This invention relates to the field of metal or alloy electrochemical deposition (ECD) for filling narrow and high aspect ratio openings. In particular, the invention discloses new methods which enhance reliable, fast, and void-free filling of very small openings, with large aspect ratios, such as vias and trenches in semiconductor devices, thin film heads, electronic high density packages, or micro electromechanical system (MEMS) devices. The new methods are particularly effective for the so called “Damascene” and “Dual Damascene” copper interconnects, providing fast, reliable, and void-free copper filling by electroplating inside vias and trenches in the manufacture of semiconductor devices.
There are two methods to fill patterned openings by electroplating (“electrofilling”). In one method, an insulating mask such as an oxide, photoresist, or polyimide layer is patterned over a conductive metallic surface (or a “seed layer” or “plating base”), exposing the metallic surface only at the bottom of the openings. Electroplating is carried out through the openings in the insulating mask, and is confined inside the openings of the mask. Usually, following the plating, the insulating mask is removed and the seed layer (which was covered by the insulating mask) is etched away. This method is often used in the fabrication of, for example, coils and other metallic structures of thin film heads, metallic conductors in high density packages, and in MEMS devices.
In the other method, sometimes referred to as “Damascene” or “Dual Damascene”, an insulating (or dielectric) layer is first pattern-etched to form openings in it. Next, at least one metallic layer is deposited over the insulating layer to metallize its top surface (field), as well as the sidewalls and bottom surfaces of the openings. The metallic layer(s) serves as a conductive plating base (or “seed-layer”), to provide low resistive electric path for the electroplating current. Electroplating is then carried out over the entire metallized surface, including the field and inside the patterned openings. Following plating, the plated metal and any metallization (adhesion, barrier, or seed) layers above the field, as well as any excess plated metal over the openings, are removed by etching, polishing, or by chemical mechanical polishing (CMP). This results in metallic filled vias or trenches (or grooves), surrounded by a dielectric. This method is used, for example, to produce metallic interconnects in semiconductor integrated circuits devices.
Usually, when using electrolytes without surface active additives, the plating rate inside the openings is slower than at the field. Due to higher electric field at the top corners of the openings, the local current density (and plating rate) is higher at the top corners, leading to faster growth and pinching-off of the top corners. This leads to deleterious voids in the filling, as shown in
Aspect ratio (AR) is defined herein (cf.
AR=h/W
The openings may consist of, for example, vias or trenches (or grooves) in a dielectric layer, such as used in the fabrication of interconnects in semiconductor integrated circuit devices.
The filling problems become more severe with decreasing lateral dimension W and increasing AR of the openings. For example, in today's most advanced copper filling of trenches and vias in integrated circuit interconnects, the openings may have an aspect ratio as high as 8:1 (h=1.4 μm; W=0.18 μm), and future trench and via openings will likely require W≦0.10-0.13 μm, and AR≧10:1. Reliable, void-free filling of such narrow and high AR openings imposes a great deal of difficulty.
In order to overcome the natural tendency to form voids, commercial electrolytes, such as acidic copper sulfate, usually include proprietary surface active “brightener” and/or “leveler” additives. The proprietary additives usually comprise organic compounds with functional groups containing sulfur and/or nitrogen atoms. These compounds adsorb onto growth sites of the depositing metal surface, thereby inhibiting (or suppressing) the metal deposition rate. The adsorption and its associated inhibition lead to smaller (finer) grains of the depositing metal, thus producing smoother and brighter deposits. Leveling is obtained by higher concentration of inhibitor (or additives) at protrusion tips sticking into the diffusion layer, thereby inhibiting (or suppressing) their growth. As a result, inhibition is stronger at protrusions, compared with the flat surface. In much the same way, the relatively stagnant electrolyte inside narrow openings results in poor replenishment and depletion of the inhibitor there. This depletion results in reduced inhibition and faster growth inside the openings. Due to better supply of the inhibitor at the top corners and the field, inhibition is stronger at the top corners of openings and at the field (compared with inside the openings). The reduced inhibition inside narrow openings speeds up the plating rate there (relative to the field), thus facilitating void-free filling (or “superfilling”) of narrow openings with large aspect ratios. The mechanism of superfilling narrow openings, using inhibiting additives, was proposed in several publications. For examples, see an article entitled: “Damascene copper electroplating for chip interconnects”, by P. C. Andricacos, at al. in IBM Journal of Research and Development, Vol. 42 (5), pp. 567-574, 1998, and an article entitled: “Copper On-Chip Interconnections”, by P. C. Andricacos in The Electrochemical Society Interface, pp. 32-37, Spring 1999.
