016 | A1 |
20160133603 | Ahn | May 2016 | A1 |
20160141299 | Hong | May 2016 | A1 |
20160141334 | Takaki | May 2016 | A1 |
20160307952 | Huang | Oct 2016 | A1 |
20160343687 | Vadhavkar | Nov 2016 | A1 |
20170069601 | Park | Mar 2017 | A1 |
20170092371 | Harari | Mar 2017 | A1 |
20170098596 | Lin | Apr 2017 | A1 |
20170148517 | Harari | May 2017 | A1 |
20170179146 | Park | Jun 2017 | A1 |
20170221900 | Widjaja | Aug 2017 | A1 |
20170278858 | Walker | Sep 2017 | A1 |
20180090219 | Harari | Mar 2018 | A1 |
20180090368 | Kim | Mar 2018 | A1 |
20180108416 | Harari | Apr 2018 | A1 |
20180294284 | Tarakji | Oct 2018 | A1 |
20190006009 | Harari | Jan 2019 | A1 |
20190043836 | Fastow et al. | Feb 2019 | A1 |
20190067327 | Herner | Feb 2019 | A1 |
20190157296 | Harari et al. | May 2019 | A1 |
20200020408 | Norman | Jan 2020 | A1 |
20200020718 | Harari et al. | Jan 2020 | A1 |
20200051990 | Harari et al. | Feb 2020 | A1 |
20200105773 | Morris et al. | Apr 2020 | A1 |
20200227123 | Salahuddin et al. | Jul 2020 | A1 |
20200243486 | Quader et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
1267594 | Dec 2002 | EP |
PCTUS2008063483 | May 2006 | WO |
Entry |
---|
Topol, A.W., et al., “Enabling SOI-Based Assembly Technology for Three-Dimensional (3D) Integrated Circuits (ICs),” IEDM Tech. Digest, Dec. 5, 2005, pp. 363-366. |
Demeester, P. et al., “Epitaxial lift-off and its applications,” Semicond. Sci. Technol., 1993, pp. 1124-1135, vol. 8. |
Yoon, J., et al., “GaAs Photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies”, Nature, vol. 465, May 20, 2010, pp. 329-334. |
Bakir and Meindl, “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009, Chapter 13, pp. 389-419. |
Tanaka, H., et al., “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on , vol. No., pp. 14-15, Jun. 12-14, 2007. |
Lue, H.-T., et al., “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT Nand Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010, pp. 131-132. |
Kim, W., et al., “Multi-layered Vertical Gate NAND Flash overcoming stacking limit for terabit density storage”, Symposium on VLSI Technology Digest of Technical Papers, 2009, pp. 188-189. |
Dicioccio, L., et al., “Direct bonding for wafer level 3D integration”, ICICDT 2010, pp. 110-113. |
Kim, W., et al., “Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage,” Symposium on VLSI Technology, 2009, pp. 188-189. |
Walker, A. J., “Sub-50nm Dual-Gate Thin-Film Transistors for Monolithic 3-D Flash”, IEEE Trans. Elect. Dev., vol. 56, No. 11, pp. 2703-2710, Nov. 2009. |
Hubert, A., et al., “A Stacked SONOS Technology, Up to 4 Levels and 6nm Crystalline Nanowires, with Gate-All-Around or Independent Gates (ϕFlash), Suitable for Full 3D Integration”, International Electron Devices Meeting, 2009, pp. 637-640. |
Celler, G.K. et al., “Frontiers of silicon-on-insulator,” J. App. Phys., May 1, 2003, pp. 4955-4978, vol. 93, No. 9. |
Rajendran, B., et al., “Electrical Integrity of MOS Devices in Laser Annealed 3D IC Structures”, proceedings VLSI Multi Level Interconnect Conference 2004, pp. 73-74. |
Rajendran, B., “Sequential 3D IC Fabrication: Challenges and Prospects”, Proceedings of VLSI Multi Level Interconnect Conference 2006, pp. 57-64. |
Jung, S.-M., et al., “The revolutionary and truly 3-dimensional 25F2 SRAM technology with the smallest S3 (stacked single-crystal Si) cell, 0.16um2, and SSTFT (stacked single-crystal thin film transistor) for ultra high density SRAM,” VLSI Technology, 2004. Digest of Technical Papers, pp. 228-229, Jun. 15-17, 2004. |
Hui, K. N., et al., “Design of vertically-stacked polychromatic light-emitting diodes,” Optics Express, Jun. 8, 2009, pp. 9873-9878, vol. 17, No. 12. |
Chuai, D. X., et al., “A Trichromatic Phosphor-Free White Light-Emitting Diode by Using Adhesive Bonding Scheme,” Proc. SPIE, 2009, vol. 7635. |
Suntharalingam, V. et al., “Megapixel CMOS Image Sensor Fabricated in Three-Dimensional Integrated Circuit Technology,” Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, Aug. 29, 2005, pp. 356-357, vol. 1. |
Coudrain, P. et al., “Setting up 3D Sequential Integration for Back-Illuminated CMOS Image Sensors with Highly Miniaturized Pixels with Low Temperature Fully-Depleted SOI Transistors,” IEDM, 2008, pp. 1-4. |
Flamand, G. et al., “Towards Highly Efficient 4-Terminal Mechanical Photovoltaic Stacks,” III-Vs Review, Sep.-Oct. 2006, pp. 24-27, vol. 19, Issue 7. |
Zahler, J.M et al., “Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells,” Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002, pp. 1039-1042. |
Sekar, D. C., et al., “A 3D-IC Technology with Integrated Microchannel Cooling”, Proc. Intl. Interconnect Technology Conference, 2008, pp. 13-15. |
Brunschweiler, T., et al., “Forced Convective Interlayer Cooling in Vertically Integrated Packages,” Proc. Intersoc. Conference on Thermal Management (ITHERM), 2008, pp. 1114-1125. |
Yu, H., et al., “Allocating Power Ground Vias in 3D ICs for Simultaneous Power and Thermal Integrity” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 14, No. 3, Article 41, May 2009, pp. 41.1-41.31. |
Motoyoshi, M., “3D-IC Integration,” 3rd Stanford and Tohoku University Joint Open Workshop, Dec. 4, 2009, pp. 1-52. |
Wong, S., et al., “Monolithic 3D Integrated Circuits,” VLSI Technology, Systems and Applications, 2007, International Symposium on VLSI-TSA 2007, pp. 1-4. |
Batude, P., et al., “Advances in 3D Cmos Sequential Integration,” 2009 IEEE International Electron Devices Meeting (Baltimore, Maryland), Dec. 7-9, 2009, pp. 345-348. |
Tan, C.S., et al., “Wafer Level 3-D ICs Process Technology,” ISBN-10: 0387765328, Springer, 1st Ed., Sep. 19, 2008, pp. v-xii, 34, 58, and 59. |
Yoon, S.W. et al., “Fabrication and Packaging of Microbump Interconnections for 3D TSV,” IEEE International Conference on 3D System Integration (3DIC), Sep. 28-30, 2009, pp. 1-5. |
Franzon, P.D. et al., “Design and CAD for 3D Integrated Circuits,” 45th ACM/IEEE Design, Automation Conference (DAC), Jun. 8-13, 2008, pp. 668-673. |
