Certain examples disclosed herein relate generally to a cooling device. More particularly, certain examples relate to a method and device for protecting heat sensitive features of electronic components from damage during processing.
As electronic products continue to shrink, there is a persistent effort to reduce the size of the integrated circuits (IC) found therein. At reduced architectural dimensions, an IC's heat sensitivity increases because of small feature size and thin wafers that distort easily. Additionally, ICs are now being designed to utilize novel and very thin organic or inorganic dielectrics, which also have limited thermal stability, in some cases well below 200° C. At the same time, the change to lead-free solders in ICs has increased the peak processing temperatures from, for example, about 220° C. for tin-lead solders to 245° C. or even 260° C. for tin-silver-copper solders.
The problem of thermal sensitivity is most pronounced with processor chips, which develop considerable heat during normal operation. In one current practice, these chips are mounted within an IC package using a flip chip format. During high power operation, the heat generated by the flip chip IC is dissipated through the package's solder joints to the main circuit board as well as through the package's lid.
In addition to ICs, other electronic components such as optoelectronic communication devices (e.g., transceivers) and displays (e.g., vacuum fluorescent displays) suffer from similar heat sensitivity during various processing stages. Specifically, optoelectronic communication devices are currently considered stable up to temperatures of about 80° C. to 90° C., while vacuum fluorescent displays must be assembled using selective soldering techniques because of their thermal instability. As with ICs, some method of heat dissipation is required to maintain the integrity of these electronic components during processing and in-service use.
Thermal dissipation devices are commonly used to keep electronic components stable during high temperature, in-service operation. These devices are in thermal communication with the component and generally employ conduction, convection, or a combination thereof to dissipate heat energy. Heat sinks in particular are common thermal dissipation devices for in-service operation. A heat sink is typically a mass of material that is thermally coupled to one of the electronic component's heat-conducting features, e.g., the package lid of an IC, with thermal grease or adhesive. Heat sinks rely on conduction to draw heat energy away from a high-temperature region toward the heat sink. The heat energy is then dissipated from the heat sink's surface to the atmosphere by convection.
A heat sink's thermal efficiency can be increased by forcing convection with an air stream over the surface, usually with a fan, or, in more advanced applications, by using a liquid to absorb heat from the heat sink. However, the efficiency of a heat sink is necessarily limited by the surface area of the heat sink, i.e., its convecting surface area. Further, while heat sinks have been utilized to dissipate heat during in-service operation, they have not been employed to address heat dissipation needs during elevated processing temperatures.
Reflective heat shields in the form of a metal cap or fiberboard masks have been used to try to protect electronic components during processing. However, these devices act only to shield the covered area from receiving the full impact of the ambient heat, rather than actually acting to help extract heat from the electronic component. As one consequence, these devices provide no protection to infrared heat. If there existed a method of extracting thermal energy from the electronic component during elevated temperature processing stages, the stability of heat sensitive components would accordingly be enhanced.
In accordance with a first aspect, a cooling device for cooling heat sensitive features or heat sensitive materials is provided. In certain examples, the cooling device is configured to provide thermal protection to heat sensitive features or heat sensitive materials to prevent destruction or damage to the heat sensitive features or heat sensitive materials during exposure to high temperatures or to a high temperature processing step, for example. Examples of the cooling devices disclosed here provide a significant technological advance to protect heat sensitive features or heat sensitive materials during storage and/or processing of such features and materials.
In accordance with a second aspect, a cooling device comprising a cooling device body is disclosed. In certain examples, the cooling device body, or a portion thereof, is in thermal communication with a heat sensitive component, e.g. a printed circuit board, a semiconductor wafer, and/or the components thereof. The cooling device body can be constructed of suitable materials such that thermal transfer may occur from the heat sensitive component to the cooling device body. In certain examples, the cooling device body includes metal, glass, ceramics, inorganic solids and/or one or more polymers. The cooling device body may also be constructed in the form of suitable shapes or molds such that heat transfer from the heat sensitive component to the cooling device body is maximized. Exemplary materials, shapes and molds for the cooling device body are discussed in more detail below. In certain examples, the cooling device body can be placed on top of a heat sensitive component, can be molded around a heat sensitive component or can be molded underneath a heat sensitive component. In some examples, the cooling device is placed or molded to the heat sensitive component during assembly of a larger electronic component, e.g., during assembly of a printed circuit board. Such placement can be performed using suitable methods including automated pick and place devices, reel and tape devices and the like.
In accordance with an additional aspect, a cooling device comprising at least one cooling medium is provided. In certain examples, the cooling device can be configured to provide thermal protection to heat sensitive components, e.g., printed circuit boards, semiconductor wafers, and/or the components thereof. In certain other examples, the cooling medium can absorb or dissipate heat transferred from the heat sensitive component or can prevent heat from adversely affecting the operation of the heat sensitive component. In some examples, the cooling medium is selected such that it undergoes an endothermic process, e.g., an endothermic phase change, an endothermic reaction, an endothermic rearrangement, etc., so that the temperature differential between a heat sensitive component and the cooling device is increased. In selected examples, a cooling medium with high heat capacity is used such that the temperature change of the system, e.g., a heat sensitive component and cooling device, during one or more processing steps is substantially small with the majority of the heat being transferred to and/or absorbed by the cooling medium and/or the cooling device body of the cooling device. In certain examples, the cooling medium is disposed on or within a cooling device body which rests on or around the heat sensitive component, whereas in other examples the cooling medium may be disposed on or around a heat sensitive component and the cooling device body can be omitted. In yet other examples, the cooling medium is impregnated or coated onto the surface of the cooling device body, or the cooling device body itself may be constructed from the cooling media. Other possible and exemplary configurations for the cooling medium and/or cooling device body are discussed below.
In accordance with another aspect, a cooling device for cooling electronic components during a processing operation is disclosed. The cooling device comprises one or more indicators to provide a measure of hydration, flux content, temperature threshold, etc. In certain examples, the indicator changes color to indicate the temperature is above a certain threshold temperature, for example. In other examples, the indicator may degrade or deliquesce above a certain temperature. The indicator can be located on the cooling device body of the cooling device or can be in the cooling medium, or can be in both. The indicator may take numerous forms, e.g., solids, liquids, pastes, suspensions and the like. The indicator may also change from infrared translucent to infrared opaque, or vice versa, above a certain temperature such that the indicator can be optically monitored, for example. Other exemplary indicator materials for use with optical monitoring, e.g., UV opaque materials, UV translucent materials, etc., are discussed below.
In accordance with an additional aspect, a cooling device is provided that is configured to allow for selective heat adsorption, such as, for example, heat reflective or heat adsorbent patterns to create a particular temperature profile. In certain examples, the cooling device includes areas configured to enhance thermal transfer from a heat sensitive component to the cooling device and also includes areas configured to reduce or retard thermal transfer from a heat sensitive component to the cooling device. In certain examples, the cooling media is disposed on select areas of the cooling device and no cooling media is disposed in other areas of the device. Other suitable configurations and placement of the cooling devices disclosed here will be selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with yet an additional aspect, a cooling medium for absorbing, extracting or removing heat from a heat sensitive component, e.g., an electrical component, is provided. In certain examples, the cooling medium is disposed directly on one or more electrical components. In certain other examples, the cooling medium is disposed on or in a sleeve, cup, basket, screen, film, mesh, scrim, etc. in such a manner that cooling media can be readily disposed on the heat sensitive component to allow heat transfer to the cooling medium. In yet other examples, the cooling medium is not in direct contact with the electronic component but is placed at a suitable position such that thermal transfer can occur from the electronic component to the cooling medium. In certain examples, a container or body comprising standoffs or projections is disposed on the heat sensitive component and the cooling medium is disposed within the container or body such that thermal transfer can occur from the heat sensitive component to the cooling medium. In certain other examples, the container or body contains two or more compartments with cooling media such that thermal transfer occurs to a higher degree at certain areas of the heat sensitive component than at other areas of the heat sensitive component. Other exemplary devices for use with the cooling medium and cooling devices disclosed here are discussed below and additional devices for use with the illustrative cooling media and illustrative cooling devices disclosed here will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure. In certain examples, a cooling device is disclosed comprising cut-outs, holes, stand-offs, etc. to accommodate parts of components requiring higher temperatures or parts of components that can withstand higher temperatures. For example, certain areas or an electronic component may not be heat sensitive, whereas other areas of the electronic component may be heat sensitive.
