The deposition of tungsten films using chemical vapor deposition (CVD) techniques is an integral part of many semiconductor fabrication processes. Tungsten films may be used as low resistivity electrical connections in the form of horizontal interconnects, vias between adjacent metal layers, and contacts between a first metal layer and the devices on the silicon substrate. In a conventional tungsten deposition process, the wafer is heated to the process temperature in a vacuum chamber, and then a very thin portion of tungsten film, which serves as a seed or nucleation layer, is deposited. Thereafter, the remainder of the tungsten film (the bulk layer) is deposited on the nucleation layer. Conventionally, the tungsten bulk layer is formed by the reduction of tungsten hexafluoride (WF6) with hydrogen (H2) on the growing tungsten layer.
As semiconductor devices scale to the 32 nm technology node and beyond, shrinking contact and via dimensions make chemical vapor deposition of tungsten more challenging. Increasing aspect ratios can lead to voids or large seams within device features, resulting in lower yields and decreased performance in microprocessor and memory chips. The International Technology Roadmap for Semiconductors (ITRS) calls for 32 nm stacked capacitor DRAM contacts to have aspect ratios of greater than 20:1. Logic contacts, though not as aggressive as DRAM contacts, will still be challenged as aspect ratios grow to more than 10:1. Void-free fill in aggressive features like these is problematic using conventional CVD tungsten deposition techniques.
One aspect of the invention relates to methods of void-free tungsten fill of high aspect ratio features. According to various embodiments, the methods involve a reduced temperature chemical vapor deposition (CVD) process to fill the features with tungsten. In certain embodiments, the process temperature is maintained at less than about 350° C. during the chemical vapor deposition to fill the feature. The reduced-temperature CVD tungsten fill provides improved tungsten fill in high aspect ratio features, provides improved barriers to fluorine migration into underlying layers, while achieving similar thin film resistivity as standard CVD fill. Another aspect of the invention relates to methods of depositing thin tungsten films having low-resistivity. According to various embodiments, the methods involve performing a reduced temperature low resistivity treatment on a deposited nucleation layer prior to depositing a tungsten bulk layer and/or depositing a bulk layer via a reduced temperature CVD process followed by a high temperature CVD process.
Introduction
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, which pertains to forming thin tungsten films. Modifications, adaptations or variations of specific methods and structures shown and discussed herein will be apparent to those skilled in the art and are within the scope of this invention.
Extending tungsten to sub-32 nm technologies is critical to maintaining via/contact performance and reliability in both memory and logic devices. There are various challenges in tungsten fill as devices scale to smaller technology nodes. One challenge is preventing an increase in resistance due to the thinner films in contacts and vias. As features become smaller, the tungsten (W) contact or line resistance increases due to scattering effects in the thinner W film. While efficient tungsten deposition processes require tungsten nucleation layers, these layers typically have higher electrical resistivities than the bulk tungsten layers. As features become smaller, low resistivity tungsten films minimize power losses and overheating in integrated circuit designs. The thin barrier and tungsten nucleation films, which are higher in resistivity, occupy a larger percentage of the smaller features.
Another challenge in tungsten plugfill as devices scale to smaller technology nodes is step coverage. Stacked capacitor DRAM contacts, for example, require high aspect ratio tungsten fill of features greater than 20:1 at 32 nm nodes. Logic contacts, though not as aggressive as DRAM contacts, still have challenges as the smaller contact openings increase the aspect ratio requirements to near 10:1. Memory devices typically use CVD TiCl4 based Ti/TiN liner/barriers, which are fairly conformal. Logic devices, however, still rely on PVD/MOCVD based Ti/TiN films that create additional step coverage challenges associated with large overhang that creates a reentrant shape or pinch off. PVD overhang from the liner/barrier film magnifies the difficulty in filling small features. This makes it difficult to fill features not only with the nucleation film, but ultimately the bulk CVD film. Incoming overhang combined with the dimensions of high aspect ratio structures makes it difficult or impossible to achieve void-free plugfill using CVD tungsten deposition processes used in previous technology nodes.
According to various embodiments, the present invention provides tungsten fill processes to overcome aggressive aspect rations and liner/barrier step coverage limitations, including reducing nucleation film thickness and improving step coverage of the fill process. In certain embodiments, the methods also provide superior barrier films against fluorine attack of the underlying barrier/liner layer.
In certain embodiments, the recessed feature is formed within a dielectric layer on a substrate, with the bottom of the feature providing contact to an underlying metal layer. Also in certain embodiments, the feature includes a liner/barrier layer on its sidewalls and/or bottom. Examples of liner layers include Ti/TiN, TiN and WN. In addition to or instead of diffusion barrier layers, the feature may include layers such as an adhesion layer, a nucleation layer, a combination of thereof, or any other applicable material lining the sidewalls and bottom of the feature.