Lajevardi, P., “Design of a 3-Dimension FPGA,” Thesis paper, University of British Columbia, Submitted to Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Jul. 2005, pp. 1-71. |
Dong, C. et al., “Reconfigurable Circuit Design with Nanomaterials,” Design, Automation & Test in Europe Conference & Exhibition, Apr. 20-24, 2009, pp. 442-447. |
Razavi, S.A., et al., “A Tileable Switch Module Architecture for Homogeneous 3D FPGAs,” IEEE International Conference on 3D System Integration (3DIC), Sep. 28-30, 2009, 4 pages. |
Bakir M., et al., “3D Device-Stacking Technology for Memory,” Chptr. 13.4, pp. 407-410, in “Integrated Interconnect Technologies for 3D Nano Electronic Systems”, 2009, Artech House. |
Weis, M. et al., “Stacked 3-Dimensional 6T SRAM Cell with Independent Double Gate Transistors,” IC Design and Technology, May 18-20, 2009. |
Doucette, P., “Integrating Photonics: Hitachi, Oki Put LEDs on Silicon,” Solid State Technology, Jan. 2007, p. 22, vol. 50, No. 1. |
Luo, Z.S. et al., “Enhancement of (In, Ga)N Light-emitting Diode Performance by Laser Liftoff and Transfer from Sapphire to Silicon,” Photonics Technology Letters, Oct. 2002, pp. 1400-1402, vol. 14, No. 10. |
Zahler, J.M. et al., “Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells,” NCPV and Solar Program Review Meeting, 2003, pp. 723-726. |
Kada, M., “Updated results of R&D on functionally innovative 3D-integrated circuit (dream chip) technology in FY2009”, (2010) International Microsystems Packaging Assembly and Circuits Technology Conference, IMPACT 2010 and International 3D IC Conference, Proceedings. |
Kada, M., “Development of functionally innovative 3D-integrated circuit (dream chip) technology / high-density 3D-integration technology for multifunctional devices”, (2009) IEEE International Conference on 3D System Integration, 3DIC 2009. |
Marchal, P., et al., “3-D technology assessment: Path-finding the technology/design sweet-spot”, (2009) Proceedings of the IEEE, 97 (1), pp. 96-107. |
Xie, Y., et al., “Design space exploration for 3D architectures”, (2006) ACM Journal on Emerging Technologies in Computing Systems, 2 (2), Apr. 2006, pp. 65-103. |
Souri, S., et al., “Multiple Si layers ICs: motivation, performance analysis, and design Implications”, (2000) Proceedings—Design Automation Conference, pp. 213-220. |
Vinet, M., et.al., “3D monolithic integration: Technological challenges and electrical results”, Microelectronic Engineering Apr. 2011 vol. 88, Issue 4, pp. 331-335. |
Bobba, S. et al., “CELONCEL: Effective Design Technique for 3-D Monolithic Integration targeting High Performance Integrated Circuits”, Asia pacific DAC 2011, paper 4A-4. |
Choudhury, D., “3D Integration Technologies for Emerging Microsystems”, IEEE Proceedings of the IMS 2010, pp. 1-4. |
Lee, Y.- J., et al., “3D 65nm CMOS with 320°C Microwave Dopant Activation”, IEDM 2010, pp. 1-4. |
Crnogorac, F., et al., “Semiconductor crystal islands for three-dimensional integration”, J. Vac. Sci. Technol. B 28(6), Nov./Dec. 2010, pp. C6P53-58. |
Park, J.-H., et al., “N-Channel Germanium MOSFET Fabricated Below 360°C by Cobalt-Induced Dopant Activation for Monolithic Three-Dimensional-ICs”, IEEE Electron Device Letters, vol. 32, No. 3, Mar. 2011, pp. 234-236. |
Jung, S.-M., et al., “Highly Area Efficient and Cost Effective Double Stacked S3( Stacked Single-crystal Si ) Peripheral CMOS SSTFT and SRAM Cell Technology for 512M bit density SRAM”, IEDM 2003, pp. 265-268. |
Joyner, J.W., “Opportunities and Limitations of Three-dimensional Integration for Interconnect Design”, PhD Thesis, Georgia Institute of Technology, Jul. 2003. |
Choi, S.-J., “A Novel TFT with a Laterally Engineered Bandgap for of 3D Logic and Flash Memory”, 2010 Symposium of VLSI Technology Digest, pp. 111-112. |
Radu, I., et al., “Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking”, IEEE 3D Systems Integration Conference (3DIC), Nov. 16-18, 2010. |
Gaudin, G., et al., “Low temperature direct wafer to wafer bonding for 3D integration”, 3D Systems Integration Conference (3DIC), IEEE, 2010, Munich, Nov. 16-18, 2010, pp. 1-4. |
“Jung, S.-M., et al., ”“Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node”, IEDM 2006, Dec. 11-13, 2006. |
Souri, S. J., “Interconnect Performance in 3-Dimensional Integrated Circuits”, PhD Thesis, Stanford, Jul. 2003. |
Uemoto, Y., et al., “A High-Performance Stacked-CMOS SRAM Cell by Solid Phase Growth Technique”, Symposium on VLSI Technology, 2010, pp. 21-22. |
Jung, S.-M., et al., “Highly Cost Effective and High Performance 65nm S3( Stacked Single-crystal Si ) SRAM Technology with 25F2, 0.16um2 cell and doubly Stacked SSTFT Cell Transistors for Ultra High Density and High Speed Applications”, 2005 Symposium on VLSI Technology Digest of Technical papers, pp. 220-221. |
Steen, S.E., et al., “Overlay as the key to drive wafer scale 3D integration”, Microelectronic Engineering 84(2007) 1412-1415. |
Maeda, N., et al., “Development of Sub 10-μm Ultra-Thinning Technology using Device Wafers for 3D Manufacturing of Terabit Memory”, 2010 Symposium on VLSI Technology Digest of Technical Papers, pp. 105-106. |
Chan, M., et al., “3-Dimensional Integration for Interconnect Reduction in for Nano-CMOS Technologies”, IEEE Tencon, Nov. 23, 2006, Hong Kong. |
Dong, X., et al., “Chapter 10: System-Level 3D IC Cost Analysis and Design Exploration”, in Xie, Y., et al., “Three-Dimensional Integrated Circuit Design”, book in series “Integrated Circuits and Systems” ed. A. Andrakasan, Springer 2010. |
Naito, T., et al., “World's first monolithic 3D-FPGA with TFT SRAM over 90nm 9 layer Cu CMOS”, 2010 Symposium on VLSI Technology Digest of Technical Papers, pp. 219-220. |
Bernard, E., et al., “Novel integration process and performances analysis of Low STandby Power (LSTP) 3D Multi-Channel CMOSFET (MCFET) on SOI with Metal / High-K Gate stack”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 16-17. |
Cong, J., et al., “Quantitative Studies of Impact of 3D IC Design on Repeater Usage”, Proceedings of International VLSI/ULSI Multilevel Interconnection Conference, pp. 344-348, 2008. |