In accordance with yet an additional aspect, a cooling device that is operative as a heat sink is provided. In some examples, the cooling device is operative to cool a heat sensitive component during processing of the component and remains operative as a heat sink after final assembly of a larger electronic device, e.g., a printed circuit board, in which the heat sensitive component is used. The cooling device may optionally include a fan or additional cooling apparatus, such as, for example, a Peltier cooler, to dissipate heat from the cooling device during operation of the larger electronic device. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to design suitable cooling devices that are operative as heat sinks.
In accordance with another aspect, a cooling device is provided that is in thermal communication with an entire surface of an electronic component, e.g., a printed circuit board, semiconductor wafer, etc. The cooling device can be configured such that it includes areas with disposed cooling media and/or cooling device bodies which come into thermal communication with heat sensitive components on the surface of the electronic component. Exemplary materials for use in constructing board sized cooling devices are discussed below.
In accordance with other aspects, the cooling device can be strengthened or reinforced with suitable materials such as, for example, steel wires, fibers, meshes, screens, etc. The steel wires, fibers, meshes, screens, and the like can be included in the cooling device body, can be disposed within the cooling medium or can be arranged in other suitable configurations to strengthen or reinforce the cooling devices disclosed here.
In accordance with an additional aspect, a cooling device is provided that is operative to extract or remove heat from an electronic component during exposure of the component to a process temperature between about 100° C. and about 300° C., for example, during a processing operation, such as manufacture, repair, or reflow of the electrical component. The cooling device may take numerous shapes and forms, and, in certain examples, the cooling device comprises a body and a cooling medium disposed on or within the body. In some examples, the cooling medium is capable of undergoing an endothermic process, e.g., an endothermic reaction, an endothermic phase change or an endothermic rearrangement, at or around the processing temperature, which allows for the absorption of heat resulting from the processing operation.
In accordance with another aspect, a cooling device comprising two or more stackable units is provided. In certain examples, the stackable units are configured such that stacking more units together increases heat transfer between the heat sensitive material or the heat sensitive component and the stacked units. Exemplary configurations using stackable units are described below.
In accordance with yet another aspect, a cooling device comprising a conformable material is disclosed. In certain examples, the conformable material takes the form or a moldable or compliant foam or sponge, e.g., heat-moldable foams, visco-elastic foams, froth foams, thermoplastic foams and the like. In certain other examples, the conformable material comprises one or more foam materials that is organic based, silicone based, inorganic based, or combinations or mixtures thereof. In other examples, the conformable materials are selected from lyosols, aerosols, hydrosols, organosols, lyogels, aerogels, hydrogels, organogels, resins and the like. Other exemplary conformable materials are discussed below. In some examples, the conformable material may be positioned in a cooling device body which itself is in thermal communication with a heat sensitive material or a heat sensitive component, whereas in other examples the conformable material is placed in contact with the heat sensitive material and a cooling device body, and optionally a cooling medium, may be positioned in contact with the conformable material. Other suitable arrangements and configurations will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, and exemplary configurations and arrangements are discussed in detail below.
In accordance with another aspect, a cooling device that includes one or more coatings is disclosed. In certain examples, the coating is disposed on one or more surfaces of the cooling device using suitable coating techniques, e.g. brushing, sputtering, vapor deposition, etc., that will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure. The coating may take numerous forms and compositions depending on the intended effect of the coating. In certain examples, the coating includes at least one metal, metal compound or an oxide of a metal or metal compound. In some examples, the coating is reflective and/or conductive. The coating may include a single layer, e.g., a monolayer, or may include a plurality of layers, where each layer may be the same or different, disposed on each other. Exemplary coatings are discussed below and additional suitable coatings will be selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with a method aspect, a method for cooling an electronic component during a processing operation is provided. In certain examples, the method can be used to keep the temperature of the electronic component substantially constant during the processing operation. The method includes bringing a cooling device into thermal communication with an electronic component, performing one or more processing operations on the electronic component, and optionally removing the cooling device post-processing. During the processing operation, the cooling device is configured to remove, absorb or dissipate heat that results from the processing operation. Such heat removal can prevent destruction of or damage to the electronic component or features of the electronic component.
In accordance with another method aspect, a cooling device configured to cool an electronic component during an elevated temperature operation during manufacture, repair, or rework is disclosed. The method includes bringing a cooling device into thermal communication with the electronic component, subjecting the electronic component to the elevated temperature operation during which the cooling device cools the electronic component by way of an endothermic process. The endothermic process can increase the temperature differential between the electronic component and the cooling device to assist in transfer of heat from the electronic component to the cooling device.
It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that the cooling devices disclosed here provide significant benefits not achievable using prior existing technologies. Robust cooling devices can be configured to provide protective cooling to heat sensitive features and heat sensitive materials to minimize damage to such features and materials, which can increase overall efficiency of automated production of electronic components that include heat sensitive features and/or heat sensitive materials. These and other advantages, features, aspects and examples of the cooling devices disclosed here are discussed in detail below.
Certain examples are described below with reference to the accompanying drawings in which:
It will be apparent to the person of ordinary skill in the art, given the benefit of this disclosure, that the exemplary electronic components, cooling devices, cooling media, etc., shown in
It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that the cooling devices disclosed here represent a significant commercial development. Cooling devices can be constructed and assembled to provide thermal protection to minimize damage to heat sensitive materials and heat sensitive components. Such cooling devices allow the use of high temperature processing steps without undesirable side effects, such as heat damage to a heat sensitive component, for example.
In accordance with certain examples, a cooling device for cooling heat sensitive features or heat sensitive materials is provided. As used here, “heat sensitive feature” refers to an electrical device, or component thereof, whose performance degrades after exposure to high temperature, such as temperatures at or above those temperatures commonly used in electronic processing operations. It should be noted that the heat sensitive feature is not necessarily physically destroyed or damaged by the temperatures of the processing operation, but some aspect of the performance, e.g., operation or function, of the heat sensitive feature can be adversely affected or altered by exposure to the high temperature. As used here “heat sensitive component” is an electronic component or device of a larger electronic device, e.g., a semi-conductor chip of a printed circuit board. As used here “heat sensitive materials” refers to compounds and compositions that are subject to degradation or an undesirable change(s) in physical, chemical or physicochemical properties when subjected to high temperature, e.g., a temperature above about 100° C., 200° C. or 300° C. Certain examples of the cooling device disclosed here are configured to provide thermal protection to heat sensitive features or heat sensitive materials to prevent destruction or damage to the heat sensitive features or heat sensitive materials during exposure to high temperatures or to one or more high temperature processing steps, for example. It will be understood by the person of ordinary skill in the art, given the benefit of this disclosure, that thermal protection does not require that the heat sensitive feature or heat sensitive material remain at a substantially constant temperature during the heat processing, but rather, thermal protection is accomplished as long as the temperature of the heat sensitive material or heat sensitive feature is maintained below a threshold temperature value. The exact threshold temperature value will depend on the nature and properties of heat sensitive material and/or the heat sensitive feature, and exemplary threshold temperature values include temperatures of about 75° C. to about 150° C. for electronic components used on printed circuit boards and about 75° C. to about 150° C. for semiconductor wafers. The person of ordinary skill in the art, given the benefit of this disclosure, will be able to select, determine and/or recognize suitable threshold temperature values for a given heat sensitive material or a given heat sensitive feature.
In accordance with certain examples, a cooling device comprising a cooling device body is disclosed. The cooling device body is positioned such that it is in thermal communication with a heat sensitive material or heat sensitive component. Such thermal communication can be accomplished using numerous methods including, but not limited to, placing the cooling device body directly onto the heat sensitive material or heat sensitive component, placing the cooling device body a suitable distance from the heat sensitive material or heat sensitive component while maintaining heat transfer between the heat sensitive material or the heat sensitive component, etc. For example, referring to
In accordance with certain examples, the cooling device body can be constructed from suitable materials that can rapidly absorb heat from the heat sensitive component or material. In certain examples, the cooling device body includes pores or through holes to provide fluid communication throughout the body. The pores or holes may take any shape or form including circular, ovoid, trapezoidal, rectangular and may be formed, for example, as a result of adoption of a crystal structure by the material used to construct the cooling device body. In certain examples, the materials used to construct the cooling device body may have a unit cell structure that is hexagonally closed packed, cubic close packed, face-centered cubic, body-centered cubic, primitive cubic, etc., and holes, e.g., tetrahedral holes, octahedral holes, and the like, may result because of the adoption of such unit cell structure by the material. In some examples, the pores have a mean diameter between about 10 um to about 100 um. In addition, the materials may include a bimodal or other complex pore structure so that pore size can be selected or optimized to control the rate of water evaporation. For example, the material can include a primary pore size of about 100 microns, which can result in rapid evaporation of water, and a second pore size of about 1 micron, which can result in slow evaporation of water, in order to customize the evaporation rate and/or provide additional control over the cooling of a heat sensitive feature or a heat sensitive material.