Clearly, in order to achieve void-free “superfilling” of narrow openings, the beneficial effect of inhibition gradients must overcome the intrinsic void-forming effects due to (a) higher electric field (and current density) at the top corners and, (b) decreasing plating rate inside openings along their depth due to depletion of the plating ion there.
As openings get narrower, and the aspect ratio increases, void-free ECD-filling becomes harder and harder to control. While wider openings may fill well, narrower ones may have voids, and vice versa. For example, see an article entitled: “Factors Influencing Damascene Feature Fill Using Copper PVD and Electroplating”, by J. Reid et al. in Journal of Solid State Technology, Vol. 43 (7), pp. 86-103, July 2000. Process latitude, such as the useful range of additive concentration and/or plating rate, becomes very tight and hard to control.
Prior art ECD tools and methods commonly employ relatively slow laminar (or “natural”) flow of electrolyte across the substrate's surface. For example, U.S. Pat. Nos. 6,080,291, 6,179,983, and 6,228,232 employ a perforated (or “diffusion”) plate or a porous membrane, placed between the anode and cathode (substrate), in order to achieve laminar flow across the substrate's surface. Such flow results in a relatively thick diffusion layer. The thick diffusion layer limits the useful plating rate to only about 0.3-0.4 μm/min, thereby limiting the throughput of single-wafer plating modules. In addition, prior art Cu-plated wafers usually display relatively rough, matte or semi-matte, surfaces. The rough plated surfaces include protrusions or bumps over filled openings, as well as spikes (or “balloons”) and steps (or “humps”) at boundaries between the field and patterned arrays of narrow openings (cf.
Also, prior art ECD tools and methods often rely on wafer rotation to improve axial uniformity. However, unless certain strict conditions (such as no edge effects, infinite wafer's radius, infinite electrolyte volume, low plating ion concentration, and laminar flow) are satisfied, the wafer rotation creates non-uniform electrolyte flow across its surface. While electrolyte flow is slow at the center of the wafer, its (tangential) velocity increases with the radius. That velocity difference increases with rotation speed. As a result, the thickness of the diffusion layer varies as a function of the radius R (cf. 22 in
Embodiments of the present invention advantageously satisfy the above-identified need in the art and provide enhanced electrochemical deposition (ECD) void-free filling of a metal or an alloy inside openings in a substrate.
One embodiment is a method for void-free filling a metal or an alloy inside openings by electrochemical deposition (ECD), said method including steps of: (a) forming at least one opening and a field surrounding the at least one opening in a substrate, said at least one opening having a bottom and sidewalls surfaces and an aspect ratio in a range from 8:1 to 28:1; (b) forming at least one barrier layer over the field and sidewalls of the at least one opening; (c) depositing at least one seed layer over the at least one barrier layer; (d) immersing the substrate in an electrolyte contained in an electrochemical deposition (ECD) cell, the ECD cell including at least one anode and a cathode, wherein the cathode includes at least a portion of the at least one seed layer, and wherein the electrolyte includes plating metallic ions and at least one inhibitor additive, said metallic ions and said at least one inhibitor additive having concentrations; (e) providing agitation of the electrolyte across the surface of the substrate immersed in the electrolyte by moving multiple non-contacting wiping blades relative to the substrate, wherein the agitation of the electrolyte facilitates a limiting current density which is larger by at least an order of magnitude than a limiting current density obtained without the agitation produced by moving multiple non-contacting wiping blades; (f) applying electrical current between the at least one anode and the cathode to generate an average electroplating current density on the substrate, wherein the agitation, the concentrations of the metallic ions and the at least one inhibitor additive, and the average electroplating current density are such as to produce void-free, electroplated metallic filling inside the at least one opening; and (g) following electroplating, the electroplated metal or alloy, and any barrier and seed layers above the field, as well as any excess electroplated metal or alloy over the at least one opening, are removed by chemical mechanical polishing (CMP).
One goal of the invention is to improve void-free filling of narrow openings by enhancing inhibition at the field and top corners during electroplating, while reducing inhibition inside the openings.