In certain embodiments, the feature is a re-entrant feature; that is the liner layer or other material forms an overhang that partially blocks the feature opening. Because many deposition processes do not have good step coverage properties, i.e., more material is deposited on the field region and near the opening than inside the feature, the liner layer thicker near the opening than, for example, inside the feature. For the purposes of this description, “near the opening” is defined as an approximate position or an area within the feature (i.e., along the side wall of the feature) corresponding to between about 0-10% of the feature depth measured from the field region. In certain embodiments, the area near the opening corresponds to the area at the opening. Further, “inside the feature” is defined as an approximate position or an area within the feature corresponding to between about 20-60% of the feature depth measured from the field region on the top of the feature. Typically, when values for certain parameters (e.g., thicknesses) are specified “near the opening” or “inside the feature”, these values represent a measurement or an average of multiple measurements taken within these positions/areas. In certain embodiments, an average thickness of the under-layer near the opening is at least about 10% greater than that inside the feature. In more specific embodiments, this difference may be at least about 25%, at least about 50%, or at least about 100%. Distribution of a material within a feature may also be characterized by its step coverage. For the purposes of this description, “step coverage” is defined as a ratio of two thicknesses, i.e., the thickness of the material inside the feature divided by the thickness of the material near the opening. In certain examples, the step coverage of the liner or other under-layer is less than about 100% or, more specifically, less than about 75% or even less than about 50%.
Returning to
In a PNL technique, pulses of reactants are sequentially injected and purged from the reaction chamber, typically by a pulse of a purge gas between reactants. A first reactant is typically adsorbed onto the substrate, available to react with the next reactant. The process is repeated in a cyclical fashion until the desired thickness is achieved. PNL is similar to atomic layer deposition techniques reported in the literature. PNL is generally distinguished from ALD by its higher operating pressure range (greater than 1 Torr) and its higher growth rate per cycle (greater than 1 monolayer film growth per cycle). In the context of the description provided herein, PNL broadly embodies any cyclical process of sequentially adding reactants for reaction on a semiconductor substrate. Thus, the concept embodies techniques conventionally referred to as ALD. In the context of description provided herein, CVD embodies processes in which reactants are together introduced to a reactor for a vapor-phase reaction. PNL and ALD processes are distinct from CVD processes and vice-versa.
Forming a nucleation layer using one or more PNL cycles is discussed in U.S. Pat. Nos. 6,844,258; 7,005,372; 7,141,494; 7,262,125; and 7,589,017; US Patent Publication Nos. 2008/0254623 and 2009/0149022, and U.S. patent application Ser. No. 12/407,541, all of which references are incorporated herein by reference in their entireties. These PNL nucleation layer processes involve exposing a substrate to various sequences of reducing agents and tungsten precursors to grow a nucleation layer of the desired thickness. A combined PNL-CVD method of depositing a nucleation layer is described in U.S. Pat. No. 7,655,567, also incorporated in its entirety.
Nucleation layer thickness is enough to support high quality deposition. In certain embodiments, the requisite thickness depends in part on the nucleation layer deposition method. As described further below, in certain embodiments a PNL method providing near 100% step coverage nucleation film at thicknesses as low as about 12 Å (as compared to typical nucleation films of 50 Å) may be used in certain embodiments. Regardless of the method used to deposit the nucleation layer, however, the reduced temperature CVD operation used to fill the feature can be used with thinner nucleation layers than required by conventional higher temperature CVD. Without being bound by any particular theory, it is believed that this may be because the slower chemistry at the reduced temperatures improves growth even on nucleation sites that are not fully developed. According to various embodiments, nucleation layers of between about 30-50 Å (3-5 nm) may be formed, in certain embodiments, as low as 10-15 Å.
In certain embodiments, depositing the nucleation layer is followed by a post-deposition treatment operation to improve resistivity. Such treatment operations are described further below and in more detail in U.S. Patent Publication No. 2009/0149022, and U.S. patent application Ser. No. 12/407,541, both of which are incorporated by reference herein.
Once the nucleation layer is formed, the process continues by filling the feature with a low-temperature CVD tungsten film (306). In this operation, a reducing agent and a tungsten-containing precursor are flowed into a deposition chamber to deposit a bulk fill layer in the feature. An inert carrier gas may be used to deliver one or more of the reactant streams, which may or may not be pre-mixed. Unlike PNL or ALD processes, this operation generally involves flowing the reactants continuously until the desired amount is deposited. In certain embodiments, the CVD operation may take place in multiple stages, with multiple periods of continuous and simultaneous flow of reactants separated by periods of one or more reactant flows diverted.
Various tungsten-containing gases including, but not limited to, WF6, WCl6, and W(CO)6 can be used as the tungsten-containing precursor. In certain embodiments, the tungsten-containing precursor is a halogen-containing compound, such as WF6. In certain embodiments, the reducing agent is hydrogen gas, though other reducing agents may be used including silane (SiH4), disilane (Si2H6) hydrazine (N2H4), diborane (B2H6) and germane (GeH4). In many embodiments, hydrogen gas is used as the reducing agent in the CVD process.
CVD filling of the feature is performed at a reduced temperature. According to various embodiments, the reduced temperature (process and/or substrate temperature) is in one of the following ranges: between about 250-350° C., between about 250° C.-340° C., between about 250° C.-330° C., between about 250° C.-325° C., between about 250° C.-320° C., between about 250° C.-315° C., between about 250° C.-310° C., between about 250° C.-305° C., or between about 250° C.-300° C. Also according to various embodiments, the process and/or substrate temperature is: between about 260-310° C., between about 270° C.-310° C., between about 280° C.-310° C., or between about 290° C.-310° C. In certain embodiments, the process and/or substrate temperature is about 300° C.
