This invention is related to semiconductor devices, and more particularly, to semiconductor devices that are flip-chip mounted onto the active layers of the devices for improved head dissipation.
SiC and GaN power devices have attracted much attention as key components for high-efficiency power conversion. Their device performance can far exceed that of the Si-based devices mainly used in current power electronics. However, while performance of SiC and GaN based devices is good, they are not the only candidates for next-generation power devices. For example, Gallium oxide (Ga2O3) has gained increased attention for power devices due to its superior material properties and the availability of economical device-quality native substrates. The material possesses excellent properties such as a large band gap of 4.7-4.9 eV with an estimated high breakdown field of 8 MV/cm.
But, while Ga2O3 has shown promise for superior switching and high-efficiency power conversion performance, Ga2O3 also has poor thermal conductivity. Thus, achieving full performance of Ga2O3 is extremely challenging due to self-heating. This heating is generally confined close to the gate and back side thermal solutions are only partially effective due to the poor thermal conductivity of the material. Some contemporary solutions to this problem include attempting to pull heat out from both the front and backside of the chip by sandwiching the chip between metal.
Accordingly, there is a need in the art to better control heat in Ga2O3 based devices to be able to take advantage of their superior performance.
Embodiments of the invention provide a configuration for utilizing Ga2O3 technology while dissipating the heat generation. Embodiments of the invention do not mount Ga2O3 chips to heatsinks as is the contemporary convention. Rather, embodiments of the invention use a substrate of other active components as a heatsink to achieve a very high level of integration with low electrical parasitic losses.
Embodiments of the invention provide an integrated circuit including a first substrate with a first thermal conductivity. An active layer may then be deposited on the first substrate. At least one native device is fabricated on the active layer and a window is formed in the active layer exposing a portion of the first substrate. A non-native device is fabricated on a second substrate with a second thermal conductivity lower than the first thermal conductivity. The non-native device is flip-chip mounted in the widow on the first substrate and electrically connected to the native device. The non-native device is also thermally connected to the first substrate such that heat generated by the non-native device is removed through the first substrate.
In other embodiments, the substrate may also be the active layer. In these embodiments the integrated circuit may include the first substrate having a first thermal conductivity. At least one native device may then be fabricated on the first substrate. A first insulating region is formed on the first substrate via implantation. A non-native device is fabricated on a second substrate with a second thermal conductivity lower than the first thermal conductivity. The non-native device is flip-chip mounted to the first insulating region and electrically connected to the native device. The non-native device is also thermally connected to the first substrate such that heat generated by the non-native device is removed through the first substrate.
If the substrate is not acting as the active layer, then the integrated circuit may further include an active layer deposited on the first substrate, where the native device is fabricated on the active layer, and where the first insulating region is formed on the active layer via implantation. In this configuration, heat generated by the non-native device is removed through the active layer and the first substrate.
In still other embodiments, again the substrate may be the active layer and the insulating regions may electrically isolate a region of the active layer. In these embodiments, the integrated circuit includes a first substrate with a first thermal conductivity. At least one native device fabricated on the first substrate. A first insulating region may then be formed on the first substrate via implantation. The first insulation region electrically isolates a first isolated conduction region on the first substrate. A non-native device is fabricated on a second substrate with a second thermal conductivity lower than the first thermal conductivity. The non-native device is flip-chip mounted such that at least one electrode of the non-native device is electrically connected to the first isolated conducting region and the non-native device is further electrically connected to the at least one native device. The non-native device is also thermally connected to the first substrate such that heat generated by the non-native device is removed through the first substrate.
As with the previous embodiments, if the substrate is not the active layer, then the integrated circuit may further include an active layer deposited on the first substrate where the native device is fabricated on the active layer. For this configuration, the first insulating region is formed on the active layer via implantation forming the first isolated conducting region on the active layer. Heat generated by the non-native device is removed through the active layer and the first substrate. Some of these embodiments may include a second insulating region formed on the first substrate via implantation. For these embodiments, both the first and second insulating regions electrically isolate the first isolated conduction region on the first substrate.
Additional objects, advantages, and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the sequence of operations as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes of various illustrated components, will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to facilitate visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity or illustration.
Embodiments of the invention simultaneously solve thermal problems associated with materials such as Ga2O3 while allowing for point of use conversion integrated with configurations such as GaN on SiC for use in RF power electronics. For example, for electronically scanned array applications, off-chip intermediate power conversion steps can be removed and high voltage can be run to miniaturized power converters that are bonded directly to each GaN/SiC T/R MMIC. Running power at high voltage to each element allows low current to be used, which assists in reducing routing congestion and may dramatically shrink the entire array and system due to relaxed power delivery constraints.
Further, embodiments of the invention provide a method of integrating power conversion and high-performance RF in which a material with excellent power conversion metrics but with poor thermal conductivity may be thermally shunted to a substrate with high thermal conductivity. As an example, low to medium power buck converters may be fabricated on Ga2O3 materials and then flip chip bonded to GaN on SiC substrates with RF power MMICs. The heat generated at the Ga2O3 surface can then be removed via the SiC substrate.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
With the active layer 12 deposited, native devices may then be created on the active layer 12 and substrate 10 using conventional methods, such as device 14. In the exemplary embodiment with a SiC substrate, the active layer 12 may be GaN for RF applications and device 14 may be, for example, an amplifier or other device. After all of the native devices, such as device 14, have been fabricated on the substrate 10, the substrate may be prepared for the mounting of the additional components. In some embodiments, this may be accomplish by etching one or more windows 16 through the active layer 12 to the substrate 10 as illustrated in
Once the substrate 10 has been prepared, other devices that have been fabricated on substrates/active layers that have lower thermal conductivity may be prepared, such as device 24, which has a heat generation area 26 as illustrated in
Using the flip chip mounting and shunting generated heat through a substrate with a higher thermal conductivity, as illustrated above with respect to embodiments of the invention, enables point of use power conversion to be a real possibility with semiconducting materials like Ga2O3. Because the dynamic switching losses are so low, it is anticipated that the device would be able to switch as much as 50 to 100 times faster than state of the art. In turn, the passive components scale by the same factor.
While the present invention has been illustrated by a description of one or more embodiments thereof and while these embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
This application is a continuation of U.S. application Ser. No. 15/922,432, entitled “Highly Integrated RF Power and Power Conversion Based on Ga2O3 Technology,” filed on Mar. 15, 2018, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/471,440, entitled “Highly Integrated RF Power and Power Conversion Based on Ga2O3 Technology,” filed on Mar. 15, 2017, the entireties of which is incorporated by reference herein.
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
Number | Name | Date | Kind |
---|---|---|---|
20080142813 | Chang | Jun 2008 | A1 |
20090017566 | Basin | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20190296000 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62471440 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15922432 | Mar 2018 | US |
Child | 16435666 | US |