Gutmann, R.J., et al., “Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals”, Journal of Semiconductor Technology and Science, vol. 4, No. 3, Sep. 2004, pp. 196-203. |
Crnogorac, F., et al., “Nano-graphoepitaxy of semiconductors for 3D integration”, Microelectronic Engineering 84 (2007) 891-894. |
Koyanagi, M, “Different Approaches to 3D Chips”, 3D IC Review, Stanford University, May 2005. |
Koyanagi, M, “Three-Dimensional Integration Technology and Integrated Systems”, ASPDAC 2009 presentation. |
Koyanagi, M., et al., “Three-Dimensional Integration Technology and Integrated Systems”, ASPDAC 2009, paper 4D-1, pp. 409-415. |
Hayashi, Y., et al., “A New Three Dimensional IC Fabrication Technology Stacking Thin Film Dual-CMOS Layers”, IEDM 1991, paper 25.6.1, pp. 657-660. |
Clavelier, L., et al., “Engineered Substrates for Future More Moore and More Than Moore Integrated Devices”, IEDM 2010, paper 2.6.1, pp. 42-45. |
Kim, K., “From The Future Si Technology Perspective: Challenges and Opportunities”, IEDM 2010, pp. 1.1.1-1.1.9. |
Ababei, C., et al., “Exploring Potential Benefits of 3D FPGA Integration”, in book by Becker, J.et. al. Eds., “Field Programmable Logic 2004”, LNCS 3203, pp. 874-880, 2004, Springer-Verlag Berlin Heidelberg. |
Ramaswami, S., “3D TSV IC Processing”, 3DIC Technology Forum Semicon Taiwan 2010, Sept. 9, 2010. |
Davis, W.R., et al., “Demystifying 3D Ics: Pros and Cons of Going Vertical”, IEEE Design and Test of Computers, Nov.-Dec. 2005, pp. 498-510. |
Lin, M., et al., “Performance Benefits of Monolithically Stacked 3DFPGA”, FPGA06, Feb. 22-24, 2006, Monterey, California, pp. 113-122. |
Dong, C., et al., “Performance and Power Evaluation of a 3D CMOS/Nanomaterial Reconfigurable Architecture”, ICCAD 2007, pp. 758-764. |
Gojman, B., et al., “3D Nanowire-Based Programmable Logic”, International Conference on Nano-Networks (Nanonets 2006), Sep. 14-16, 2006. |
Dong, C., et al., “3-D nFPGA: A Reconfigurable Architecture for 3-D CMOS/Nanomaterial Hybrid Digital Circuits”, IEEE Transactions on Circuits and Systems, vol. 54, No. 11, Nov. 2007, pp. 2489-2501. |
Golshani, N., et al., “Monolithic 3D Integration of SRAM and Image Sensor Using Two Layers of Single Grain Silicon”, 2010 IEEE International 3D Systems Integration Conference (3DIC), Nov. 16-18, 2010, pp. 1-4. |
Rajendran, B., et al., “Thermal Simulation of laser Annealing for 3D Integration”, Proceedings VMIC 2003. |
Woo, H.-J., et al., “Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process”, Journal of Semiconductor Technology and Science, vol. 6, No. 2, Jun. 2006, pp. 95-100. |
Sadaka, M., et al., “Building Blocks for wafer level 3D integration”,www.electroiq.com, Aug. 18, 2010, last accessed Aug. 18, 2010. |
Madan, N., et al., “Leveraging 3D Technology for Improved Reliability,” Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), IEEE Computer Society. |
Hayashi, Y., et al., “Fabrication of Three Dimensional IC Using ”Cumulatively Bonded IC“ (Cubic) Technology”, 1990 Symposium on VLSI Technology, pp. 95-96. |
Akasaka, Y., “Three Dimensional IC Trends,” Proceedings of the IEEE, vol. 24, No. 12, Dec. 1986. |
Guarini, K.W., et al., “Electrical Integrity of State-of-the-Art 0.13um SOI Device and Circuits Transferred for Three-Dimensional (3D) Integrated Circuit (IC) Fabrication,” IEDM 2002, paper 16.6, pp. 943-945. |
Kunio, T., et al., “Three Dimensional Ics, Having Four Stacked Active Device Layers,” IEDM 1989, paper 34.6, pp. 837-840. |
Gaillardon, P-E., et al., “Can We Go Towards True 3-D ArchitectureS?,” DAC 2011, paper 58, pp. 282-283. |
Yun, J-G., et al., “Single-Crystalline Si Stacked Array (STAR) NAND Flash Memory,” IEEE Transactions on Electron Devices, vol. 58, No. 4, Apr. 2011, pp. 1006-1014. |
Kim, Y., et al., “Three-Dimensional NAND Flash Architecture Design Based on Single-Crystalline Stacked Array,” IEEE Transactions on Electron Devices, vol. 59, No. 1, Jan. 2012, pp. 35-45. |
Goplen, B., et al., “Thermal Via Placement in 3DICs,” Proceedings of the International Symposium on Physical Design, Apr. 3-6, 2005, San Francisco. |
Bobba, S., et al., “Performance Analysis of 3-D Monolithic Integrated Circuits,” 2010 IEEE International 3D Systems Integration Conference (3DIC), Nov. 2010, Munich, pp. 1-4. |
Batude, P., et al., “Demonstration of low temperature 3D sequential FDSOI integration down to 50nm gate length,” 2011 Symposium on VLSI Technology Digest of Technical Papers, pp. 158-159. |
Batude, P., et al., “Advances, Challenges and Opportunties in 3D CMOS Sequential Integration,” 2011 IEEE International Electron Devices Meeting, paper 7.3, Dec. 2011, pp. 151-154. |
Yun, C. H., et al., “Transfer of patterned ion-cut silicon layers”, Applied Physics Letters, vol. 73, No. 19, Nov. 1998, pp. 2772-2774. |
Ishihara, R., et al., “Monolithic 3D-ICs with single grain Si thin film transistors,” Solid-State Electronics 71(2012) pp. 80-87. |
Lee, S. Y., et al., “Architecture of 3D Memory Cell Array on 3D IC,” IEEE International Memory Workshop, May 20, 2012, Monterey, CA. |
Lee, S. Y., et al., “3D IC Architecture for High Density Memories,” IEEE International Memory Workshop, pp. 1-6, May 2010. |
Rajendran, B., et al., “CMOS transistor processing compatible with monolithic 3-D Integration,” Proceedings VMIC 2005. |
Huet, K., “Ultra Low Thermal Budget Laser Thermal Annealing for 3D Semiconductor and Photovoltaic Applications,” NCCAVS 2012 Junction Technology Group, Semicon West, San Francisco, Jul. 12, 2012. |
Derakhshandeh, J., et al., “A Study of the CMP Effect on the Quality of Thin Silicon Films Crystallized by Using the u-Czochralski Process,” Journal of the Korean Physical Society, vol. 54, No. 1, 2009, pp. 432-436. |
Kim, J., et al., “A Stacked Memory Device on Logic 3D Technology for Ultra-high-density Data Storage,” Nanotechnology, vol. 22, 254006 (2011). |
Lee, K. W., et al., “Three-dimensional shared memory fabricated using wafer stacking technology,” IEDM Tech. Dig., 2000, pp. 165-168. |