In accordance with certain examples, the exact composition of the cooling device body can vary depending on numerous factors, for example, the desired amount of heat to be transferred from the heat sensitive material or heat sensitive component to the cooling device body. In certain examples, the cooling device body is constructed from materials having high heat capacities or high thermal transfer coefficients such that the maximum amount of heat is transferred from the heat sensitive material or heat sensitive component to the cooling device body. For example, in certain applications, the cooling device body is constructed from one or more materials having a heat capacity of at least about 28-30 cal/deg-mol at 25° C., more particularly at least about 40-42 cal/deg-mol at 25° C., for example at least about 50, 75 or 100 cal/deg-mol at 25° C. In certain examples, the cooling device body can be constructed using one or more inorganic salts or inorganic solids, such as calcium sulfate dihydrate (gypsum) or calcium sulfate hemihydrate (Plaster of Paris). Without wishing to be bound by any particular scientific theory, in the presence of water calcium sulfate hemihydrate can be converted into calcium sulfate dihydrate. This reaction is reversible and the calcium sulfate dihydrate can be reconverted into calcium sulfate hemihydrate by application of heat. Gypsum and Plaster of Paris are available commercially from numerous manufacturers such as U.S. Gypsum, Inc. (Chicago, Ill.), for example. In other examples, the cooling device body can be constructed from one or more suitable inorganic or organic materials including, but not limited to: Al2O3.H2O, Al2O3.3H2O, Al2SO4, Al2SO4.6H2O, Al(NO3)3.6H2O, NH4Al(SO4)2.12H2O, Al6Si2O13, Ba(BrO3).2H2O, Ba(IO3)2, Ba(NO3)2, BaO.2SiO2, 2BaO.SiO2, 2BaO.3SiO2, BaCrO4, Bi2(SO4)3, B(C2H5)3, B(OCH3)3, HBrO3, Ca(PO3)2, Ca2P2O7, Ca3(PO4)2, CaHPO4.2H2O, Ca(H2PO4).H2O, CaC2O4.H2O, 2CaO.SiO2, CaO.Al2O3, CaO.2Al2O3, 2CaO.Al2O3, 3 CaO.Al2O3, CaO.Al2O3.2 SiO2, CaO.Fe2O3, 2CaO.5MgO.8SiO2.H2O, CCl4, CBr4, NH4CN, CH3NO3, CH3COOH, CH3COO—, CH2ClCH2Cl, CCl3CHO, CCl3CH(OH)2, CF2ClCFCl2, CH2BrCH2Br, (CH3)2SO, C2H5NO2, CH3CH2ONO2, (NH4)2C2O4, CH3N, Ce2(SO4)3.5H2O, Cs2SO4, Cs2Cr2O7, Cs2UO4, Cr2(SO4)3, Cr7C3, Cr23C6, Ag2CrO4, CoSO4.6H2O, CoSO4.7H2O, [Co(NH3)6]Br3, CuSO4.3H2O, CuSO4.5H2O, DyCl3.6H2O, ErCl3.6H2O, EuCl3.6H2O, Eu2(SO4).8H2O, GdCl3.6H2O, Gd2(SO4).8H2O, Gd(NO3).6H2O, HoCl3.6H2O, Fe3O4, FeSO4.7H2O, LaCl3.7H2O, La2(SO4)3.9H2O, LiSO4H2O, Li2SO4.D2O, LuCl3.6H2O, MgCl2.2H2O, MgCl2.4H2O, MgCl2.6H2O, MgSO4.6H2O, Mg2P2O7, Mg3(PO4)2, Mg3Si2O5(OH)4, Mg3Si4O10(OH)2, Mg2Al4Si5O18, MgV2O6, MgV2O7, Mg2TiO4, MgUO4, MgU3O10, Mn3O4, MnSO4.5H2O, Hg2SO4, MoF6, Mo(CO)6, FeMoO4, NdCl3.6H2O, Nd2(SO4)3.8H2O, Nd2Se3, NiSO4, NiSO4.6H2O, NiSO4.7H2O, Ni(NO3)2.6H2O, NiCO3, Ni(CO)4, Nb2O5, NbF5, NbCl5, N2O3, NH4OH, NH4NO3, (NH4)2O, P4O10, KClO4, KBrO, KBrO3, KBrO4, K2SO4, KH2AsO4, KAl(SO4)2, KAl(SO4)2.12H2O, K4Fe(CN)6, C2Cr2O7, Rb2SO4, Sm2O3, SmCl3.6H2O, Sc2(SO4)3, Sc(HCO2)3, Sc2(C2O4)3, Ag2SO4, Na2SO4, Na3PO4, (NaPO3)3, Na4P2O7, Na5P3O10, Na2HPO4, Na2H2P2O7, Na2CO3.H2O, Na2CO3.10H2O, Na2C2O4, Na2B4O7, Na2B4O7.10H2O, NaAlSi2O6, Na2CrO4, Na2MoO4, Na2WO4, Na2VO3, Na4V2O7, Na2Ti2O5, Na2UO4, SrCl2.2H2O, Sr(NO3)2, Sr2SiO4, Sr2TiO4, H2SO4.1H2O, H2SO4.2H2O, H2SO4.3H2O, H2SO4.4H2O, H2SO4.6.5H2O, SOCl2, SO2Cl2, Ta2O5, Tb2O3, Tm2O3, SnCl2.2H2O, TiCl4, TiBr4, TiI2, W(CO)6, Fe7W6, MnW04, V2O4, V2O5, ZnSO4.6H2O, ZnSO4.7H2O, Zn(NO3)2.6H2O, Zn2SiO4, ZrCl4, and Zr(SO4)2. Other suitable materials can be found in the National Bureau of Standards Technical Notes 270-3, 270-4, 270-5, 270-6, 270-7 and 270-8, for example and additional suitable materials for use in the cooling device body will be selected by the person of ordinary skill in the art, given the benefit of this disclosure. The materials listed above can obtained from suitable chemical companies such as, for example, Sigma-Aldrich, Mallinckrodt Chemicals and the like. In some examples, the material is selected from one or more of the hydrated materials listed above, e.g., the materials listed above that include coordinated water molecules. In certain other examples, the material is one or more hydrated, or partially hydrated, deuterated (2H), or partially deuterated, or tritiated (3H), or partially tritiated, metal sulfate compounds, such as those metal sulfate compounds listed above. In certain examples, the materials listed above may be mixed with fillers, solid particles and the like to provide the final cooling device body structure. For example, where the material is liquid at the operating temperature, the material can be mixed with suitable fillers or solid particles to provide a solid structure. The inorganic materials may also take numerous crystal forms, e.g., hexagonal, monoclinic, triclinic, etc. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that certain materials listed above may have a limited temperature range. For example, certain materials may have boiling points around 100° C., for example, and are suitable for use at processing temperatures around 100° C., whereas the materials may not provide optimal cooling at processing temperatures above 200° C., for example. The person of ordinary skill in the art, given the benefit of this disclosure, will be able to select suitable materials depending on the intended use of the cooling device and on the temperature of the processing operation(s). In other examples, the materials may be mixed with one or more acids, bases, catalysts, etc. to promote, or deter, one or more chemical processes. For example, the materials can be mixed with a suitable reactant such that the material undergoes a synthesis reaction, a disproportionation reaction, an acid-base reaction, a dissolution reaction, an oxidation-reduction reaction, a dissolution reaction, etc. It will be within the ability of the person of ordinary skill in the art, to select suitable additional materials for including in the cooling device bodies disclosed here.