After filling the feature, the temperature is raised to deposit a high temperature CVD layer (308). The high temperature may be in one of the following ranges: between about 350-450° C., between about 360° C.-450° C., between about 370° C.-450° C., between about 380° C.-450° C., between about 390° C.-450° C., or between about 400° C.-450° C. In certain embodiments, the high temperature CVD is performed at about 395° C. Raising the temperature may involve raising the substrate temperature. According to various embodiments, the temperature is raised at least about 50° C., at least about 60° C., at least about 70° C., at least about 80° C., at least about 90° C., at least about 100° C., or at least about 110° C. The high temperature CVD layer is then deposited (310). In certain embodiments, operations 308 and 310 are not performed; that is, after the low temperature CVD process is complete and the feature is filled, the substrate moves on for further processing such as planarization.
In certain embodiments, transitioning from operation 306 to operation 308 involves moving the substrate from one deposition station to another in a multi-station chamber. Still further, each of operation 304, the post-deposition resistivity treatment (if performed), operation 306 and operation 308 is performed in a different station of the same multi-station chamber.
In alternative embodiments in which a single station is used to perform operations 306 and 308, transitioning from operation 306 to operation 308 involved shutting off a flow of tungsten precursor (optionally allowing hydrogen or other reducing gas and/or carrier gas to run), while raising the substrate temperature. Once the substrate temperature is stabilized, the tungsten precursor and other gases, if necessary, are flowed into the reaction chamber for the high temperature deposition. In other embodiments, transitioning from operation 306 may involve raising the substrate temperature while allowing the deposition to continue during the transition period.
In embodiments in which the high temperature tungsten CVD film is deposited, it may be deposited as an overburden layer on the filled feature.
Cross-section 411 represents the feature after reduced temperature CVD is performed to fill the feature with low temperature CVD bulk layer 453. (The tungsten nucleation layer is not depicted in
Cross-section 421 represents the feature after the higher temperature CVD is performed to deposit an overburden layer 455. The feature sidewalls and corners are protected from F2 attack by the low-temperature CVD film 453. Cross-section 431 provides a comparative example of a narrow feature such as that depicted in cross-section 401 filled using a conventional (high temperature) process. With a high temperature process, because of the overhang 415 and the relatively poor step coverage of the high temperature layer 455, the closed feature has an unfilled void 429 (i.e., a seam). The seam is problematic for a variety reasons—increasing resistance in the feature and causing problems during chemical-mechanical planarization (CMP). Although not visible in the schematic, the corners or other parts of the liner have adhesion problems due to F2 attack, exhibiting peeling or and defects. Such defects are discussed further below with reference to
In certain embodiments, a substrate having both high aspect ratio features and low aspect ratio features to be filled with tungsten is provided. For example, a substrate may have one or more features having an aspect ratio of at least about 10:1 and one or more features having aspect ratio of less than about 5:1, or 1:1 or 1:2. A reduced temperature CVD operation may then be performed to fill the one or more high aspect ratio features, followed by a high temperature CVD operation to fill the low aspect ratio features.
Reduced temperature CVD is critical to obtaining high quality tungsten fill in narrow, high aspect ratio features. Current tungsten CVD is performed at temperatures around 400° C. Obtaining excellent plugfill on advanced node features is a challenge that is magnified when the features have pinched openings (as illustrated at cross-section 401 of
The reduced temperature CVD described above is critical to obtaining high quality plugfill. Without being bound by a particular theory, it is believed that the high quality plugfill provided by the reduced temperature CVD is due to a number of factors. First, lower CVD temperature decreases the tungsten deposition rate by reducing thermal decomposition of the tungsten-containing precursor. This is believed to aid in plugfill in high aspect ratio, narrow features by reducing tungsten deposition at the feature opening thereby allowing more WF6 (or other tungsten-containing precursor) molecules to reach the lower regions of the feature and deposit tungsten. In conventional CVD processes, deposition at the top of the feature prevents precursor diffusion into the lower region of the feature. The result is voids or seams in the internal region of the feature, such as depicted in cross-section 431 in
In addition to the above mechanisms, it is believed that excellent plugfill is due to insufficient energy at the reduced temperatures to promote fluorine migration through the tungsten nucleation and TiN layers and/or insufficient energy to form TiFx from a reaction between Ti and F or Ti and WF6, even if the fluorine atoms or tungsten hexafluoride molecules do migrate. A low temperature CVD reaction minimizes Ti attack by fluorine.
In addition to the above, it was found that low temperature CVD tungsten film provides unexpectedly good fluorine barrier properties compared to tungsten films deposited by other processes.
Both PNLW and low temp CVD occurred at 300° C. Then the W films were subjected to a torture test where they were exposed to WF6 at 395° C. If fluorine diffuses through the W film and the TiN it reacts with the underlying Ti to form volatile TiFx compounds and results in typical “volcano” defects as well as local peeling, cracking or bubbling. These defects are visible under an optical microscope. As shown in
A fluorine attack study was performed on wafers patterned with 100 nm opening/10:1 aspect ratio features including PVD Ti/MOCVD TiN barrier layers. A tungsten nucleation layer was deposited in the features, with a thin (12 Å) layer used so as to generate an exaggerated signal. Features were filled with either 395° C. CVD tungsten or 350° C. CVD tungsten. Feature fill was then examined and compared. The low temperature CVD fill provided better plugfill as well as reduced fluorine attack. In addition to showing reduced fluorine attack, the results indicate that reduced temperature provides better step coverage on thin nucleation layers. Without being bound by any particular theory, it is believed that the slower chemistry of the reduced temperature process allows growth on nucleation sites that are not fully formed.
Fill of 32 nm re-entrant features was performed using 300° C. and 395° C. The filled features were compared, and the films were examined for volcano defects. Low temperature CVD resulted in better fill, with fewer or no seams or voids. Voids were observed in the high temperature CVD filled features.