Another goal is to create as large as possible concentration difference (or gradient) of the inhibitor between the field and along the depth of the openings, by depleting the inhibitor inside the openings and by enhancing supply and concentration of inhibitor(s) at the field and top corners of the openings.
Another goal is to improve plating throughput and process latitude.
Yet another goal is to improve plating uniformity and void-free filling along the radius of plated wafers.
In general, prior art ECD tools utilize a relatively slow (“natural” or “laminar”) flow of the electrolyte across the surface of the substrate (or wafer). The slow flow results in a relatively thick stagnant diffusion (or boundary) layer. The thickness of the diffusion layer decreases with the velocity of the electrolyte across the surface of the substrate. In prior art ECD tools, used for copper filling of integrated circuits interconnects, the diffusion layer is typically about 20-100 μm thick. Also, the prior art ECD tools and methods often rely on wafer rotation to improve axial uniformity. However, unless certain strict conditions (such as no edge effects, infinite wafer's radius, infinite electrolyte volume, low plating ion concentration, and laminar flow) are satisfied, the wafer rotation creates non-uniform electrolyte flow across its surface. For example, edge effects are always present due to the wafer holding fixture, plating ion concentration is high, electrolyte volume is small, and rotation speed of more than about 80 revolutions per minute (RPM) of 300 mm wafers produces non laminar flow near the edge. As a result, prior art ECD tools and methods usually produce a mix of laminar and some turbulent flows.
In a preferred embodiment, uniform vigorous electrolyte agitation at the field outside openings is produced, for example, by using high pressure Jets ECD (JECD), such as disclosed in U.S. Pat. No. 5,421,987 (Jun. 6, 1995), by Tzanavaras and Cohen, incorporated herein by reference. The powerful high pressure jets agitation can readily reduce the field diffusion layer thickness by an order of magnitude, to about 2-10 μm, or less, thereby significantly enhancing replenishment of the inhibitor at the field. At the same time, the electrolyte remains essentially stagnant inside narrow openings, thus leading to local depletion of inhibitor there. In addition, the vigorous jets agitation also mitigates non-uniformity of the diffusion layer thickness along the wafer's radius, due to wafer (or anodes/jets assembly) rotation. The powerful turbulent jets flow is much more prevalent than the rotational flow.
Limiting current measurements (of plating current saturation at increasing cathode voltage) were taken with and without jets flow, using a jets ECD (JECD) tool similar to the one disclosed in U.S. Pat. No. 5,421,987. The acidic copper electrolyte did not include any inhibition organic additives. It consisted of 0.3M CuSO4, 10% (v/v) H2SO4, and ˜60 ppm chloride ions. In one measurement, a “natural” flow of about 2 gallons per minute (GPM) was used through an inlet at the bottom of the plating cell. The observed limiting current density, iL, was about 55 mA/cm2. In another measurement, a high pressure of 40 pounds per square inch (PSI) jets flow of 2.8 GPM was used with anode/jets assembly (MA) rotation speed of 20 RPM, under otherwise identical conditions to the first measurement. The distance between the jet nozzles and the wafer was about 1″. A limiting current iL could not be reached even at current density as high as 733 mA/cm2. Further increase of the cathode voltage merely increased (linearly) the plating current without any signs of approaching saturation. This represents a factor of at least 13× higher limiting current using the jets flow, compared with the “natural” flow. The limiting current is inversely proportional to the diffusion layer thickness:
iL=KC/ΔX
where K is a constant and C is the plating ion (bulk) concentration. These measurements indicate that the diffusion layer thickness can be reduced by at least an order of magnitude using powerful high pressure turbulent jets flow, compared with that of “natural” flow; to about 2-10 μm, or less.
Due to strong damping of the jets flow in the bath, ΔX and iL are sensitive to the (inlet) jets pressure and to the distance between the jet nozzles and the substrate's surface. The higher the jets pressure and the closer the substrate's surface to the jet nozzles, the thinner is ΔX and the larger is iL. For reasons of system integrity, avoiding device damage by the jets, pump cost, and heat generation, a pressure range of 30-50 PSI is preferred. The distance between the substrate's surface and the jet nozzles is optimized between conflicting requirements. On one hand it is desirable to shorten this distance as much as possible, in order to mitigate bath damping and to achieve powerful jets impinging on the substrate. On the other hand, the overlapping area on the substrate covered by neighboring jets is reduced with the distance between the nozzles and the substrate. Lack of sufficient overlap between the jet cones leads to periodic non-uniformity across the substrate. The preferred optimized distance between the nozzles and the substrate is in the range of about 0.5-2.0″, and more preferably in the range of 0.75-1.5″.