In accordance with certain other examples, the cooling device body can be constructed from one or more reticulated foams, such as the reticulated zirconia foam available commercially from Vesuvius Hi-Tech, Inc. (Alfred Station, N.Y.). Other exemplary suitable reticulated foams include PURIPORE reticulated foam available from Vitec Composite Systems (Manchester, England) and reticulated foams commercially available from Advanced Packaging Inc. (Baltimore, Md.). In some examples, the reticulated foams may be impregnated with or soaked in other suitable materials, such as those inorganic and organic materials listed herein. In certain other examples, the reticulated foam can be saturated with one or more cooling media as discussed herein. For example, the reticulated foam can be disposed in a suitable vessel and a cooling medium can be added to the vessel to allow the foam to soak up or take in the cooling medium. In some examples, the void volume of the foam is at least about 75%, more particularly about 85%, for example at least about 90%, 95% or about 98% void volume, such that large amounts of cooling media can enter into the pores of the foam. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to select suitable reticulated foams having suitable properties, such as void volume, for construction of the cooling devices disclosed here.
In accordance with yet other examples, the cooling device body can include glass, ceramics, fibers, whiskers, powders, platelets, screens, metal particles, carbon black particles, fillers, potting compounds, and other suitable materials that can absorb heat and/or can add strength or reinforcement to the cooling device body. In at least certain examples one or more of these additional materials are included in the cooling device body to provide structural reinforcement to the cooling device body. For example, carbon fibers can be added to the cooling device body to provide structural reinforcement while adding minimal additional weight to the cooling device body. Exemplary glass and glass particles include, but are not limited to, those derived from soda-lime glass, lead glass, borosilicate glass, aluminosilicate glass, 96% silica glass and fused silica glass. Exemplary ceramics include, but are not limited to, alumina based ceramics, aluminum nitride based ceramics, aluminum silicate based ceramics, braze alloys, glass ceramics, magnesium aluminum silicate based ceramics, magnesium oxide based ceramics, magnesium silicate based ceramics, silica based ceramics, silicon nitride based ceramics, and other ceramics commercially available from numerous manufacturers including but not limited to Morgan Advanced Ceramics (Fairfield, N.J.), Alcan Chemicals (Cleveland, Ohio), Kyocera Industrial Ceramics Corporation (Vancouver, Wash.), and other manufacturers of ceramic products. Exemplary fibers, platelets, whiskers and powders include, but are not limited to, those containing boron, carbon, cellulose, silicon carbide, silicon nitride, alumina, tantalum carbide, niobium carbide, and other transition metal carbides, carbonitrides, and nitrides. Exemplary screens include, but are not limited to, those commercially available from Universal Wire Cloth (Morrisville, Pa.), McNichols Co. (Westford, Mass.), Dorstener Wire Tech. (Spring, Tex.) and other manufacturers of wire screens and meshes. Exemplary metal particles include, but are not limited to, those containing titanium and titanium alloys, beryllium and beryllium alloys, magnesium and magnesium alloys, manganese and manganese alloys and other suitable metal and metal alloys. Exemplary fillers include, but are not limited to, carbon black, polyisoprene, dimethyl-methylvinyl polysiloxane, polybutadiene, silica, fly ash and the like. Exemplary potting compounds include, but are not limited to, epoxies, adhesives and the like, such as those available commercially from Cotronics Corp. (Brooklyn, N.Y.), Abatron, Inc. (Kenosha, Wis.) and 3M (St. Paul, Minn.). Other suitable materials for strengthening the cooling device body will be selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with additional examples, one or more materials that can decrease the rigidity of the cooling device body can be included. For example, in certain applications, it may be necessary to bend, bow, or distort one or more surfaces of the cooling device body to provide optimal thermal transfer between the electronic component and the cooling device. Certain materials used in construction of the cooling device may be too rigid to bend, distort or bow or may break under the continuous force of being bent, distorted or bowed. In such applications, a material which decreases the rigidity of the cooling device body can be included such that the cooling device body may be distorted without risking failure to the cooling device body. Exemplary materials that can decrease the rigidity of the cooling device body include, but are not limited to, gels, foams, elastomers, flexible ceramics, and other compliant materials in particulate, fibrous, lamellar, monolithic or foamed form. Other suitable materials for decreasing the rigidity og the cooling device body will be selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with certain examples, the cooling device body can be held in place using suitable devices and materials. For example, the cooling device can be held to the heat sensitive component using thermal paste or grease. In other examples, the cooling device is held to the electronic component using a spring, clip, clamp, screw, bolt, single-sided adhesive tape, two-sided adhesive tape, tacky flux and related materials. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to select suitable devices and materials for keeping the cooling device in thermal communication with a heat sensitive component or a heat sensitive material.
In accordance with other examples, one or more interstitial or intervening materials can be placed between the cooling device body and the heat sensitive material or heat sensitive component to facilitate heat transfer. Suitable interstitial or intervening materials include, but are not limited to, thermal grease, thermal paste, flux, a thin layer of cooling medium, etc, and other materials that will be selected by the person of ordinary skill in the art, given the benefit of this disclosure, that can increase the rate of heat transfer from the heat sensitive material or heat sensitive component to the cooling device body. The interstitial or intervening materials can be disposed using suitable methods, such as brush application, spraying, sputter depositing, vapor deposition and the like, such that a sufficient amount of interstitial or intervening material is disposed on the cooling device body or a portion of the cooling device body.
In accordance with certain examples, the cooling device body may include fins, a fan or other device to facilitate heat transfer from the cooling device body to the surrounding environment. The cooling device body can have air holes, weep holes, through holes, etc. to allow for air circulation through the cooling device body. The cooling device body may take numerous forms and shapes depending, for example, on the shape of the heat sensitive component or the shape of the feature for which it is desirable to remove heat from or protect from high temperatures. In certain examples, the cooling device body includes at least one generally planar surface that can be placed on a surface of a heat sensitive component. In examples where the cooling device body includes a planar surface, the other portions of the cooling device body may be selected based on the intended use of the cooling device body and based on additional elements, e.g., cooling medium, to be used with the cooling device body. For example, the cooling device body may have sidewalls configured to retain a cooling medium that can be disposed within the interior of the cooling device body for increasing heat transfer from the heat sensitive component to the cooling device body. The planar surface of the cooling device body may contain open portions or voids if certain areas of the heat sensitive component are not heat sensitive and do not need to be kept cool during processing. In certain examples, the cooling device body has dimensions of about 10 mm to about 50 mm long by about 10 mm to about 50 mm wide and the thickness of the planar surface is about 1 mm to about 15 mm.
In accordance with certain examples, the cooling device body may take the form of a sleeve, cup, basket or other suitable shape that can retain a cooling medium, for example. Referring now to
In accordance with certain examples, the base of cooling device body 305 can be embossed to direct the cooling effect to specific areas of the package to concentrate cooling effects in sensitive areas without applying uniform cooling that might distort the package through thermal expansion effects or prevent bottom-side formation of solderjoints, for example. Referring now to
In accordance with certain examples, the exact shape and nature of the embossed areas can vary depending on the exact shape and nature of the heat sensitive areas to be protected. For example, referring now to
In accordance with additional examples, a cooling device comprising a cup-shaped support structure with embossing or lugs formed on the base of the cooling device body is provided. The embossing or lugs can act to secure or position the cooling device to the heat sensitive component or can assist in providing a snug fit of the cooling device to the heat sensitive component. For example, referring to
In accordance with yet other examples, the cooling device may include cut-outs, holes, stand-offs, etc. to accommodate parts that project upward from the surface of the heat sensitive component. For example, the surface of a heat sensitive electronic component may not necessarily be flat, but instead, can include peaks and valleys created by the different thicknesses of the areas of the heat sensitive components. The cooling devices disclosed here can be constructed with suitable projections and depressions to accommodate the variable thicknesses of different areas of the heat sensitive component. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to design and configure cooling devices suitable for use with heat sensitive components having non-flat surfaces.
In accordance with certain other examples, a cooling device that can be cast in a tape and reel pocket is provided. The cooling device may be any of the cooling devices disclosed here, and may include, for example, embossing areas, lugs, cooling media and the like. In certain examples, one or more cooling device bodies are cast in the tape and reel pocket. The cooling device body is allowed to dry at least sufficiently such that is can be loosened from the tape and reel pocket and automatically placed on a selected heat sensitive component. Such casting greatly simplifies the overall process and reduces costs associated with the overall process. In some examples, it may be necessary to include a tape that is flexible enough to release the caps, is heat resistant to withstand drying and/or is reasonably rigid so that the shape of the cooling device is not distorted beyond use. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to design and/or select suitable tape and reel devices and pockets for casting the cooling devices disclosed here and for automated placement of the cooling devices disclosed here.