Chen, H. Y., et al., “HfOx Based Vertical Resistive Random Access Memory for Cost Effective 3D Cross-Point Architecture without Cell Selector,” Proceedings IEDM 2012, pp. 497-499. |
Huet, K., et al., “Ultra Low Thermal Budget Anneals for 3D Memories: Access Device Formation,” Ion Implantation Technology 2012, AIP Conf Proceedings 1496, 135-138 (2012). |
Batude, P., et al., “3D Monolithic Integration,” ISCAS 2011 pp. 2233-2236. |
Batude, P., et al., “3D Sequential Integration: A Key Enabling Technology for Heterogeneous C-Integration of New Function With CMOS,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), vol. 2, No. 4, Dec. 2012, pp. 714-722. |
Vinet, M., et.al., “Germanium on Insulator and new 3D architectures opportunities for integration”, International Journal of Nanotechnology, vol. 7, No. 4, (Aug. 2010) pp. 304-319. |
Bernstein, K., et al., “Interconnects in the Third Dimension: Design Challenges for 3DICs,” Design Automation Conference, 2007, DAC'07, 44th ACM/IEEE, vol. No., pp. 562-567, Jun. 4-8, 2007. |
Kuroda, T., “ThruChip Interface for Heterogeneous Chip Stacking,” ElectroChemicalSociety Transactions, 50(14) 63-68 (2012). |
Miura, N., et al., “A Scalable 3D Heterogeneous Multi-Core Processor with Inductive-Coupling ThruChip Interface,” IEEE Micro Cool Chips XVI, Yokohama, Apr. 17-19, 2013, pp. 1-3(2013). |
Kuroda, T., “Wireless Proximity Communications for 3D System Integration,” Future Directions in IC and Package Design Workshop, Oct. 29, 2007. |
Qiang, J-Q, “3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems,” Proceedings of the IEEE, 97.1 (2009) pp. 18-30. |
Lee, B.H., et al., “A Novel Pattern Transfer Process for Bonded SOI Giga-bit DRAMs,” Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115. |
Wu, B., et al., “Extreme ultraviolet lithography and three dimensional circuits,” Applied Physics Reviews, 1, 011104 (2014). |
Delhougne, R., et al., “First Demonstration of Monocrystalline Silicon Macaroni Channel for 3-D NAND Memory Devices” IEEE VLSI Tech Digest, 2018, pp. 203-204. |
Kim, J., et al.; “A stacked memory device on logic 3D technology for ultra-high-density data storage”; Nanotechnology 22 (2011) 254006 (7pp). |
Hsieh, P-Y, et al., “Monolithic 3D BEOL FinFET switch arrays using location-controlled-grain technique in voltage regulator with better FOM than 2D regulators”, IEDM paper 3.1, pp. IEDM19-46 to-49. |
Then, Han Wui, et al., “3D heterogeneous integration of high performance high-K metal gate GaN NMOS and Si PMOS transistors on 300mm high resistivity Si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications”, IEDM 2019, paper 17.3, pp. IEDM19-402 to 405. |
Rachmady, W., et al., “300mm Heterogeneous 3D Integration of Record Performance Layer Transfer Germanium PMOS with Silicon NMOS for Low Power High Performance Logic Applications”, IEDM 2019, paper 29.7, pp. IEDM19-697 to 700. |
Colinge, J. P., et al., “Nanowire transistors without Junctions”, Nature Nanotechnology, Feb. 21, 2010, pp. 1-5. |
Kim, J.Y., et al., “The breakthrough in data retention time of DRAM using Recess-Channel-Array Transistor (RCAT) for 88 nm feature size and beyond,” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 11-12, Jun. 10-12, 2003. |
Kim, J.Y., et al., “The excellent scalability of the RCAT (recess-channel-array-transistor) technology for sub-70nm DRAM feature size and beyond,” 2005 IEEE VLSI-TSA International Symposium, pp. 33-34, Apr. 25-27, 2005. |
Abramovici, Breuer and Friedman, Digital Systems Testing and Testable Design, Computer Science Press, 1990, pp. 432-447. |
Yonehara, T., et al., “ELTRAN: SOI-Epi Wafer by Epitaxial Layer transfer from porous Silicon”, the 198th Electrochemical Society Meeting, abstract No. 438 (2000). |
Yonehara, T. et al., “Eltran®, Novel SOI Wafer Technology,” JSAP International, Jul. 2001, pp. 10-16, No. 4. |
Suk, S. D., et al., “High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability,” in Proc. IEDM Tech. Dig., 2005, pp. 717-720. |
Bangsaruntip, S., et al., “High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling,” Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 297-300, Dec. 7-9, 2009. |
Burr, G. W., et al., “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development , vol. 52, No. 4.5, pp. 449-464, Jul. 2008. |
Bez, R., et al., “Introduction to Flash memory,” Proceedings IEEE, 91(4), 489-502 (2003). |
Auth, C., et al., “45nm High-k + Metal Gate Strain-Enchanced Transistors,” Symposium on VLSI Technology Digest of Technical Papers, 2008, pp. 128-129. |
Jan, C. H., et al., “A 32nm SoC Platform Technology with 2nd Generation High-k/Metal Gate Transistors Optimized for Ultra Low Power, High Performance, and High Density Product Applications,” IEEE International Electronic Devices Meeting (IEDM), Dec. 7-9, 2009, pp. 1-4. |
Mistry, K., “A 45nm Logic Technology With High-K+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-Free Packaging,” Electron Devices Meeting, 2007, IEDM 2007, IEEE International, Dec. 10-12, 2007, p. 247. |
Ragnarsson, L., et al., “Ultralow-EOT (5 A) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization,” IEDM Tech. Dig., pp. 663-666, 2009. |
Sen, P & Kim, C.J., “A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding”, Journal of Microelectromechanical Systems, vol. 18, No. 1, Feb. 2009, pp. 174-185. |
Iwai, H., et.al., “NiSi Salicide Technology for Scaled CMOS,” Microelectronic Engineering, 60 (2002), pp. 157-169;. |
Froment, B., et.al., “Nickel vs. Cobalt Silicide integration for sub-50nm CMOS”, IMEC ESS Circuits, 2003. pp. 215-219. |
James, D., “65 and 45-nm Devices—an Overview”, Semicon West, Jul. 2008, paper No. ctr_024377. |
Davis, J.A., et.al., “Interconnect Limits on Gigascale Integration(GSI) in the 21st Century”, Proc. IEEE, vol. 89, No. 3, pp. 305-324, Mar. 2001. |
Shino, T., et al., “Floating Body RAM Technology and its Scalability to 32nm Node and Beyond,” Electron Devices Meeting, 2006, IEDM '06, International, pp. 1-4, Dec. 11-13, 2006. |