ΔX1>>ΔX2
During electroplating, inhibitor is consumed at the advancing deposit surface, thereby depleting its interface concentration. The interface concentration is smaller than the bulk concentration, C∞. A concentration gradient of the inhibitor is thus established across the (stagnant) diffusion layer. Due to much thinner diffusion layer of the inventive methods, the inhibitor flat (or field) interface concentration (CF2) of the inventive methods is much larger than that of prior art (CF1):
CF2>>CF1
ΔC1=CF1−CB1 (cf. FIG. 3(c); prior art)
ΔC2=CF2−CB2 (cf. FIG. 3(d); present invention)
Clearly, the concentration variance (or difference) obtained by the inventive methods is much larger than that obtained by prior art: ΔC2>>ΔC1. The inventive methods greatly enhance inhibition (and slowing-down) of electroplating rate at the field 32, relative to inside opening 34.
ΔV1=VB1−VF1 (cf. FIG. 3(e); prior art)
ΔV2=VB2−VF2 (cf. FIG. 3(f); present invention)
Positive plating rate variance (ΔV>0) facilitates void-free filling (or “superfilling”) of narrow openings. The larger this variance, the more pronounced and prevalent the superfilling mechanism. While prior art ECD methods and tools provide relatively small (or marginal) plating rate variance, the inventive methods produce much larger variance: ΔV2>>ΔV1. In other words, prior art ECD methods and tools produce only slightly larger plating rate at the bottom 38 than at the field 32: VB1{tilde under (<)}VF1. In fact, due to inherent competing void-forming mechanisms, they often result in negative variance: ΔV1{tilde under (<)}0. In contrast, the inventive methods greatly enhance inhibition at the field 32 and top corners, thereby significantly slowing-down the plating rate there (relative to bottom 38): VB2>>VF2. The inventive methods aim at producing large plating rate variance: ΔV2>>0. They thus overcome inherent void-forming mechanisms (due to higher electric field at the top corners and due to depletion of plating ions inside openings). These inherent void-forming mechanisms produce negative plating rate variance (ΔV<0), leading to pinching-off of the top corners, and to void-formation. The inventive methods significantly enhance void-free superfilling by generating a large and positive ΔV2. This large variance also facilitates wider process latitude, such as wider useful ranges of inhibitor concentration and plating rates.
The powerful jets agitation enhances replenishment of inhibitor at the field, while inside the narrow openings the electrolyte remains essentially stagnant. The impinging powerful jets create vigorous turbulent agitation at the wafer's surface, thereby significantly reducing the diffusion layer thickness, ΔX2, as seen in
The powerful jets agitation provides another important advantage. It facilitates significant increase of the plating rate without “burning” the deposit. It was found that the plating rate could be safely increased to 2.8 μm/min, without any deleterious effects. This is about 8× faster than typical prior art plating rate of about 0.35 μm/min. It facilitates more than double the throughput per module, at no extra cost. In fact, it was found that the surface becomes brighter by increasing the plating rate. At 2.8 μm/min, wafers appear fully bright (cf.
Using a JECD tool as in Example 2, two wafers were plated at low and high plating rates. All other plating parameters (or variables) were identical to those in Example 2. As in
JECD plating did not require any additional (third component) “leveler” organic additive, or the use of a complex pulse or periodic reversal pulse plating, in order to eliminate the spikes and steps common in prior art ECD plating. As disclosed in an article by Reid et al. in Journal of Solid State Technology, Vol. 43 (7), pp. 86-103, July 2000, and in an article by Mikkola et al. in 2000 International Interconnect Technology Conference (IITC), pp. 117-119, June 2000, addition of a third component “leveler” additive greatly complicates the required bath analysis and control. It may also result in top center voids and poor filling of larger features. As disclosed in an article by Gandikota et al. in 2000 International Interconnect Technology Conference (IITC), pp. 239-241, June 2000, and in an article by Hsie et al. in 2000 International Interconnect Technology Conference (IITC), pp. 182-184, June 2000, pulse plating, and in particular periodic reversal (PR) plating, slows-down the throughput and further complicates the required control. It may also result in larger grains, rougher surface, and longer self-anneal time of the plated Cu films.