Also provided are improved methods of depositing ultra-low resistivity tungsten films. According to various embodiments, these methods involve depositing a thin PNL nucleation layer, performing a low resistivity treatment on the nucleation layer, and depositing a high temperature CVD layer to fill the feature. In certain embodiments, the low resistivity treatment includes a low temperature CVD process.
It has been found that low resistivity processes that grow low resistivity tungsten for thicknesses larger than 20 nm and above may not grow low resistivity tungsten at thicknesses of 20 nm or less. When the critical dimension of the devices reduces to 40 nm or lower, the thickness of the tungsten layers in the structures is 20 nm or less.
The process used to deposit films represented by 905 involves depositing a PNL nucleation layer in a hydrogen-free ambient at reduced temperature followed by a high temperature low resistivity treatment. The untreated films (data series 907 were deposited by a PNL nucleation layer, with no low resistivity treatment. Nucleation layers of about 20-25 Å were deposited, with the remaining thickness deposited by low-temperature CVD. While the high temperature treatment results in film having lower resistivity for thicknesses greater than 120 Å (12 nm), the opposite is true for thicknesses less than 120 Å. Process parameters for deposition of the films are shown below:
The increase in resistivity for thin films treated via with high temperature process was unexpected. As can be seen from the figure, the low-resistivity treatment according to an embodiment of the inventive processes provides low resistivities even for films less than 120 Å. According to various embodiments, the thin film resistivity treatment involves performing a low temperature resistivity treatment involving exposing a deposited nucleation layer to multiple pulses of reducing agent at a reduced temperature. The multiple pulses of reducing agent may or may not include intervening pulses of a tungsten-containing precursor. Also according to various embodiments, the thin film resistivity treatment involves a partial fill via reduced temperature CVD prior to completing fill via high temperature CVD. While depositing some amount of the bulk CVD material, the reduced temperature CVD operation may be considered as a low-resistivity treatment. In certain embodiments, the processes involve both a low temperature exposure to multiple pulses of reducing agent and a partial fill via reduced temperature CVD, as in the films represented by data series 901 in
While these processes described herein are appropriate for filling features having sub-40 nm critical dimensions, in particular for films having critical dimensions of 32 nm or smaller, they may also be employed for thicker films. As discussed further below, the improved resistivity is also observed for thicker films.
While the nucleation layer may be deposited by any known method, in certain embodiments, improved resistivity is obtained by depositing the nucleation layer at low temperature, then performing a multi-pulse low resistivity treatment. Such methods of depositing the nucleation layer are described in U.S. Pat. No. 7,589,017, incorporated by reference herein and in U.S. Patent Publication 2008/0254623, also incorporated by reference herein.
In certain examples, the nucleation layer is deposited as described in
Substrate temperature is low—below about 350° C., for example between about 250° C. and 350° C. or 250° C. and 325° C. In certain embodiments, the temperature is around 300° C. In certain embodiments, diborane is provided from a diluted source (e.g., 5% diborane and 95% nitrogen). Diborane may be delivered the reaction chamber using other or additional carrier gases such as nitrogen and/or argon. Importantly, no hydrogen is used.
Once the boron-containing layer is deposited to a sufficient thickness, the flow of boron-containing species to the reaction chamber is stopped and the reaction chamber is purged with a carrier gas such as argon, hydrogen, nitrogen or helium. In certain embodiments, only argon is used at the carrier gas. The gas purge clears the regions near the substrate surface of residual gas reactants that could react with fresh gas reactants for the next reaction step.
Continuing to the next operation in
The low temperature boron-containing reducing agent pulse and tungsten precursor pulse operations are repeated to build up the tungsten nucleation layer to the desired thickness (1306). Between about 2-7 PNL cycles are required to deposit the very thin nucleation layer in certain embodiments, although in certain embodiments a single cycle may be sufficient. Depending on the substrate, the first one or two cycles may not result in thickness gain due to nucleation delay. As described previously, the tungsten nucleation layer should be sufficiently thin so as to not unduly increase the overall tungsten film, but sufficiently thick so as to support a high quality bulk tungsten deposition. The process described above is able to deposit a tungsten nucleation layer that can support high quality bulk deposition as low as about 10 Å in the high aspect ratio and/or narrow width feature. The thickness of the deposited nucleation layer is typically between about 10 Å and 50 Å, or for example, between 10 Å and 30 Å.
Temperature is one of the process conditions that affects the amount of tungsten deposited. Others include pressure, flow rate and exposure time. Maintaining temperatures at or below about 350° C. results in less material deposited during a cycle. This in turn provides lower resistivity. In some embodiments, temperatures may be about 300° C. or 200° C.
Referring back to
Some combination of the pulse sequences shown in
Next, the feature is partially filled with a reduced temperature CVD bulk layer (1108). Various tungsten-containing gases including, but not limited to, WF6, WCl6, and W(CO)6 can be used as the tungsten-containing precursor. In certain embodiments, the tungsten-containing precursor is a halogen-containing compound, such as WF6. In certain embodiments, the reducing agent is hydrogen gas, though other reducing agents may be used including silane, disilane, hydrazine, diborane, and germane. In many embodiments, hydrogen gas is used as the reducing agent in the CVD process.