Hamamoto, T., et al., “Overview and future challenges of floating body Ram (FBRAM) technology for 32 nm technology node and beyond”, Solid-State Electronics, vol. 53, Issue 7, Papers Selected from the 38th European Solid-State Device Research Conference—ESSDERC'08, Jul. 2009, pp. 676-683. |
Okhonin, S., et al., “New Generation of Z-RAM”, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 925-928, Dec. 10-12, 2007. |
Henttinen, K. et al., “Mechanically Induced Si Layer Transfer in Hydrogen-Implanted Si Wafers,” Applied Physics Letters, Apr. 24, 2000, pp. 2370-2372, vol. 76, No. 17. |
Lee, C.-W., et al., “Junctionless multigate field-effect transistor,” Applied Physics Letters, vol. 94, pp. 053511-1-2, 2009. |
Park, S. G., et al., “Implementation of HfSiON gate dielectric for sub-60nm DRAM dual gate oxide with recess channel array transistor (RCAT) and tungsten gate,” International Electron Devices Meeting, IEDM 2004, pp. 515-518, 13-15, Dec. 2004. |
Kim, J.Y., et al., “S-RCAT (sphere-shaped-recess-channel-array transistor) technology for 70nm DRAM feature size and beyond,” 2005 Symposium on VLSI Technology Digest of Technical Papers, 2005 pp. 34-35, Jun. 14-16, 2005. |
Oh, H.J., et al., “High-density low-power-operating DRAM device adopting 6F2 cell scheme with novel S-RCAT structure on 80nm feature size and beyond,” Solid-State Device Research Conference, ESSDERC 2005. Proceedings of 35th European , pp. 177-180, Sep. 12-16, 2005. |
Chung, S.-W., et al., “Highly Scalable Saddle-Fin (S-Fin) Transistor for Sub-50nm DRAM Technology,” 2006 Symposium on VLSI Technology Digest of Technical Papers, pp. 32-33. |
Lee, M. J., et al., “A Proposal on an Optimized Device Structure With Experimental Studies on Recent Devices for the DRAM Cell Transistor,” IEEE Transactions on Electron Devices, vol. 54, No. 12, pp. 3325-3335, Dec. 2007. |
Henttinen, K. et al., “Cold ion-cutting of hydrogen implanted Si,” J. Nucl. Instr. and Meth. in Phys. Res. B, 2002, pp. 761-766, vol. 190. |
Brumfiel, G., “Solar cells sliced and diced”, May 19, 2010, Nature News. |
Dragoi, et al., “Plasma-activated wafer bonding: the new low-temperature tool for MEMS fabrication”, Proc. SPIE, vol. 6589, 65890T (2007). |
Vengurlekar, A., et al., “Mechanism of Dopant Activation Enhancement in Shallow Junctions by Hydrogen”, Proceedings of the Materials Research Society, vol. 864, Spring 2005, E9.28.1-6. |
Yamada, M. et al., “Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well,” Japanese Journal of Applied Physics, 2002, pp. L246-L248, vol. 41. |
Guo, X. et al., “Cascade single-chip phosphor-free white light emitting diodes,” Applied Physics Letters, 2008, pp. 013507-1-013507-3, vol. 92. |
Takafuji, Y. et al., “Integration of Single Crystal Si TFTs and Circuits on a Large Glass Substrate,” IEEE International Electron Devices Meeting (IEDM), Dec. 7-9, 2009, pp. 1-4. |
Wierer, J.J et al., “High-power AlGalnN flip-chip light-emitting diodes, ” Applied Physics Letters, May 28, 2001, pp. 3379-3381, vol. 78, No. 22. |
El-Gamal, A., “Trends in CMOS Image Sensor Technology and Design,” International Electron Devices Meeting Digest of Technical Papers, Dec. 2002. |
Ahn, S.W., “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology, 2005, pp. 1874-1877, vol. 16, No. 9. |
Johnson, R.C., “Switching LEDs on and off to enlighten wireless communications,” EE Times, Jun. 2010, last accessed Oct. 11, 2010, <http://www.embeddedinternetdesign.com/design/225402094>. |
Ohsawa, et al., “Autonomous Refresh of Floating Body Cell (FBC)”, International Electron Device Meeting, 2008, pp. 801-804. |
Chen, P., et al., “Effects of Hydrogen Implantation Damage on the Performance of InP/InGaAs/InP p. i-n Photodiodes, Transferred on Silicon,” Applied Physics Letters, vol. 94, No. 1, Jan. 2009, p. 012101-1 to 012101-3. |
Lee, D., et al., “Single-Crystalline Silicon Micromirrors Actuated by Self-Aligned Vertical Electrostatic Combdrives with Piston-Motion and Rotation Capability,” Sensors and Actuators A114, 2004, pp. 423-428. |
Shi, X., et al., “Characterization of Low-Temperature Processed Single-Crystalline Silicon Thin-Film Transistor on Glass,” IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 574-576. |
Chen, W., et al., “InP Layer Transfer with Masked Implantation,” Electrochemical and Solid-State Letters, Issue 12, No. 4, Apr. 2009, H149-150. |
Feng, J., et al., “Integration of Germanium-on-Insulator and Silicon MOSFETs on a Silicon Substrate,” IEEE Electron Device Letters, vol. 27, No. 11, Nov. 2006, pp. 911-913. |
Zhang, S., et al., “Stacked CMOS Technology on SOI Substrate,” IEEE Electron Device Letters, vol. 25, No. 9, Sep. 2004, pp. 661-663. |
Brebner, G., “Tooling up for Reconfigurable System Design,” IEE Colloquium on Reconfigurable Systems, 1999, Ref. No. 1999/061, pp. 2/1-2/4. |
Bae, Y.-D., “A Single-Chip Programmable Platform Based on a Multithreaded Processor and Configurable Logic Clusters,” 2002 IEEE International Solid-State Circuits Conference, Feb. 3-7, 2002, Digest of Technical Papers, ISSCC, vol. 1, pp. 336-337. |
Lu, N.C.C., et al., “A Buried-Trench DRAM Cell Using a Self-aligned Epitaxy Over Trench Technology,” Electron Devices Meeting, IEDM '88 Technical Digest, International, 1988, pp. 588-591. |
Valsamakis, E.A., “Generator for a Custom Statistical Bipolar Transistor Model,” IEEE Journal of Solid-State Circuits, Apr. 1985, pp. 586-589, vol. SC-20, No. 2. |
Srivastava, P. et al., “Silicon Substrate Removal of GaN DHFETs for enhanced (>1100V) Breakdown Voltage,” Aug. 2010, IEEE Electron Device Letters, vol. 31, No. 8, pp. 851-852. |
Gosele, U., et al., “Semiconductor Wafer Bonding,” Annual Review of Materials Science, Aug. 1998, pp. 215-241, vol. 28. |
Spangler, L.J. et al., “A Technology for High Performance Single-Crystal Silicon-on-Insulator Transistors,” IEEE Electron Device Letters, Apr. 1987, pp. 137-139, vol. 8, No. 4. |
Larrieu, G., et al., “Low Temperature Implementation of Dopant-Segregated Band-edger Metallic S/D junctions in Thin-Body SOI p-MOSFETs”, Proceedings IEDM, 2007, pp. 147-150. |