The common prior art humps or bumps are due to coalescence of individual micro-bumps (above the top corners of openings) into larger bumps or humps, associated with insufficient leveling or brightening. The coalesced bumps or humps continue to amplify and grow faster than the flat field, since they “see” larger concentration of the plating ions ahead of the flat field. The inventive methods improve leveling, thereby reducing or eliminating the bumps and humps. The most important factor for leveling (for a given chemistry of additives and their bulk concentrations) is to create a large concentration gradient across the diffusion layer (ΔCinh/ΔX). In accordance with the invention, this is achieved by increasing the current density (larger ΔCinh) and by the powerful vigorous jets agitation (smaller ΔX).
As openings get narrower, the ratio of surface area (A) to volume (V) of the opening becomes larger. This ratio is reciprocal to W, the diameter of vias or width of trenches:
A/V∝1/W
A larger ratio A/V results in faster depletion of the inhibitor inside the openings. In other words, it takes less time (keeping all other parameters the same) to establish the inhibitor depletion gradients inside the opening. This, in turn, results in thinner transitional conformal growth on the bottom and sidewalls, prior to superfill commencement. As described by the articles of Andricacos, and Andricacos et al., growing conformal and non-conformal (or anti-conformal) layers on the sidewalls lead to deleterious seam-voids in the center of trenches or vias (cf.
In one embodiment, brushes (or pads, or blades) 80 alone, without jet-nozzles 84, produce significantly enhanced supply of inhibitor to the field, while maintaining substantially stagnant electrolyte, containing depleted inhibitor, inside narrow openings. The relative wiping motion does not have to be rotational. It may also be linear (not shown).
In another embodiment, both high pressure jets (using jet-nozzles 84) and wiping brushes (or pads, or blades) 80 are combined together to produce the benefits of both methods. They produce significantly enhanced supply of inhibitor to the field, while maintaining substantially stagnant electrolyte (containing depleted inhibitor) inside narrow openings. The relative wiping motion does not have to be rotational. It may also be linear (not shown).
In yet another embodiment, ultrasonic or megasonic agitation (not shown), with or without brushes 80 and/or jet-nozzles 84, produces significantly enhanced supply of inhibitor to the field, while maintaining substantially stagnant electrolyte inside narrow openings.
The inventive methods increase the concentration gradients of the inhibitor, ΔCinh/h, along the depth (h) of the opening, thus producing larger inhibition gradient from the field to the bottom of the opening. The larger this gradient, the more effective and prevalent the superfill mechanism. At large enough gradient, even the narrowest opening can be filled without voids. At the same time, increasing this gradient also facilitates wider process latitude. For example, utilizing a JECD tool, it was possible to obtain simultaneous void-free filling of very narrow, as well as wide openings, while using wide range of plating rates (0.35-2.8 μm/min). Similarly, using a JECD tool, it was possible to vary the nominal additive concentration by more than 100%, without deleterious effects.
Other embodiments of the invention provide for one or more of the following: (a) increasing the global plating rate (in order to facilitate depletion of inhibitor inside openings); (b) narrowing the openings and/or increasing their aspect ratio (in order to facilitate depletion of inhibitor inside openings); (c) decreasing the bulk inhibitor concentration (in order to facilitate depletion of inhibitor inside openings); and (d) increasing adsorption strength (and inhibition effectiveness) by selecting at least one powerful inhibitor (or adsorbate).