According to various embodiments, the reduced temperature (process and/or substrate temperature) is in one of the following ranges: between about 250-350° C., between about 250° C.-340° C., between about 250° C.-330° C., between about 250° C.-325° C., between about 250° C.-320° C., between about 250° C.-315° C., between about 250° C.-310° C., between about 250° C.-305° C., or between about 250° C.-300° C. Also according to various embodiments, the process temperature is: between about 260-310° C., between about 270° C.-310° C., between about 280° C.-310° C., or between about 290° C.-310° C. In certain embodiments, the process and/or substrate temperature is about 300° C.
Fill is completed via a high temperature CVD deposition (1110). The high temperature may be in one of the following ranges: between about 350-450° C., between about 360° C.-450° C., between about 370° C.-450° C., between about 380° C.-450° C., between about 390° C.-450° C., or between about 400° C.-450° C. In certain embodiments, the high temperature CVD is performed at about 395° C. Raising the temperature may involve raising the substrate temperature. According to various embodiments, the temperature is raised at least about 25° C., 30° C., 50° C., at least about 60° C., at least about 70° C., at least about 80° C., at least about 90° C., at least about 100° C., at least about 110° C., or at least about 125° C. In one process example, a low temperature CVD operation is performed at about 250° C. and a high temperature at 350° C. In certain embodiments, the temperature is raised no more than about 150° C. or even 125° C. to prevent thermal shock and consequent wafer breakage.
In certain embodiments, transitioning from operation 1108 to operation 1110 involves moving the substrate from one deposition station to another in a multi-station chamber. In alternative embodiments in which a single station is used to perform operations, transitioning from operation 1108 to operation 1110 may involve shutting off a flow of tungsten precursor (optionally allowing hydrogen or other reducing gas and/or carrier gas to run), while raising the substrate temperature. Once the substrate temperature is stabilized, the tungsten precursor and other gases, if necessary, are flowed into the reaction chamber for the high temperature deposition. In other embodiments, transitioning from operation 1210 may involve raising the substrate temperature while allowing the deposition to continue during the transition period.
According to various embodiments, reduced temperature CVD may be used to deposit about 0-70% of the total thickness of the bulk CVD fill.
As discussed further below, partially filling the gap with reduced temperature CVD prior to completing gap fill with high temperature CVD improves resistivity. While the reduced temperature CVD operation generally deposits some amount of conformal tungsten in the feature, it may also be thought of as a low resistivity treatment operation. In certain embodiments, the exposure time and/or dose of the reduced temperature operation may be short or small enough such that substantially no tungsten is deposited.
In certain embodiments, the processes described herein involve exposing a deposited tungsten nucleation layer to multiple, sequential pulses of diborane or other boron-containing reducing agent. See, e.g., the above discussion with respect to
As indicated above, partial fill of a feature using reduced temperature CVD improves resistivity.
Between 8 and 15 nm, process C (a low temperature multi-pulse treatment and partial reduced temperature CVD) resulted in the lowest resistivity. Unexpectedly, partial reduced temperature CVD (process C) results in lower resistivity than reduced temperature-only CVD (process D) and high-temperature only CVD (E) for identical nucleation and treatment processes for films of about 7.5 nm and above.
Comparing process A to process E, low temperature low resistivity treatment results in lower resistivity for films less than about 9 nm thick. However, for reduced temperature-only CVD, as discussed above with respect to
In certain embodiments, reduced temperature CVD is preceded by a tungsten-precursor soak operation to lower resistivity.
Apparatus
The methods of the invention may be carried out in various types of deposition apparatus available from various vendors. Examples of suitable apparatus include a Novellus Concept-1 Altus™, a Concept 2 Altus™, a Concept-2 ALTUS-S™, Concept 3 Altus™ deposition system, and Altus Max™ or any of a variety of other commercially available CVD tools. In some cases, the process can be performed on multiple deposition stations sequentially. See, e.g., U.S. Pat. No. 6,143,082, which is incorporated herein by reference for all purposes. In some embodiments, a nucleation layer is deposited, e.g., by a pulsed nucleation process at a first station that is one of two, five or even more deposition stations positioned within a single deposition chamber. Thus, the reducing gases and the tungsten-containing gases are alternately introduced to the surface of the semiconductor substrate, at the first station, using an individual gas supply system that creates a localized atmosphere at the substrate surface.
A second station may then be used to complete nucleation layer deposition or to perform a multi-pulse low resistivity treatment. In certain embodiments, a single pulse low resistivity treatment may be performed.
One or more stations are then used to perform CVD as described above. Two or more stations may be used to perform CVD in a parallel processing. Alternatively a wafer may be indexed to have the CVD operations performed over two or more stations sequentially. For example, in processes involving both low temperature and high temperature CVD operations, a wafer or other substrate is indexed from one CVD station to another for each operation.
Also mounted on the transfer module 2003 may be one or more single or multi-station modules 2007 capable of performing plasma or chemical (non-plasma) pre-cleans. The module may also be used for various other treatments, e.g., post liner tungsten nitride treatments. The system 2000 also includes one or more (in this case two) wafer source modules 2001 where wafers are stored before and after processing. An atmospheric robot (not shown) in the atmospheric transfer chamber 2019 first removes wafers from the source modules 2001 to loadlocks 2021. A wafer transfer device (generally a robot arm unit) in the transfer module 2003 moves the wafers from loadlocks 2021 to and among the modules mounted on the transfer module 2003.
In certain embodiments, a system controller 2029 is employed to control process conditions during deposition. The controller will typically include one or more memory devices and one or more processors. The processor may include a CPU or computer, analog and/or digital input/output connections, stepper motor controller boards, etc.