In accordance with some examples, the cooling device body can be molded around the heat sensitive component such that the cooling device body surrounds substantially all exposed surfaces of the heat sensitive component. For example, a moldable cooling device body can be disposed on a surface of a heat sensitive component and the shape or form of the cooling device body can be manually manipulated such that substantially all exposed surfaces of the heat sensitive component are surrounded by the cooling device body. Areas of the heat sensitive component that need to be exposed, e.g., those areas to be re-soldered, re-worked, re-flowed, etc., can be left exposed such that local areas of high temperature can be created.
In accordance with certain other examples, a cooling device comprising one or more indicators to provide a measure of hydration, flux content, temperature threshold, etc. is disclosed. In some examples, the indicator is a water soluble cobalt salt, such as cobalt chloride (CoCl2). Without wishing to be bound by any particular scientific theory, cobalt chloride can take various hydrated and dehydrated forms that differ in color. For example, CoCl4−2 is blue in color, whereas Co(H2O)6+2 is faint pinkish/red in color. At high temperatures, a solution of CoCl2 turns blue due to the formation of CoCl4−2, whereas in the cold a solution of CoCl2 is faint pink due to the presence of the Co(H2O)6+2. Similarly, under conditions where the humidity is low, the cobalt indicator is blue, whereas under high humidity conditions, the cobalt indicator turns faint pink. Other water soluble forms of cobalt can also be used as an indicator such as, for example, cobalt sulfates, cobalt bromides, cobalt iodides, cobalt thiocyanates, and the like. In certain examples, the indicator changes color to indicate the temperature is above a certain threshold temperature, for example. In other examples, the indicator may degrade or deliquesce above a certain temperature. The indicator can be located on the cooling device body of the cooling device or can be in the cooling medium, or can be in both. The indicator may take numerous forms, e.g., solids, liquids, pastes, suspensions and the like. The indicator may also change from infrared translucent to infrared opaque, or vice versa, above a certain temperature such that the indicator can be optically monitored, for example. Other exemplary indicator materials can also be used, e.g., UV opaque materials, UV translucent materials, etc. In certain examples, a chemical reaction occurs such that the products are colored. For example, under appropriate temperature conditions, colorless reactants can react to form a colored product which can be used as an indicator that the temperature has exceeded a certain threshold value. In particular, reactants which are capable of undergoing an endothermic reaction to yield a colored product(s) are especially useful as indicators in the cooling devices disclosed here.
In accordance with certain examples, the cooling devices disclosed here can be configured with selective heat absorption and reflection profiles. For example, certain areas of the cooling device can include heat conductive areas, whereas other areas of the cooling device can include heat reflective areas. In certain examples, the heat conductive areas are placed in thermal communication with heat sensitive areas on electronic components. The heat reflective areas typically are positioned where it is unnecessary to cool those areas of the electronic component, or can be used to direct heat to specific areas, such as areas where flux or solder has been disposed. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure, to design suitable devices with heat sensitive and heat reflective areas suitable for an intended use.
In accordance with yet another aspect, a heat sink is disclosed that is operative as a cooling device. The heat sink may be placed in thermal communication with one or more heat sensitive electrical components to remove, extract or dissipate heat generated by the electrical component or to remove, extract or dissipate heat experienced by the electronic component during one or more processing operations. In certain examples, the heat sink remains in thermal communication with the electronic component even after the processing operation, whereas in other examples the heat sink is removed from the electronic component after the processing operation. In certain examples, the heat sink includes one or more cutouts to accommodate attached components. In other examples, the heat sink may be strengthened or reinforced with suitable materials such as, for example, steel wires, fibers, meshes, screens, etc.
In accordance with additional examples, a board sized cooling device configured to fit over, under or around an entire board is provided. The board sized cooling device can be prepared using suitable molds or casts such that the dimensions and thickness of the cooling device provides suitable thermal protection for those areas of a board that are heat sensitive. In certain examples, the board is about 12-16 inches wide, about 20-24 inches long and is about 0.25 to about 0.5 inches thick, though depending on the component thickness, the size of the board sized cooling device can vary. The board sized cooling device may be made from any of the materials listed herein, e.g., inorganic materials, etc. The cooling device can be fixed to the board using suitable materials such as, for example, adhesives, epoxies, silicones, and the like or using suitable mechanical fasteners such as, for example, screws, bolts, pop rivets, clips, clamps, springs and the like. In at least certain examples, the board sized cooling device is attached to the board using the existing fastener openings on the board. In other examples, one or more holes is drilled into the board for fastening the cooling device to the board. In yet other examples, the bottom of the surface is dipped into the materials used to construct the cooling device such that the cooling device forms on the undersurface of the board itself. Other suitable methods for constructing and attaching board sized cooling devices will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with certain examples, a cooling device comprising two or more stackable units is provided. The stackable units generally have a surface that can fit against a heat sensitive component. For example, referring to
In accordance with certain other examples, a cooling device comprising a cooling medium is provided. The cooling medium is operative to enhance thermal transfer from the heat sensitive material or heat sensitive component to the cooling device body and/or the cooling medium. Without wishing to be bound by any particular scientific theory, the cooling medium can be selected such that it undergoes an endothermic reaction, endothermic phase change and/or endothermic rearrangement. In keeping with the traditional usage, the term endothermic refers to a process where heat is absorbed from the surroundings e.g., where the change in enthalpy is positive. For example, a cooling medium undergoing an endothermic phase change requires heat to achieve such phase change. Similarly, a cooling medium undergoing an endothermic reaction requires heat for the reactant to react and yield any product(s) or absorbs heat from the surrounding as the reaction proceeds. One example of an endothermic reaction is when solid ammonium nitrate (NH4NO3) is placed in water. Without wishing to be bound by any particular scientific theory, as the solid ammonium nitrate dissociates into ammonium ions and nitrate ions, the temperature of the solution decreases and creates a larger temperature differential between the surroundings than the temperature differential that existed between the surroundings and the solid ammonium nitrate. Another example of an endothermic reaction is when solid magnesium sulfate is placed in water to form magnesium ions and sulfate ions. Yet another example of an endothermic reaction is when sodium sulfate decahydrate (Na2SO4.10H2O) reacts with sulfuric acid (H2SO4) to produce sodium bisulfate (NaHSO4) and water. Without wishing to be bound by any particular scientific theory, the temperature of the solution can drop so rapidly that ice can form. An additional example of an endothermic reaction occurs when solid barium hydroxide octahydrate (Ba(OH)2.8H2O) reacts with ammonium nitrate (NH4NO3). Without wishing to be bound by any particular scientific theory, as the reaction proceeds due to a large increase in entropy as products are formed, the solution absorbs heat from the environment to produce barium nitrate and ammonia and the temperature drops to around about −20° C. to about −30° C. As an additional benefit, the produced ammonia can be monitored as an indicator that the cooling medium is reacting and the reactants have not all been exhausted. The resulting solid barium nitrate product can be removed using suitable techniques, such as compressed air, vacuuming and the like. Also, a cooling medium undergoing an endothermic rearrangement or an endothermic conversion can absorb heat as the crystal structure of the cooling medium is altered or as the number of waters of hydration are altered, for example. An exemplary cooling medium that can be used in the cooling device disclosed here is calcium sulfate hemihydrate (CaSO4.½ H2O). Again without wishing to be bound by any particular scientific theory, as solid calcium sulfate hemihydrate is mixed with water, the solid calcium sulfate hemihydrate absorbs some of the water to form solid gypsum (CaSO4.2 H2O). During this conversion, the temperature of the solution decreases creating a larger temperature differential between the solution and the surrounding environment. Other suitable materials include those materials that undergo an endothermic crystallization process in the presence of one or more suitable solvents, e.g., such as water.
In accordance with certain examples, a cooling medium with high heat capacity is used such that the temperature change of the system, e.g., a heat sensitive component and cooling device, during one or more processing steps is substantially small with the majority of the heat being transferred to and/or absorbed by the cooling medium and/or the cooling device body of the cooling device. As used here, the term heat capacity refers to the amount of heat required to change the temperature of the system by one degree. Materials with higher heat capacities can absorb more heat before any temperature change is observed. Materials having heat capacities of at least about 50 cal/deg-mol to at least about 100 cal/deg-mol at 25° C. are especially useful in the cooling devices disclosed here. In some examples, the material has an infinite heat capacity, e.g., is undergoing a phase change, at or near the processing temperature.