However, it should be understood by those skilled in the art that there are optimal ranges for these variables which may intricately depend on each other. For example, while increasing the global plating rate facilitates depletion of inhibitor inside the openings, it also increases depletion of the inhibitor at the field. This may in turn require higher inhibitor bulk concentration. Therefore, the optimal range of plating rate is strongly dependent upon inhibitor concentration. Similarly, although depletion is faster inside narrower openings (with larger AR), inherent void-forming effects (due to higher electric field at the top corners and plating ion depletion inside the openings) are stronger with such openings. Also, while decreasing bulk inhibitor concentration helps depletion inside the openings, it may result in insufficient concentration at the field, thereby adversely affecting void-free filling. Thus, too low or too high inhibitor bulk concentration or global plating rate may result in insufficient inhibitor gradients for successful void-free filling. Too low inhibitor concentration may result in insufficient field concentration, thereby producing too small inhibitor gradients. Too high inhibitor bulk concentration may result in insufficient depletion inside the openings, thereby leading to too small inhibitor gradients. Similarly, too low plating rate may not be sufficient to deplete the inhibitor inside the openings, while too high plating rate may deplete too much the field. Therefore, the optimal ranges of these variables are intricately dependent on each other. They must be optimized in concert with each other.
It should be understood that the above-described embodiments can be used to fabricate any number of devices including, and without limitation, metallic interconnects in semiconductor integrated circuit devices, thin film heads, micromachined Microelectromechanical Systems (MEMS) devices, or interconnects in high density electronic packages (such as chip scale and wafer scale packaging).
Those skilled in the art will recognize that the foregoing description has been presented for the sake of illustration and description only. As such, it is not intended to be exhaustive or to limit the invention to the precise form disclosed.
This is a continuation of application Ser. No. 14/705,813, filed on May 6, 2015, now U.S. Pat. No. 9,273,409, which is a continuation of application Ser. No. 14/164,465, filed on Jan. 27, 2014, now abandoned, which is a continuation of application Ser. No. 13/690,292, filed on Nov. 30, 2012, now U.S. Pat. No. 8,685,221, which is a continuation of application Ser. No. 11/827,829, filed on Jul. 13, 2007, now U.S. Pat. No. 8,349,149, which is a continuation of application Ser. No. 11/085,971, filed on Mar. 21, 2005, now U.S. Pat. No. 7,247,563, which is a continuation of application Ser. No. 10/112,332, filed on Mar. 29, 2002, now U.S. Pat. No. 6,869,515, which itself claims the benefit under 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/280,325 filed on Mar. 30, 2001. All the above preceding applications and patents are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3652442 | Powers et al. | Mar 1972 | A |
3743590 | Roll | Jul 1973 | A |
3893869 | Mayer et al. | Jul 1975 | A |
3963588 | Glenn | Jun 1976 | A |
4102756 | Castellani et al. | Jul 1978 | A |
4267024 | Weiskopf | May 1981 | A |
4304641 | Grandia et al. | Dec 1981 | A |
4359375 | Smith | Nov 1982 | A |
4364801 | Salama | Dec 1982 | A |
4696729 | Santini | Sep 1987 | A |
4771111 | Tieke et al. | Sep 1988 | A |
4834842 | Langner et al. | May 1989 | A |
4875982 | Velie | Oct 1989 | A |
5071518 | Pan | Dec 1991 | A |
5132775 | Brighton et al. | Jul 1992 | A |
5174886 | King et al. | Dec 1992 | A |
5209817 | Ahmad et al. | May 1993 | A |