The controller may control all of the activities of the deposition apparatus. The system controller executes system control software including sets of instructions for controlling the timing, mixture of gases, chamber pressure, chamber temperature, wafer temperature, RF power levels, wafer chuck or pedestal position, and other parameters of a particular process. Other computer programs stored on memory devices associated with the controller may be employed in some embodiments.
Typically there will be a user interface associated with the controller. The user interface may include a display screen, graphical software displays of the apparatus and/or process conditions, and user input devices such as pointing devices, keyboards, touch screens, microphones, etc.
The computer program code for controlling the deposition and other processes in a process sequence can be written in any conventional computer readable programming language: for example, assembly language, C, C++, Pascal, Fortran or others. Compiled object code or script is executed by the processor to perform the tasks identified in the program.
The controller parameters relate to process conditions such as, for example, process gas composition and flow rates, temperature, pressure, plasma conditions such as RF power levels and the low frequency RF frequency, cooling gas pressure, and chamber wall temperature. These parameters are provided to the user in the form of a recipe, and may be entered utilizing the user interface.
Signals for monitoring the process may be provided by analog and/or digital input connections of the system controller. The signals for controlling the process are output on the analog and digital output connections of the deposition apparatus.
The system software may be designed or configured in many different ways. For example, various chamber component subroutines or control objects may be written to control operation of the chamber components necessary to carry out the inventive deposition processes. Examples of programs or sections of programs for this purpose include substrate positioning code, process gas control code, pressure control code, heater control code, and plasma control code.
A substrate positioning program may include program code for controlling chamber components that are used to load the substrate onto a pedestal or chuck and to control the spacing between the substrate and other parts of the chamber such as a gas inlet and/or target. A process gas control program may include code for controlling gas composition and flow rates and optionally for flowing gas into the chamber prior to deposition in order to stabilize the pressure in the chamber. A pressure control program may include code for controlling the pressure in the chamber by regulating, e.g., a throttle valve in the exhaust system of the chamber. A heater control program may include code for controlling the current to a heating unit that is used to heat the substrate. Alternatively, the heater control program may control delivery of a heat transfer gas such as helium to the wafer chuck.
Examples of chamber sensors that may be monitored during deposition include mass flow controllers, pressure sensors such as manometers, and thermocouples located in pedestal or chuck. Appropriately programmed feedback and control algorithms may be used with data from these sensors to maintain desired process conditions. The foregoing describes implementation of embodiments of the invention in a single or multi-chamber semiconductor processing tool.
Applications
The present invention may be used to deposit thin, low resistivity tungsten layers for many different applications. One application is vias, contacts and other tungsten structures commonly found in electronic devices. Another application are interconnects in integrated circuits such as memory chips and microprocessors. Interconnects are current lines found on a single metallization layer and are generally long thin flat structures. A primary example of an interconnect application is a bit line in a memory chip. In general, the invention finds application in any environment where thin, low-resistivity tungsten layers are required.
While this invention has been described in terms of several embodiments, there are alterations, modifications, permutations, and substitute equivalents, which fall within the scope of this invention. For example, while the above description is chiefly in the context of feature fill, the methods described above may also be used to deposit low resistivity tungsten films on blanket surfaces. These may be formed by a blanket deposition of a tungsten layer (by a process as described above), followed by a patterning operation that defines the location of current carrying tungsten lines and removal of the tungsten from regions outside the tungsten lines.