Qui, Z., et al., “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering”, IEEE Transactions on Electron Devices, vol. 55, No. 1, Jan. 2008, pp. 396-403. |
Khater, M.H., et al., “High-k/Metal-Gate Fully Depleted SOI CMOS With Single-Silicide Schottky Source/Drain With Sub-30-nm Gate Length”, IEEE Electron Device Letters, vol. 31, No. 4, Apr. 2010, pp. 275-277. |
Abramovici, M., “In-system silicon validation and debug”, (2008) IEEE Design and Test of Computers, 25 (3), pp. 216-223. |
Saxena, P., et al., “Repeater Scaling and Its Impact on CAD”, IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems, vol. 23, No. 4, Apr. 2004. |
Abrmovici, M., et al., A reconfigurable design-for-debug infrastructure for SoCs, (2006) Proceedings—Design Automation Conference, pp. 7-12. |
Anis, E., et al., “Low cost debug architecture using lossy compression for silicon debug”, (2007) Proceedings of the IEEE/ACM Design, pp. 225-230. |
Anis, E., et al., “On using lossless compression of debug data in embedded logic analysis”, (2007) Proceedings of the IEEE International Test Conference, paper 18.3, pp. 1-10. |
Boule, M., et al., “Adding debug enhancements to assertion checkers for hardware emulation and silicon debug”, (2006) Proceedings of the IEEE International Conference on Computer Design, pp. 294-299. |
Boule, M., et al., “Assertion checkers in verification, silicon debug and in-field diagnosis”, (2007) Proceedings—Eighth International Symposium on Quality Electronic Design, ISQED 2007, pp. 613-618. |
Burtscher, M., et al., “The VPC trace-compression algorithms”, (2005) IEEE Transactions on Computers, 54(11), Nov. 2005, pp. 1329-1344. |
Frieden, B., “Trace port on powerPC 405 cores”, (2007) Electronic Product Design, 28 (6), pp. 12-14. |
Hopkins, A.B.T., et al., “Debug support for complex systems on-chip: A review”, (2006) IEEE Proceedings: Computers and Digital Techniques, 153 (4), Jul. 2006, pp. 197-207. |
Hsu, Y.-C., et al., “Visibility enhancement for silicon debug”, (2006) Proceedings—Design Automation Conference, Jul. 24-28, 2006, San Francisco, pp. 13-18. |
Josephson, D., et al., “The crazy mixed up world of silicon debug”, (2004) Proceedings of the Custom Integrated Circuits Conference, paper 30-1, pp. 665-670. |
Josephson, D.D., “The manic depression of microprocessor debug”, (2002) IEEE International Test Conference (TC), paper 23.4, pp. 657-663. |
Ko, H.F., et al., “Algorithms for state restoration and trace-signal selection for data acquisition in silicon debug”, (2009) IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (2), pp. 285-297. |
Ko, H.F., et al., “Distributed embedded logic analysis for post-silicon validation of SOCs”, (2008) Proceedings of the IEEE International Test Conference, paper 16.3, pp. 755-763. |
Ko, H.F., et al., “Functional scan chain design at RTL for skewed-load delay fault testing”, (2004) Proceedings of the Asian Test Symposium, pp. 454-459. |
Ko, H.F., et al., “Resource-efficient programmable trigger units for post-silicon validation”, (2009) Proceedings of the 14th IEEE European Test Symposium, ETS 2009, pp. 17-22. |
Liu, X., et al., “On reusing test access mechanisms for debug data transfer in SoC post-silicon validation”, (2008) Proceedings of the Asian Test Symposium, pp. 303-308. |
Liu, X., et al., “Trace signal selection for visibility enhancement in post-silicon validation”, (2009) Proceedings Date, pp. 1338-1343. |
McLaughlin, R., et al., “Automated debug of speed path failures using functional tests”, (2009) Proceedings of the IEEE VLSI Test Symposium, pp. 91-96. |
Morris, K., “On-Chip Debugging—Built-in Logic Analyzers on your FPGA”, (2004) Journal of FPGA and Structured ASIC, 2 (3). |
Nicolici, N., et al., “Design-for-debug for post-silicon validation: Can high-level descriptions help?”, (2009) Proceedings—IEEE International High-Level Design Validation and Test Workshop, HLDVT, pp. 172-175. |
Park, S.-B., et al., “IFRA: Instruction Footprint Recording and Analysis for Post-Silicon Bug Localization”, (2008) Design Automation Conference (DAC08), Jun. 8-13, 2008, Anaheim, CA, USA, pp. 373-378. |
Park, S.-B., et al., “Post-silicon bug localization in processors using instruction footprint recording and analysis (IFRA)”, (2009) IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (10), pp. 1545-1558. |
Moore, B., et al., “High Throughput Non-contact SiP Testing”, (2007) Proceedings—International Test Conference, paper 12.3. |
Riley, M.W., et al., “Cell broadband engine debugging for unknown events”, (2007) IEEE Design and Test of Computers, 24 (5), pp. 486-493. |
Vermeulen, B., “Functional debug techniques for embedded systems”, (2008) IEEE Design and Test of Computers, 25 (3), pp. 208-215. |
Vermeulen, B., et al., “Automatic Generation of Breakpoint Hardware for Silicon Debug”, Proceeding of the 41st Design Automation Conference, Jun. 7-11, 2004, pp. 514-517. |
Vermeulen, B., et al., “Design for debug: Catching design errors in digital chips”, (2002) IEEE Design and Test of Computers, 19 (3), pp. 37-45. |
Vermeulen, B., et al., “Core-based scan architecture for silicon debug”, (2002) IEEE International Test Conference (TC), pp. 638-647. |
Vanrootselaar, G. J., et al., “Silicon debug: scan chains alone are not enough”, (1999) IEEE International Test Conference (TC), pp. 892-902. |
Kim, G.-S., et al., “A 25-mV-sensitivity 2-GB/s optimum-logic-threshold capacitive-coupling receiver for wireless wafer probing systems”, (2009) IEEE Transactions on Circuits and Systems II: Express Briefs, 56 (9), pp. 709-713. |
Sellathamby, C.V., et al., “Non-contact wafer probe using wireless probe cards”, (2005) Proceedings—International Test Conference, 2005, pp. 447-452. |
Jung, S.-M., et al., “Soft Error Immune 0.46pm2 SRAM Cell with MIM Node Capacitor by 65nm CMOS Technology for Ultra High Speed SRAM”, IEDM 2003, pp. 289-292. |
Brillouet, M., “Emerging Technologies on Silicon”, IEDM 2004, pp. 17-24. |
Meindl, J. D., “Beyond Moore's Law: the Interconnect Era”, IEEE Computing in Science & Engineering, Jan./Feb. 2003, pp. 20-24. |