5312532 | Andricacos et al. | May 1994 | A |
5368634 | Hackett | Nov 1994 | A |
5418186 | Park et al. | May 1995 | A |
5421987 | Tzanavaras et al. | Jun 1995 | A |
5427622 | Stanasolovich et al. | Jun 1995 | A |
5466635 | Lynch et al. | Nov 1995 | A |
5516412 | Andricacos et al. | May 1996 | A |
5533540 | Stanasolovich et al. | Jul 1996 | A |
5541135 | Pfeifer et al. | Jul 1996 | A |
5544773 | Haruta et al. | Aug 1996 | A |
5545429 | Booth et al. | Aug 1996 | A |
5656858 | Kondo et al. | Aug 1997 | A |
5746903 | Beilin et al. | May 1998 | A |
5849091 | Skrovan et al. | Dec 1998 | A |
5883762 | Calhoun et al. | Mar 1999 | A |
5898222 | Farooq et al. | Apr 1999 | A |
5904827 | Reynolds | May 1999 | A |
5972192 | Dubin et al. | Oct 1999 | A |
6013571 | Morrell | Jan 2000 | A |
6027631 | Broadbent | Feb 2000 | A |
6077726 | Mistry et al. | Jun 2000 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6093964 | Saitoh | Jul 2000 | A |
6103086 | Woo | Aug 2000 | A |
6176992 | Talieh | Jan 2001 | B1 |
6179983 | Reid et al. | Jan 2001 | B1 |
6218281 | Watanabe et al. | Apr 2001 | B1 |
6224737 | Tsai et al. | May 2001 | B1 |
6228232 | Woodruff et al. | May 2001 | B1 |
6229220 | Saitoh et al. | May 2001 | B1 |
6232196 | Raaijmakers et al. | May 2001 | B1 |
6254760 | Shen et al. | Jul 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6261433 | Landau | Jul 2001 | B1 |
6268291 | Andricacos et al. | Jul 2001 | B1 |
6271107 | Massingill et al. | Aug 2001 | B1 |
6280641 | Gaku et al. | Aug 2001 | B1 |
6297157 | Lopatin et al. | Oct 2001 | B1 |
6313027 | Xu et al. | Nov 2001 | B1 |
6319831 | Tsai et al. | Nov 2001 | B1 |
6333560 | Uzoh | Dec 2001 | B1 |
6334937 | Batz et al. | Jan 2002 | B1 |
6344129 | Rodbell et al. | Feb 2002 | B1 |
6362087 | Wang et al. | Mar 2002 | B1 |
6372622 | Tan et al. | Apr 2002 | B1 |
6380061 | Kobayashi et al. | Apr 2002 | B1 |
6391785 | Satta et al. | May 2002 | B1 |
6399479 | Chen et al. | Jun 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6423200 | Hymes | Jul 2002 | B1 |
6432821 | Dubin et al. | Aug 2002 | B1 |
6436730 | Melton et al. | Aug 2002 | B1 |
6444110 | Barstad et al. | Sep 2002 | B2 |
6534116 | Basol | Mar 2003 | B2 |
6547937 | Oberlitner et al. | Apr 2003 | B1 |
6578754 | Tung | Jun 2003 | B1 |
6585876 | Dordi et al. | Jul 2003 | B2 |
6592019 | Tung | Jul 2003 | B2 |
6627542 | Gandikota et al. | Sep 2003 | B1 |
6709562 | Andricacos et al. | Mar 2004 | B1 |
6773559 | Woodruff et al. | Aug 2004 | B2 |
6790776 | Ding et al. | Sep 2004 | B2 |
6818545 | Lee et al. | Nov 2004 | B2 |
6913680 | Zheng et al. | Jul 2005 | B1 |
7033463 | Hongo et al. | Apr 2006 | B1 |
7294244 | Oberlitner et al. | Nov 2007 | B2 |
8685221 | Cohen | Apr 2014 | B1 |
20020000383 | Lee | Jan 2002 | A1 |
20020020621 | Uzoh et al. | Feb 2002 | A1 |
20020092772 | Ding et al. | Jul 2002 | A1 |
20020189637 | Downes et al. | Dec 2002 | A1 |
20030064586 | Merchant et al. | Apr 2003 | A1 |
20030205238 | Bran | Nov 2003 | A1 |
20040118697 | Wen+ et al. | Jun 2004 | A1 |
Entry |
---|
“Copper Electrodeposition Studies with a reciprocating Paddle” by D. E. Rice et al., in Journal of the Electrochemical Society, vol. 135(11), pp. 2777-2780, Nov. 1988. |
“Ultrasonic and Megasonic Particle Removal” by A. A. Busnaina and G. W. Gale, in Precision Cleaning '95 Proceedings (1995), pp. 347-360. |
“Removal of Particulate Contaminanrs Using Ultrasonics and Megasonics: A Review”, by G. W. Gale and A. A. Busnaina, in Particulate Science and Technology, 13:197-211 (1995), p. 197. |
T. Kessler and R. Alkire, “A Model for Copper Electroplating of Multilayer Printed Wiring Boards”, J. Electrochem. Soc., vol. 123(7), Jul. 1976, pp. 990-999. |
“Damascene Copper Electroplating for Chip Interconnections” by P. C. Andricacos et al., in IBM Journal of Res. and Develop., vol. 42, No. 5, Sep. 1998, pp. 567-574. |