In certain examples, the cooling medium is an aqueous solution or suspension of one or more of the following inorganic or organic materials: Al2O3.H2O, Al2O3.3H2O, Al2SO4, Al2SO4.6H2O, Al(NO3)3.6H2O, NH4Al(SO4)2.12H2O, Al6Si2O13, Ba(BrO3).2H2O, Ba(IO3)2, Ba(NO3)2, BaO.2SiO2, 2BaO.SiO2, 2BaO.3SiO2, BaCrO4, Bi2(SO4)3, B(C2H5)3, B(OCH3)3, HBrO3, Ca(PO3)2, Ca2P2O7, Ca3(PO4)2, CaHPO4.2H2O, Ca(H2PO4)H2O, CaC2O4.H2O, 2CaO.SiO2, CaO.Al2O3, CaO.2Al2O3, 2CaO.Al2O3, 3CaO.Al2O3, CaO.Al2O3 .2SiO2, CaO.Fe2O3, 2CaO.5MgO.8SiO2.H2O, CCl4, CBr4, NH4CN, CH3NO3, CH3COOH, CH3COO—, CH2ClCH2Cl, CCl3CHO, CCl3CH(OH)2, CF2ClCFCl2, CH2BrCH2Br, (CH3)2SO, C2H5NO2, CH3CH2ONO2, (NH4)2C2O4, CH3N, Ce2(SO4)3.5H2O, Cs2SO4, Cs2Cr2O7, Cs2UO4, Cr2(SO4)3, Cr7C3, Cr23C6, Ag2CrO4, CoSO4.6H2O, CoSO4.7H2O, [Co(NH3)6]Br3, CuSO4.3H2O, CuSO4.5H2O, DyCl3.6H2O, ErCl3.6H2O, EuCl3.6H2O, Eu2(SO4).8H2O, GdCl3.6H2O, Gd2(SO4).8H2O, Gd(NO3).6H2O, HoCl3.6H2O, Fe3O4, FeSO4.7H2O, LaCl3.7H2O, La2(SO4)3.9H2O, LiSO4.H2O, Li2SO4.D2O, LuCl3.6H2O, MgCl2.2H2O, MgCl2.4H2O, MgCl2.6H2O, MgSO4.6H2O, Mg2P2O7, Mg3(PO4)2, Mg3Si2O5(OH)4, Mg3Si4O10(OH)2, Mg2Al4Si5O18, MgV2O6, MgV2O7, Mg2TiO4, MgUO4, MgU3O10, Mn3O4, MnSO4.5H2O, Hg2SO4, MoF6, Mo(CO)6, FeMoO4, NdCl3.6H2O, Nd2(SO4)3.8H2O, Nd2Se3, NiSO4, NiSO4.6H2O, NiSO4.7H2O, Ni(NO3)2.6H2O, NiCO3, Ni(CO)4, Nb2O5, NbF5, NbCl5, N2O3, NH4OH, NH4NO3, (NH4)2O, P4O10, KClO4, KBrO, KBrO3, KBrO4, K2SO4, KH2AsO4, KAl(SO4)2, KAl(SO4)2.12H2O, K4Fe(CN)6, C2Cr2O7, Rb2SO4, Sm2O3, SmCl3.6H2O, Sc2(SO4)3, Sc(HCO2)3, Sc2(C2O4)3, Ag2SO4, Na2SO4, Na3PO4, (NaPO3)3, Na4P2O7, Na5P3O10, Na2HPO4, Na2H2P2O7, Na2CO3.H2O, Na2CO3.10H2O, Na2C2O4, Na2B4O7, Na2B4O7.10H2O, NaAlSi2O6, Na2CrO4, Na2MoO4, Na2WO4, Na2VO3, Na4V2O7, Na2Ti2O5, Na2UO4, SrCl2.2H2O, Sr(NO3)2, Sr2SiO4, Sr2TiO4, H2SO4.1H2O, H2SO4.2H2O, H2SO4.3H2O, H2SO4.4H2O, H2SO4.6.5H2O, SOCl2, SO2Cl2, Ta2O5, Tb2O3, Tm2O3, SnCl2.2H2O, TiCl4, TiBr4, TiI2, W(CO)6, Fe7W6, MnW04, V2O4, V2O5, ZnSO4.6H2O, ZnSO4.7H2O, Zn(NO3)2.6H2O, Zn2SiO4, ZrCl4, and Zr(SO4)2. Other suitable materials that can be used as or in the cooling medium can be found in the National Bureau of Standards Technical Notes 270-3, 270-4, 270-5, 270-6, 270-7 and 270-8, for example, and additional suitable materials for use in the cooling medium will be selected by the person of ordinary skill in the art, given the benefit of this disclosure. In other examples, the materials may be mixed with one or more acids, bases, catalysts, etc. to promote, or deter, one or more chemical processes. For example, the materials can be mixed with a suitable reactant such that the material undergoes a synthesis reaction, a disproportionation reaction, an acid-base reaction, a dissolution reaction, an oxidation-reduction reaction, a dissolution reaction, etc. It will be within the ability of the person of ordinary skill in the art, to select suitable additional materials for including in the cooling media disclosed here.
In accordance with certain examples, the cooling medium is disposed on or within a cooling device body which rests on or around the heat sensitive component, whereas in other examples the cooling medium may be disposed on or around a heat sensitive component and the cooling device body can be omitted. In yet other examples, the cooling medium is impregnated or coated onto the surface of the cooling device body, or the cooling device body itself may be constructed from the cooling media. Other possible and exemplary configurations for the cooling medium and/or cooling device body are discussed below.
In accordance with yet additional examples, one or more additional materials may be included in the cooling device body, the cooling medium or both that can absorb or scavenge water molecules to prevent damage to the electronic components. Without wishing to the bound by any particular scientific theory, when the cooling media undergoes an endothermic reaction or process, the temperature drop can be so great that solid water (ice) forms on the surfaces of the cooling device. To prevent damage to the electronic components by the ice, suitable materials to absorb water can be used such as, for example, “getters” or drying agents, e.g. magnesium sulfate, sodium sulfate, calcium chloride, calcium sulfate (Drierite), potassium carbonate, potassium hydroxides, molecular sieves, and the like. Other suitable agents will be selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with certain examples, the cooling devices disclosed here can be used to cool an electronic component during an elevated temperature operation during manufacture, repair, or rework thereof. In some examples, the method comprises bringing a cooling device into thermal communication with the electronic component, subjecting the electronic component to the elevated temperature operation during which the cooling device cools the electronic component by way of heat transfer from the electronic component to the cooling device. Some package processing stages where heat sensitivity is particularly at issue include the reflow stage, the preheating stage prior to wave soldering, and any required rework or repair stage. Without wishing to be limiting and for convenience purposes only, a reflow process will be described below for illustrative purposes. Also, while the cooling device has potential application to myriad types of heat sensitive features, heat sensitive materials and electronic components that are exposed to elevated processing temperatures, such as packaged ICs, multi-chip modules, optoelectronic communication devices, or electronic displays, a flip chip IC package will be used herein for illustrative purposes.
In accordance with certain examples and with reference to
As discussed above, certain examples take advantage of an endothermic reaction or process taking place in proximity to the electronic package to extract the internal heat thereof for the period between the package's assembly and its in-service operation, or for a segment thereof. In one example and with reference to the schematic illustration in
In accordance with certain examples, to facilitate the endothermic phase change or reaction of the cooling medium, the cooling device's thermal conductivity can be tailored by selecting an appropriate cooling device body material. Specifically, the material can be selected to meet the particular endothermic reaction kinetics of the cooling medium. For example, when water is selected as the cooling medium, it might be advantageous to select a cooling device body material with a lower thermal conductivity so that the water does not evaporate before reaching the 150° C. operation temperature. In general, the cooling device body can be made of any inorganic or organic material, including metals, polymers, glass, ceramics, composite materials, and other inorganic and organic materials discussed herein. If the material selected is not capable of being impregnated with a cooling medium, a second material can be added to the cooling device body to retain the cooling medium. For example, in examples where the cooling device body is made of porous glass or metal, an inorganic material impregnated with a cooling medium can be added to the cooling device.