It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, modifications, permutations, and substitute equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation of U.S. application Ser. No. 14/097,160, filed Dec. 4, 2013, titled “LOW TEMPERATURE TUNGSTEN FILM DEPOSITION FOR SMALL CRITICAL DIMENSION CONTACTS AND INTERCONNECTS,” which is a continuation of U.S. application Ser. No. 12/755,259 (now U.S. Pat. No. 8,623,733), filed Apr. 6, 2010, titled “METHODS FOR DEPOSITING ULTRA THIN LOW RESISTIVITY TUNGSTEN FILM FOR SMALL CRITICAL DIMENSION CONTACTS AND INTERCONNECTS,” which claims the benefit under U.S.C. 119(e) to U.S. provisional application 61/169,954, filed Apr. 16, 2009, titled “METHOD FOR FORMING TUNGSTEN CONTACTS AND INTERCONNECTS WITH SMALL CRITICAL DIMENSIONS,” all of which are incorporated herein in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4746375 | Iacovangelo | May 1988 | A |
4804560 | Shioya et al. | Feb 1989 | A |
4874719 | Kurosawa | Oct 1989 | A |
4962063 | Maydan et al. | Oct 1990 | A |
5028565 | Chang | Jul 1991 | A |
5227329 | Kobayashi et al. | Jul 1993 | A |
5250329 | Miracky et al. | Oct 1993 | A |
5250467 | Somekh et al. | Oct 1993 | A |
5308655 | Eichman et al. | May 1994 | A |
5326723 | Petro | Jul 1994 | A |
5370739 | Foster et al. | Dec 1994 | A |
5391394 | Hansen | Feb 1995 | A |
5567583 | Wang et al. | Oct 1996 | A |
5633200 | Hu | May 1997 | A |
5661080 | Hwang | Aug 1997 | A |
5726096 | Jung | Mar 1998 | A |
5795824 | Hancock | Aug 1998 | A |
5804249 | Sukharev et al. | Sep 1998 | A |
5817576 | Tseng et al. | Oct 1998 | A |
5833817 | Tsai et al. | Nov 1998 | A |
5913145 | Lu et al. | Jun 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5916634 | Fleming et al. | Jun 1999 | A |
5926720 | Zhao et al. | Jul 1999 | A |
5956609 | Lee | Sep 1999 | A |
5963833 | Thakur | Oct 1999 | A |
5994749 | Oda | Nov 1999 | A |
6001729 | Shinriki et al. | Dec 1999 | A |
6017818 | Lu | Jan 2000 | A |
6034419 | Nicholls et al. | Mar 2000 | A |
6037263 | Chang | Mar 2000 | A |
6066366 | Berenbaum | May 2000 | A |
6099904 | Mak | Aug 2000 | A |
6107200 | Takagi | Aug 2000 | A |
6143082 | McInerney et al. | Nov 2000 | A |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6206967 | Mak et al. | Mar 2001 | B1 |
6245654 | Shih et al. | Jun 2001 | B1 |
6265312 | Sidhwa et al. | Jul 2001 | B1 |
6277744 | Yuan et al. | Aug 2001 | B1 |
6284316 | Sandhu et al. | Sep 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6294468 | Gould-Choquette | Sep 2001 | B1 |
6297152 | Itoh et al. | Oct 2001 | B1 |
6306211 | Takahashi et al. | Oct 2001 | B1 |
6309966 | Govindarajan et al. | Oct 2001 | B1 |
6310300 | Cooney et al. | Oct 2001 | B1 |
6340629 | Yeo et al. | Jan 2002 | B1 |
6355558 | Dixit et al. | Mar 2002 | B1 |
6404054 | Oh et al. | Jun 2002 | B1 |
6429126 | Herner | Aug 2002 | B1 |
6465347 | Ishizuka et al. | Oct 2002 | B2 |
6491978 | Kalyanam | Dec 2002 | B1 |
6551929 | Kori et al. | Apr 2003 | B1 |
6566250 | Tu et al. | May 2003 | B1 |
6566262 | Rissman et al. | May 2003 | B1 |
6581258 | Yoneda et al. | Jun 2003 | B2 |
6593233 | Miyazaki et al. | Jul 2003 | B1 |
6607976 | Chen et al. | Aug 2003 | B2 |
6635965 | Lee et al. | Oct 2003 | B1 |
6706625 | Sudijono et al. | Mar 2004 | B1 |
6720261 | Anderson et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6777331 | Nguyen | Aug 2004 | B2 |
6797340 | Fang et al. | Sep 2004 | B2 |
6844258 | Fair et al. | Jan 2005 | B1 |
6861356 | Matsuse | Mar 2005 | B2 |
6902763 | Elers et al. | Jun 2005 | B1 |
6903016 | Cohen | Jun 2005 | B2 |
6905543 | Fair et al. | Jun 2005 | B1 |
6908848 | Koo | Jun 2005 | B2 |
6936538 | Byun | Aug 2005 | B2 |
6939804 | Lai | Sep 2005 | B2 |
6962873 | Park | Nov 2005 | B1 |
7005372 | Levy | Feb 2006 | B2 |
7141494 | Lee et al. | Nov 2006 | B2 |
7157798 | Fair et al. | Jan 2007 | B1 |
7211144 | Lu et al. | May 2007 | B2 |
7220671 | Simka et al. | May 2007 | B2 |
7235486 | Kori | Jun 2007 | B2 |
7262125 | Wongsenakhum et al. | Aug 2007 | B2 |
7355254 | Datta et al. | Apr 2008 | B2 |
7416979 | Yoon et al. | Aug 2008 | B2 |
7419904 | Kato | Sep 2008 | B2 |
7429402 | Gandikota et al. | Sep 2008 | B2 |
7465665 | Xi | Dec 2008 | B2 |
7465666 | Kori | Dec 2008 | B2 |
7501343 | Byun | Mar 2009 | B2 |
7501344 | Byun | Mar 2009 | B2 |