Lin, X., et al., “Local Clustering 3-D Stacked CMOS Technology for Interconnect Loading Reduction”, IEEE Transactions on electron Devices, vol. 53, No. 6, Jun. 2006, pp. 1405-1410. |
He, T., et al., “Controllable Molecular Modulation of Conductivity in Silicon-Based Devices”, J. Am. Chem. Soc. 2009, 131, 10023-10030. |
Henley, F., “Engineered Substrates Using the Nanocleave Process”, SemiconWest, TechXPOT Conference—Challenges in Device Scaling, Jul. 19, 2006, San Francisco. |
Diamant, G., et al., “Integrated Circuits based on Nanoscale Vacuum Phototubes”, Applied Physics Letters 92, 262903-1 to 262903-3 (2008). |
Landesberger, C., et al., “Carrier techniques for thin wafer processing”, CS Mantech Conference, May 14-17, 2007 Austin, Texas, pp. 33-36. |
Shen, W., et al., “Mercury Droplet Micro switch for Re-configurable Circuit Interconnect”, The 12th International Conference on Solid State Sensors, Actuators and Microsystems. Boston, Jun. 8-12, 2003, pp. 464-467. |
Bangsaruntip, S., et al., “Gate-all-around Silicon Nanowire 25-Stage CMOS Ring Oscillators with Diameter Down to 3 nm”, 2010 Symposium on VLSI Technology Digest of papers, pp. 21-22. |
Borland, J.O., “Low Temperature Activation Of Ion Implanted Dopants: A Review”, International Workshop on Junction technology 2002, S7-3, Japan Society of Applied Physics, pp. 85-88. |
Vengurlekar, A., et al., “Hydrogen Plasma Enhancement of Boron Activation in Shallow Junctions”, Applied Physics Letters, vol. 85, No. 18, Nov. 1, 2004, pp. 4052-4054. |
El-Maleh, A. H., et al., “Transistor-Level Defect Tolerant Digital System Design at the Nanoscale”, Research Proposal Submitted to Internal Track Research Grant Programs, 2007. Internal Track Research Grant Programs. |
Austin, T., et al., “Reliable Systems on Unreliable Fabrics”, IEEE Design & Test of Computers, Jul./Aug. 2008, vol. 25, issue 4, pp. 322-332. |
Borkar, S., “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation”, IEEE Micro, IEEE Computer Society, Nov.-Dec. 2005, pp. 10-16. |
Zhu, S., et al., “N-Type Schottky Barrier Source/Drain MOSFET Using Ytterbium Silicide”, IEEE Electron Device Letters, vol. 25, No. 8, Aug. 2004, pp. 565-567. |
Zhang, Z., et al., “Sharp Reduction of Contact Resistivities by Effective Schottky Barrier Lowering With Silicides as Diffusion Sources,” IEEE Electron Device Letters, vol. 31, No. 7, Jul. 2010, pp. 731-733. |
Lee, R. T.P., et al., “Novel Epitaxial Nickel Aluminide-Silicide with Low Schottky-Barrier and Series Resistance for Enhanced Performance of Dopant-Segregated Source/Drain N-channel MuGFETs”, 2007 Symposium on VLSI Technology Digest of Technical Papers, pp. 108-109. |
Awano, M., et al., “Advanced DSS MOSFET Technology for Ultrahigh Performance Applications”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 24-25. |
Choi, S.-J., et al., “Performance Breakthrough in NOR Flash Memory with Dopant-Segregated Schottky-Barrier (DSSB) SONOS Devices”, 2009 Symposium of VLSI Technology Digest, pp. 222-223. |
Zhang, M., et al., “Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs”, Proceeding of ESSDERC, Grenoble, France, 2005, pp. 457-460. |
Larrieu, G., et al., “Arsenic-Segregated Rare-Earth Silicide Junctions: Reduction of Schottky Barrier and Integration in Metallic n-MOSFETs on Soi”, IEEE Electron Device Letters, vol. 30, No. 12, Dec. 2009, pp. 1266-1268. |
Ko, C.H., et al., “NiSi Schottky Barrier Process-Strained Si (SB-PSS) CMOS Technology for High Performance Applications”, 2006 Symposium on VLSI Technology Digest of Technical Papers. |
Kinoshita, A., et al., “Solution for High-Performance Schottky-Source/Drain MOSFETs: Schottky Barrier Height Engineering with Dopant Segregation Technique”, 2004 Symposium on VLSI Technology Digest of Technical Papers, pp. 168-169. |
Kinoshita, A., et al., “High-performance 50-nm-Gate-Length Schottky-Source/Drain MOSFETs with Dopant-Segregation Junctions”, 2005 Symposium on VLSI Technology Digest of Technical Papers, pp. 158-159. |
Kaneko, A., et al., “High-Performance FinFET with Dopant-Segregated Schottky Source/Drain”, IEDM 2006. |
Kinoshita, A., et al., “Ultra Low Voltage Operations in Bulk CMOS Logic Circuits with Dopant Segregated Schottky Source/Drain Transistors”, IEDM 2006. |
Kinoshita, A., et al., “Comprehensive Study on Injection Velocity Enhancement in Dopant-Segregated Schottky MOSFETs”, IEDM 2006. |
Choi, S.-J., et al., “High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications”, 2008 IEDM, pp. 223-226. |
Chin, Y.K., et al., “Excimer Laser-Annealed Dopant Segregated Schottky (ELA-DSS) Si Nanowire Gate-All-Around (GAA) pFET with Near Zero Effective Schottky Barrier Height (SBH)”, IEDM 2009, pp. 935-938. |
Agoura Technologies white paper, “Wire Grid Polarizers: a New High Contrast Polarizer Technology for Liquid Crystal Displays”, 2008, pp. 1-12. |
Unipixel Displays, Inc. white paper, “Time Multi-plexed Optical Shutter (TMOS) Displays”, Jun. 2007, pp. 1-49. |
Azevedo, I. L., et al., “The Transition to Solid-State Lighting”, Proc. IEEE, vol. 97, No. 3, Mar. 2009, pp. 481-510. |
Crawford, M.H., “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 4, Jul./Aug. 2009, pp. 1028-1040. |
Tong, Q.-Y., et al., “A ”smarter-cut“ approach to low temperature silicon layer transfer”, Applied Physics Letters, vol. 72, No. 1, Jan. 5, 1998, pp. 49-51. |
Tong, Q.-Y., et al., “Low Temperature Si Layer Splitting”, Proceedings 1997 IEEE International SOI Conference, Oct. 1997, pp. 126-127. |
Nguyen, P., et al., “Systematic study of the splitting kinetic of H/He co-implanted substrate”, SOI Conference, 2003, pp. 132-134. |
Ma, X., et al., “A high-quality SOI structure fabricated by low-temperature technology with B+/H+ co-implantation and plasma bonding”, Semiconductor Science and Technology, vol. 21, 2006, pp. 959-963. |
Yu, C.Y., et al., “Low-temperature fabrication and characterization of Ge-on-insulator structures”, Applied Physics Letters, vol. 89, 101913-1 to 101913-2 (2006). |