In certain examples as discussed above, the cooling device is a structure made of an inorganic material. For example, two representative inorganic materials are hydrated forms of CaSO4, such as Plaster of Paris, and reticulated zirconia foams (RZF). In examples using Plaster of Paris as the inorganic material, the cooling device is formed to shape and solidified in a room temperature casting process. The Plaster of Paris is mixed with additives, per the supplier's instructions, and approximately 50 wt % water prior to casting. Desired dimensions can be achieved either through casting in molds or sawing single units from a larger bulk cast. As the Plaster of Paris casting process is a room temperature process, organic materials are acceptable as the mold material. In examples employing RZF as the inorganic material, the cooling device can be formed by a high temperature ceramic forming process akin to investment casting. An open-cell organic foam can impregnated with a zirconia-based ceramic slurry by soaking the foam in the ceramic slurry for a suitable period. The impregnated organic foam is then dried and fired, during which process the organic foam is eliminated. Without wishing to be bound by any particular scientific theory, the resulting ceramic foam has roughly the same pore size and density as the organic foam, meaning that these variables can be altered by selecting or designing an organic foam with the desired values. The cooling device in this instance is physically characterized by a multicellular configuration, with each “cell” having substantially continuous walls and a voided center, but with some degree of porosity to allow impregnation of the volatile species in the liquid phase and outgassing in the vapor phase. In one example, the cooling device has length and width in accord with the package's lid and thickness of about 1 cm to about 3 cm, for example.
While the above embodiments refer to a cooling device for a single electronic component with dimensions mimicking the component's length and width, alternative embodiments with various physical configurations will be readily constructed by the person of ordinary skill in the art, given the benefit of this disclosure. For example, referring to
In accordance with certain examples and as discussed elsewhere herein, the cooling device body can be impregnated with a cooling medium that is compatible with the reflow equipment, the flip chip package, and the PCB, if applicable. As discussed above, at least certain examples of the cooling medium are solid or liquid substances, such as a volatile liquid species, which have the function of undergoing a reaction or a phase change process to increase the temperature differential between the cooling device and the electronic component. As used here, the term “volatile species” refers to any species that has a heat of vaporization below the processing temperature of the stage during which the cooling device is designed to extract heat from the electronic component. In one example, the volatile species is comprised of the volatile components normally found in solder flux. One such flux is Alpha NR330, which is available from Alpha Metals of Jersey City, N.J., and which comprises succinic acid, tetraethylene glycol, and dimethyl ether glutaraldehyde. In a second example, the volatile species is water optionally including one or more of the inorganic or organic materials discussed herein. In yet another example, the volatile species is a solution of water and a soluble inorganic or organic species which may undergo an endothermic reaction, process or rearrangement as the water vaporizes and/or may alter the vaporization temperature of the water. Based on the selection of the inorganic or organic species and by varying its concentration, the solution's vaporization temperature can be tailored to meet the specific heat dissipation characteristics the user desires. By increasing the vaporization temperature of the species, maximum heat dissipation efficiency can be altered to match the process temperature, maximum component temperature, and heat flow characteristics in order to best protect the component. In one example, the cooling medium is a solution of water and borax (hydrated sodium borate), wherein the borax provides additional endothermic cooling after the water is vaporized. Other suitable materials for use as cooling media are discussed herein and additional materials suitable for use as cooling media will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure. For example, there are presently available volatile organic compound-free (VOC-free) fluxes, such as VOC-free fluxes sold by Alpha Metals under the EF Series brand name. Other suitable VOC-free fluxes will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with certain examples, the cooling device body is typically brought into thermal communication by attachment to the component using any acceptable means that is temporary, that will secure the unit to the component during processing operations, and that does not irreparably alter the component's integrity. In one embodiment, the cooling device body may simply be placed on top of the component's lid, relying on gravity to keep the unit in contact with the component during processing. For example, referring to
In accordance with other examples and with reference to
In accordance with certain examples and without wishing to be bound by any particular scientific theory, during the elevated temperature process heat can be conducted from the electronic component through the cooling device body to the cooling medium. The cooling device body may then be cooled by an endothermic process, reaction or rearrangement undergone by the cooling medium. The endothermic nature of the cooling medium allows the cooling device to yield higher cooling efficiency when compared to the cooling characteristics of a traditional reflective heat shield or a traditional heat sink. Specifically, a reflective heat shield only assists in cooling the package by reflecting a portion of the heat directed toward the package and by minimal conduction through the solid material. The efficiency of the reflective heat shield is limited by its reflective properties, which cannot protect the component from infrared heat, and by its surface area, which impacts its conduction properties. In contrast, examples of the cooling device disclosed herein can dissipate heat by numerous processes including but not limited to conducting heat away from the package, increasing the temperature differential between the cooling device and the electronic component using the cooling medium, and carrying heat from the cooling device to the oven atmosphere by the outgassing of any vapor-phase volatile species. The general evolution of heat by the cooling device is represented by the three dashed arrows 1130 in
In addition, to the advantages noted above, examples of the cooling devices disclosed herein do not impede the conduction of heat through the PCB during thermal processing. This feature allows the melting of solder paste, which facilitates attachment of the solder spheres to the PCB, by conduction of heat through the board while maintaining a thermal gradient through the assembly with the highest temperatures at the board-side of the package. Again without wishing to be bound by any particular scientific theory, the thermal gradient produced by utilizing the cooling device allows solder joint formation or elevated temperature reworking while protecting heat-sensitive features within the electronic component. In some examples the thermal gradient is configured such that the elevated temperature near the soldering or reworking operation at the extremities of the electronic component, e.g., the package, drops to a safe temperature at the internal features of the package.
In accordance with other examples, the vapor form of any volatile species from the cooling medium may be trapped by a recycling management system. The vaporized volatile species may then be allowed to return to their liquid phase and be reused in later cooling devices. Such recycling prevents adverse effects on the flip chip package assembly, the PCB, the oven, and the environment, while simultaneously improving the cost efficiency of the system.
In accordance with certain other examples, the cooling device can be impregnated with a cooling medium that can undergo repeatable, reversible endothermic reactions. In this example, the cooling device is either sealed to prevent cooling medium loss or the cooling device is reimpregnated with the cooling medium after it has returned to its pre-processing state in a recycling management system. An example of such a cooling medium is one or more hydrated forms of sodium acetate (CH3COONa) solution. While the solution can be designed to have different melting and boiling points, sodium acetate trihydrate (CH3COONa.3H2O) melts at about 58° C. and evaporates at about 120° C. In this example, the cooling device can be removed after the processing is completed and allowed to cool. During cooling, the cooling medium in a sealed cooling device will return to its pre-processing state, i.e., it will undergo an exothermic reaction. Sealing the cooling device in this embodiment refers to the addition of a vapor and/or particulate barrier, such as aluminum foil or a heat resistant polymer. In an alternative example, this vapor and/or particulate barrier is reusable. If the cooling device is not sealed, it can be reimpregnated with the cooling medium that has returned to its pre-processing state in a recycling management system. Suitable methods for recycling the cooling media disclosed here will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure.
In accordance with certain other examples, the cooling device may include an attached piece of foil. In one example, the foil is placed on the bottom of the cooling device, between the lid of the package and the cooling device. In this example, the foil acts to prevent contamination of the package during the endothermic process. In an alternative example, foil is applied to the top of the cooling device. In this example, the foil can facilitate the operation of pick and place operations that utilize vacuum pick-up heads. In yet another example, foil is placed on both the bottom and the top of the cooling device. Any acceptable attachment mechanism can be used to secure the foil to the cooling device, such as being cast with the cooling device in the organic mold or adhered in place after the cooling device has been formed Apart from a foil acting as a barrier or suction site, other elements can be added to the cooling device to alter its performance characteristics. In one example, an abrasion-resistant coating, such as a glass cloth or expanded metal foil, can be added to the cooling device to reduce its wear rate and thereby extend its life-span. In another example, a heat-reflective pattern or heat-absorbent pattern is applied to the cooling device to further increase the cooling device's heat dissipation capacity. In yet another example, the cooling device can be structurally reinforced by materials that are cast into the cooling device body during its formation, such as chopped fiber, glass cloth, and expanded metal foil. Another example involves structurally reinforcing the cooling device by the affixing additional physical features, such as edge pieces and runners made of a metal, polymer, ceramic, glass, or composite material, which can be added to the cooling device during or after its formation.