“Copper On-Chip Interconnections” by P. C. Andricacos in the Electrochemical Society Interface, pp. 32-37, Spring 1999. |
“Factors Influencing Damascene Feature Fill Using Copper PVD and Electroplating” by J. Reid et al., in Journal of Solid State Technology, vol. 43(7), pp. 86-103, Jul. 2000. |
“Superconformal Electrodeposition of Copper in 500-90 nm Features” by T. P. Moffat et al, in Journal of The Electrochemical Society, vol. 147(12), pp. 4524-4535, Dec. 2000. |
A. R. Despic and K. I. Popov, “Transport-Controlled Deposition and Dissolution of Metals”, in Modern Aspect of Electrochemistry, vol. 7, Edited by B. E. Conway and J. O'M. Bockris, pp. 256-268, Plenum Press, N.Y. 1972. |
E. H. Lyons, “Fundamental Principles”, in Modern Electroplating, 3rd Edition, edited by F. A. Lowenheim, pp. 31-36, John Wiley & Sons, 1974. |
J. Jorne, Challenges in Copper Interconnect Technology: Macro-Uniformity and Micro-Filling Power in Copper Electroplating of Wafers, in Semiconductor Fabtech—11th Edition, pp. 267-271, Feb. 2000. |
U. Cohen and G. Tzanavaras, “Seed Layers and Cu Jets Plating for Interconnects Below 0.10 Micron”, in the 17th VLSI Multilevel Interconncetion Conference (VMIC), pp. 21-26, Santa Clara, California, Jun. 2000. |
M. Matlosz, “Competitive Adsorption Effects in the Electrodeposition of Iron-Nickel Alloys”, J. Electrochem. Soc. vol. 140(8), Aug. 1993, pp. 2272-2279. |
P. C. Andricacos et al., “Electrodeposition of Nickel-Iron Alloys”, J. Electrochem. Soc. vol. 136(5), May 1989, pp. 1336-1340. |
H. S. Rathore et al., “Electromigration Characteristics of Damascene CVD, PVD, and Electroplated Copper Metallization”, 1999 Proc. 16th Intl VLSI Multilevel Intercon. Conf. (VMIC), Sep. 7-9, 1999, pp. 89-92. |
U. Cohen et al., “Silicon Epitaxial Growth by Electrodeposition from Molten Salts”, Journal of The Electrochemical Society, vol. 123(3), pp. 381-383, Mar. 1976. |
A. A. Sonin, “Jet Impingement Systems for Electroplating Applications: Mass Transfer Correlations”, J. Electrochem. Soc., vol. 130(7), Jul. 1983, pp. 1501-1505. |
D. T. Schwartz et al., “Mass-Transfer Studies in a Plating Cell with a Reciprocating Paddle”, J. Electrochem. Soc., vol. 134(7), Jul. 1987, pp. 1639-1645. |
G. Ritter et al., “Two- and three-dimensional numerical modeling of copper electroplating for advanced ULSI metallization”, Solid-State Electronics, vol. 44 (2000), pp. 797-807. |
M. Data et al., “Fundamental aspects and applications of electrochemical Microfabrication”, Electrochimica Acta, vol. 45 (2000), pp. 2535-2558. |
C-H Lee et al, “CVD Cu technology development for advanced Cu interconnect applications”, IITC 2000, Jun. 5-7, 2000, pp. 242-244. |
Chiu et al., “Chararterization of additive systems for damascene Cu electroplating by the superfilling profile monitor”, Journal of Vacuum Science & Technology B, Nov./Dec. 2000, vol. 18, pp. 2835-2841. |
Jordan et al., “The Effect of Inhibitor Transport on Leveling in Electrodeposition”, Journal of the Electrochem. Soc., vol. 138(5), May 1991, pp. 1251-1259. |
Takahashi et al., “Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches”, Journal of the Eelectrochem. Soc., vol. 146(12), Dec. 1999, pp. 4499-4503. |
U.S. Appl. No. 09/245,780, Dordi et al., abandoned. |
Number | Date | Country | |
---|---|---|---|
20160141178 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
60280325 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14705813 | May 2015 | US |
Child | 15002342 | US | |
Parent | 14164465 | Jan 2014 | US |
Child | 14705813 | US | |
Parent | 13690292 | Nov 2012 | US |
Child | 14164465 | US | |
Parent | 11827829 | Jul 2007 | US |
Child | 13690292 | US | |
Parent | 11085971 | Mar 2005 | US |
Child | 11827829 | US | |
Parent | 10112332 | Mar 2002 | US |
Child | 11085971 | US |