Li, Y. A., et al., “Surface Roughness of Hydrogen Ion Cut Low Temperature Bonded Thin Film Layers”, Japan Journal of Applied Physics, vol. 39 (2000), Part 1, No. 1, pp. 275-276. |
Hoechbauer, T., et al., “Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers”, Nuclear Instruments and Methods in Physics Research B, vol. 216 (2004), pp. 257-263. |
Aspar, B., et al., “Transfer of structured and patterned thin silicon films using the Smart-Cut process”, Electronics Letters, Oct. 10, 1996, vol. 32, No. 21, pp. 1985-1986. |
Agarwal, A., et al., “Efficient production of silicon-on-insulator films by co-implantation of He+ with H+” Applied Physics Letters, vol. 72, No. 9, Mar. 1998, pp. 1086-1088. |
Cook III, G. O., et al., “Overview of transient liquid phase and partial transient liquid phase bonding,” Journal of Material Science, vol. 46, 2011, pp. 5305-5323. |
Moustris, G. P., et al., “Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature,” International Journal of Medical Robotics and Computer Assisted Surgery, Wiley Online Library, 2011, DOI: 10.10002/rcs.408. |
Subbarao, M., et al., “Depth from Defocus: A Spatial Domain Approach,” International Journal of Computer Vision, vol. 13, No. 3, pp. 271-294 (1994). |
Subbarao, M., et al., “Focused Image Recovery from Two Defocused Images Recorded with Different Camera Settings,” IEEE Transactions on Image Processing, vol. 4, No. 12, Dec. 1995, pp. 1613-1628. |
Guseynov, N. A., et al., “Ultrasonic Treatment Restores the Photoelectric Parameters of Silicon Solar Cells Degraded under the Action of 60Cobalt Gamma Radiation,” Technical Physics Letters, vol. 33, No. 1, pp. 18-21 (2007). |
Gawlik, G., et al., “GaAs on Si: towards a low-temperature ”smart-cut“ technology”, Vacuum, vol. 70, pp. 103-107 (2003). |
Weldon, M. K., et al., “Mechanism of Silicon Exfoliation Induced by Hydrogen/Helium Co-implantation,” Applied Physics Letters, vol. 73, No. 25, pp. 3721-3723 (1998). |
Miller, D.A.B., “Optical interconnects to electronic chips,” Applied Optics, vol. 49, No. 25, Sep. 1, 2010, pp. F59-F70. |
En, W. G., et al., “The Genesis Process”: A New SOI wafer fabrication method, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 163-164. |
Uchikoga, S., et al., “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383 (2001), pp. 19-24. |
He, M., et al., “Large Polycrystalline Silicon Grains Prepared by Excimer Laser Crystallization of Sputtered Amorphous Silicon Film with Process Temperature at 100 C,” Japanese Journal of Applied Physics, vol. 46, No. 3B, 2007, pp. 1245-1249. |
Kim, S.D., et al., “Advanced source/drain engineering for box-shaped ultra shallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS,” IEEE Trans. Electron Devices, vol. 49, No. 10, pp. 1748-1754, Oct. 2002. |
Ahn, J., et al., “High-quality MOSFET's with ultrathin LPCVD gate SiO2,” IEEE Electron Device Lett., vol. 13, No. 4, pp. 186-188, Apr. 1992. |
Yang, M., et al., “High Performance CMOS Fabricated on Hybrid Substrate with Different Crystal Orientation,” Proceedings IEDM 2003. |
Yin, H., et al., “Scalable 3-D finlike poly-Si TFT and its nonvolatile memory application,” IEEE Trans. Electron Devices, vol. 55, No. 2, pp. 578-584, Feb. 2008. |
Kawaguchi, N., et al., “Pulsed Green-Laser Annealing for Single-Crystalline Silicon Film Transferred onto Silicon wafer and Non-alkaline Glass by Hydrogen-Induced Exfoliation,” Japanese Journal of Applied Physics, vol. 46, No. 1, 2007, pp. 21-23. |
Faynot, O. et al., “Planar Fully depleted SOI technology: A Powerful architecture for the 20nm node and beyond,” Electron Devices Meeting (IEDM), 2010 IEEE International, vol. No., pp. 3.2.1, 3.2.4, Dec. 6-8, 2010. |
Khakifirooz, A., “ETSOI Technology for 20nm and Beyond”, SOI Consortium Workshop: Fully Depleted SOI, Apr. 28, 2011, Hsinchu Taiwan. |
Kim, I.-K., et al., “Advanced Integration Technology for a Highly Scalable SOI DRAM with SOC (Silicon-On-Capacitors)”, IEDM 1996, pp. 96-605-608, 22.5.4. |
Lee, B.H., et al., “A Novel CMP Method for cost-effective Bonded SOI Wafer Fabrication,” Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 60-61. |
Choi, Sung-Jin, et al., “Performance Breakthrough in NOR Flash Memory with Dopant-Segregated Schottky-Barrier (DSSB) SONOS Devices,” paper 11B-3, 2009 Symposium on VLSI Technology, Digest of Technical Papers, pp. 222-223. |
Chang, Wei, et al., “Drain-induced Schottky barrier source-side hot carriers and its application to program local bits of nanowire charge-trapping memories,” Japanese Journal of Applied Physics 53, 094001 (2014) pp. 094001-1 to 094001-5. |
Number | Date | Country | |
---|---|---|---|
20240222333 A1 | Jul 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14198041 | Mar 2014 | US |
Child | 14541452 | US | |
Parent | 13726091 | Dec 2012 | US |
Child | 14198041 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18395546 | Dec 2023 | US |
Child | 18604695 | US | |
Parent | 18236325 | Aug 2023 | US |
Child | 18395546 | US | |
Parent | 18214524 | Jun 2023 | US |
Child | 18236325 | US | |
Parent | 18141415 | Apr 2023 | US |
Child | 18214524 | US | |
Parent | 18105826 | Feb 2023 | US |
Child | 18141415 | US | |
Parent | 17986831 | Nov 2022 | US |
Child | 18105826 | US | |
Parent | 17882607 | Aug 2022 | US |
Child | 17986831 | US | |
Parent | 17750338 | May 2022 | US |
Child | 17882607 | US | |
Parent | 17680297 | Feb 2022 | US |
Child | 17750338 | US | |
Parent | 17536019 | Nov 2021 | US |
Child | 17680297 | US | |
Parent | 17334928 | May 2021 | US |
Child | 17536019 | US | |
Parent | 17195517 | Mar 2021 | US |
Child | 17334928 | US | |
Parent | 17020766 | Sep 2020 | US |
Child | 17195517 | US | |
Parent | 16683244 | Nov 2019 | US |
Child | 17020766 | US | |
Parent | 16409840 | May 2019 | US |
Child | 16683244 | US | |
Parent | 15990684 | May 2018 | US |
Child | 16409840 | US | |
Parent | 15721955 | Oct 2017 | US |
Child | 15990684 | US | |
Parent | 15008444 | Jan 2016 | US |
Child | 15721955 | US | |
Parent | 14541452 | Nov 2014 | US |
Child | 15008444 | US |