In addition to the reflow process, electronic components may be exposed to elevated processing temperatures during the preheating stage prior to wave soldering, rework stages, and repair stages. During the preheating stage prior to wave soldering, the electronic component may be exposed to temperatures between about 100° C. to about 200 ° C. A rework stage is required when a component has undergone normal processing and is potentially viable, but some correctable processing error must be addressed prior to use, e.g., localized solder repair. During rework processing, localized temperatures are elevated to reflow the solder, e.g., between about 100° C. to about 300° C. Similarly, repair processing is required when a discrete part of the electronic component is the root cause of the component's failure. To return the component to operating order, it is typically necessary to heat the localized area including and surrounding the discrete source of failure to elevated temperatures similar to rework levels. In any of these or other elevated temperature processing stages, a cooling device may be attached to the electronic component to aid in heat dissipation.
In one example, after the processing stage is complete, the cooling device is removed. In this regard, some examples involve bringing a temporary cooling device into thermal communication with the electronic component during elevated temperature operations where the temporary cooling device cools the electronic component and subsequently removing the temporary cooling device from thermal communication with the electronic component. One particular example involves subjecting the electronic component to elevated temperature operation temperatures between about 125° C. and about 300° C.
In accordance with certain examples, after removal of the cooling device, an alternate heat dissipation device can be attached to the electronic component, such as a heat sink 1410 attached to lid 1414, as shown in
In accordance with certain examples, the cooling devices disclosed here can include one or more coatings, e.g., conductive coatings, IR reflective coatings, UV reflective coatings, etc. In certain examples, the coatings are disposed on the cooling device body using, for example, brush coating, spin-coating, vapor deposition, sputtering, molecular beam epitaxy or other suitable deposition techniques that will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure. In some examples, the coating includes one or more silver, copper, chromium or gold compounds or mixtures thereof. For example, the coating can include silver oxide, copper oxide, tin oxide, gold oxide, or other suitable metal oxides, metal nitrides and the like, e.g. SnO2 reactively sputtered onto the cooling device body. In certain examples, the coating includes WO3, TiO2, ZnO, BiOx or Si3N4. The coating may include buffer layers, thickness adjustment layers and the like. For example, one or more buffer layers can first be disposed on a surface or surfaces of the cooling device to provide improved adhesion for the reflective or conductive layer, which is disposed on the buffer layer. In certain examples, the coating is a single layer, e.g., a monolayer, whereas in other examples the coating is a multi-layer coating, e.g., a multi-layer coating that includes at least one infrared reflective layer. For example, the coating may include one or more buffer layers, disposed on the cooling device body, and one or more copper, silver or copper/silver layers disposed on the buffer layer. In other examples, the buffer layer can be omitted and one or more copper, silver or copper/silver layers can be disposed directly on the cooling device body. Without wishing to be bound by any particular scientific theory, selection of suitable materials for the coating can provide cooling devices, or can provide areas on the cooling devices, that are heat-reflective or heat-absorptive. For example, when IR reflective materials such as tin oxide are deposited on the cooling device body, the cooling device body can reflect infrared radiation to the surrounding environment and away from the device or package to be cooled. The exact thickness of the coating can vary depending on the intended use and the desired effect, and in certain examples, a single layer coating is about 10 nm to about 10 um thick, more particularly about 50 nm to about 5 um thick, e.g., about 100, 200, 300, 400 or 500 nm thick. In examples using multi-layer coatings, the total thickness of the coating is about 10 nm to about 100 um, more particularly about 100 nm to about 1 um, e.g., about 200, 400, 600 or 800 nm thick. Other suitable thicknesses for single layer and multi-layer coatings will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure. In certain examples, the coating may be disposed directly on the package or device to be cooled, and a cooling device can optionally be placed in thermal communication with the coating. In other examples, the coating can be disposed on one or more intervening devices or temporary devices that are placed between the device to be cooled and the cooling device during a processing operation. It will be within the ability of the person of ordinary skill in the art, given the benefit of this disclosure to select suitable coatings for use with the cooling devices, heat sinks and other devices disclosed herein.
Certain specific examples are described below to further illustrate the novel cooling devices disclosed herein. These specific examples should not be construed as limiting the scope and spirit of the appended claims.
Commercial grade Plaster of Paris (75% CaSO4.½ H2O) powder was mixed with water in a 2:1 weight ratio. Castings 1 cm thick were formed in an organic tray mold, then cut into six 3 c×3 cm×1 cm samples using a band saw. The samples were then stored in a desiccator containing dry nitrogen to dry the samples. The samples were weighed at an average weight of 10.75 g. Two samples were soaked in water at room temperature for two hours. Two samples were soaked in NR330 flux (solids content of 4% and pH of 2.6) at room temperature for two hours. The four soaked samples weighed an average of 13.45 g. To compare the affect, if any, of the printed circuit board's thickness, three trials were performed on three boards with a thickness of about 62 mils, and three trials were performed on three boards with a thickness of about 93 mils. One thermocouple was placed at the center of a semiconductor package on each board (represented by T1), while another thermocouple was placed approximately 1 cm from the edge of the same semiconductor package (represented by T2). The six samples were then exposed to reflow processing at a peak temperature of 125° C. The results of these six trials are illustrated graphically in
For the two dry samples, there was virtually no weight loss. The peak temperature at T1 was approximately 9-12° C. lower than at T2. See
For the two samples soaked in water, there was a reduction of approximately 10-20% of the absorbed water weight. The peak temperature at T1 was approximately 58-63° C. lower than at T2. See
For the two samples soaked in flux, there was a reduction of approximately 10-20% of the absorbed flux weight. The peak temperature at T1 was approximately 35-45° C. lower than at T2. See
The experimental setup from Example 1 was duplicated to produce six additional samples, two of which were dry, two of which were soaked in water, and two of which were soaked in flux. The experimental procedure was carried out at a peak processing temperature of 220° C. The results of these six trials are illustrated graphically in
For the two dry samples, there was a reduction of approximately 7-8% by weight, which represents the residual water of hydration from the original sample mixing process. The peak temperature at T1 was approximately 43-48° C. lower than at T2. See
For the two samples soaked in water, there was a reduction of nearly 100% of the absorbed water weight. The peak temperature at T1 was approximately 67-88° C. lower than at T2. See
For the two samples soaked in flux, there was a reduction of approximately 94-97% of the absorbed flux weight. The peak temperature at T1 was approximately 32-70° C. lower than at T2. See
The experimental setup from Example 1 was duplicated to produce six additional samples, two of which were dry, two of which were soaked in water, and two of which were soaked in flux. The experimental procedure was carried out at a peak processing temperature of 260° C. The results of these six trials are illustrated graphically in
For the two dry samples, there was a reduction of approximately 8% by weight, which represents the residual water of hydration from the original sample mixing process. The peak temperature at T1 was approximately 47-49° C. lower than at T2. See
For the two samples soaked in water, there was a reduction of approximately 100% of the absorbed water weight and approximately 2% of the dry sample's weight, representing a loss of all the water absorbed during the two hour soak plus a portion of the residual water of hydration in the sample. The peak temperature at T1 was approximately 67-68° C. lower than at T2. See
For the two samples soaked in flux, there was a reduction of approximately 100% of the absorbed flux weight and approximately 10% of the dry sample's weight, representing a loss of all the flux absorbed during the two hour soak plus a portion of the residual water of hydration in the sample. The peak temperature at T1 was approximately 73-85° C. lower than at T2. See
A board-sized cooling device was prepared by casting commercial grade Plaster of Paris (75% CaSO4) powder and water in a 2:1 weight ratio into a mold 14 inches wide and 22 inches long. The mold also contained a glass cloth, which was laid into the mold before the Plaster of Paris was poured into the mold. The cooling device casting was then removed from the mold and attached to a metal frame using room temperature vulcanizing (RTV) silicone. The metal frame/cooling device assembly was placed around multiple electronic components by joining the metal frame to the bottom of a printed circuit board, i.e., the side of the board opposite the electronic components.
When introducing elements of the examples disclosed herein, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be open ended and mean that there may be additional elements other than the listed elements. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that various components of the examples can be interchanged or substituted with various components in other examples. Should the meaning of the terms of any of the patents, patent applications or publications incorporated herein by reference conflict with the meaning of the terms used in this disclosure, the meaning of the terms in this disclosure are intended to be controlling.
Although certain aspects, examples and embodiments have been described above, it will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that additions, substitutions, modifications, and alterations of the disclosed illustrative aspects, examples and embodiments are possible.
This application claims the benefit of, and is a continuation-in-part application of, U.S. application Ser. No. 10/755,944 entitled “Thermal Protection for Electronic Components During Processing” and filed Jan. 13, 2004, the entire disclosure of which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 10755944 | Jan 2004 | US |
Child | 10892303 | Jul 2004 | US |