7563718 | Kim | Jul 2009 | B2 |
7589017 | Chan | Sep 2009 | B2 |
7595263 | Chung et al. | Sep 2009 | B2 |
7605083 | Lai | Oct 2009 | B2 |
7611990 | Yoon | Nov 2009 | B2 |
7655567 | Gao | Feb 2010 | B1 |
7674715 | Kori | Mar 2010 | B2 |
7675119 | Taguwa | Mar 2010 | B2 |
7691749 | Levy et al. | Apr 2010 | B2 |
7695563 | Lu | Apr 2010 | B2 |
7709385 | Xi | May 2010 | B2 |
7732327 | Lee | Jun 2010 | B2 |
7745329 | Wang | Jun 2010 | B2 |
7745333 | Lai | Jun 2010 | B2 |
7749815 | Byun | Jul 2010 | B2 |
7754604 | Wongsenakhum | Jul 2010 | B2 |
7772114 | Chan | Aug 2010 | B2 |
7955972 | Chan et al. | Jun 2011 | B2 |
7964505 | Khandelwal et al. | Jun 2011 | B2 |
7977243 | Sakamoto et al. | Jul 2011 | B2 |
8048805 | Chan et al. | Nov 2011 | B2 |
8053365 | Humayun et al. | Nov 2011 | B2 |
8058170 | Chandrashekar et al. | Nov 2011 | B2 |
8062977 | Ashtiani et al. | Nov 2011 | B1 |
8071478 | Wu et al. | Dec 2011 | B2 |
8087966 | Hebbinghaus et al. | Jan 2012 | B2 |
8101521 | Gao et al. | Jan 2012 | B1 |
8110877 | Mukherjee et al. | Feb 2012 | B2 |
8207062 | Gao et al. | Jun 2012 | B2 |
8258057 | Kuhn et al. | Sep 2012 | B2 |
8329576 | Chan et al. | Dec 2012 | B2 |
8367546 | Humayun et al. | Feb 2013 | B2 |
8409985 | Chan et al. | Apr 2013 | B2 |
8409987 | Chandrashekar et al. | Apr 2013 | B2 |
8551885 | Chen et al. | Oct 2013 | B2 |
8623733 | Chen et al. | Jan 2014 | B2 |
8709948 | Danek et al. | Apr 2014 | B2 |
8853080 | Guan et al. | Oct 2014 | B2 |
8975184 | Chen et al. | Mar 2015 | B2 |
8993055 | Rahtu et al. | Mar 2015 | B2 |
9034760 | Chen et al. | May 2015 | B2 |
9076843 | Lee et al. | Jul 2015 | B2 |
9153486 | Arghavani et al. | Oct 2015 | B2 |
9159571 | Humayun et al. | Oct 2015 | B2 |
9236297 | Chen et al. | Jan 2016 | B2 |
9240347 | Chandrashekar et al. | Jan 2016 | B2 |
20010007797 | Jang et al. | Jul 2001 | A1 |
20010008808 | Gonzalez | Jul 2001 | A1 |
20010014533 | Sun | Aug 2001 | A1 |
20010015494 | Ahn | Aug 2001 | A1 |
20010044041 | Badding et al. | Nov 2001 | A1 |
20020037630 | Agarwal | Mar 2002 | A1 |
20020090796 | Desai et al. | Jul 2002 | A1 |
20020090811 | Kim et al. | Jul 2002 | A1 |
20020117399 | Chen | Aug 2002 | A1 |
20020132472 | Park | Sep 2002 | A1 |
20020155722 | Satta | Oct 2002 | A1 |
20020168840 | Hong et al. | Nov 2002 | A1 |
20020177316 | Miller et al. | Nov 2002 | A1 |
20020190379 | Jian et al. | Dec 2002 | A1 |
20030013300 | Byun | Jan 2003 | A1 |
20030059980 | Chen | Mar 2003 | A1 |
20030082902 | Fukui et al. | May 2003 | A1 |
20030091870 | Bhowmik et al. | May 2003 | A1 |
20030104126 | Fang et al. | Jun 2003 | A1 |
20030123216 | Yoon et al. | Jul 2003 | A1 |
20030127043 | Lu et al. | Jul 2003 | A1 |
20030129828 | Cohen | Jul 2003 | A1 |
20030190802 | Wang et al. | Oct 2003 | A1 |
20030194850 | Lewis et al. | Oct 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20040014315 | Lai et al. | Jan 2004 | A1 |
20040044127 | Okubo et al. | Mar 2004 | A1 |
20040142557 | Levy | Jul 2004 | A1 |
20040151845 | Nguyen et al. | Aug 2004 | A1 |
20040202786 | Wongsenakhum | Oct 2004 | A1 |
20040206267 | Sambasivan et al. | Oct 2004 | A1 |
20040247788 | Fang et al. | Dec 2004 | A1 |
20050031786 | Lee | Feb 2005 | A1 |
20050059236 | Nishida et al. | Mar 2005 | A1 |
20050136594 | Kim | Jun 2005 | A1 |
20050179141 | Yun et al. | Aug 2005 | A1 |
20050191803 | Matsuse et al. | Sep 2005 | A1 |
20060003581 | Johnston et al. | Jan 2006 | A1 |
20060075966 | Chen et al. | Apr 2006 | A1 |
20060094238 | Levy et al. | May 2006 | A1 |
20060145190 | Salzman et al. | Jul 2006 | A1 |
20060211244 | Deshpande et al. | Sep 2006 | A1 |
20060284317 | Ito et al. | Dec 2006 | A1 |
20070087560 | Kwak et al. | Apr 2007 | A1 |
20070099420 | Dominquez et al. | May 2007 | A1 |
20070190780 | Chung et al. | Aug 2007 | A1 |
20080045010 | Wongsenakhum et al. | Feb 2008 | A1 |
20080081127 | Thompson et al. | Apr 2008 | A1 |
20080081452 | Kim et al. | Apr 2008 | A1 |
20080081453 | Kim et al. | Apr 2008 | A1 |
20080124926 | Chan et al. | May 2008 | A1 |
20080254619 | Lin et al. | Oct 2008 | A1 |
20080254623 | Chan | Oct 2008 | A1 |
20080280438 | Lai et al. | Nov 2008 | A1 |
20080283844 | Hoshi et al. | Nov 2008 | A1 |
20090045517 | Sugiura et al. | Feb 2009 | A1 |
20090050937 | Murata et al. | Feb 2009 | A1 |
20090053893 | Khandelwal et al. | Feb 2009 | A1 |
20090142509 | Yamamoto | Jun 2009 | A1 |
20090149022 | Chan et al. | Jun 2009 | A1 |
20090160030 | Tuttle | Jun 2009 | A1 |
20090163025 | Humayun et al. | Jun 2009 | A1 |
20090315154 | Kirby et al. | Dec 2009 | A1 |
20100035427 | Chan et al. | Feb 2010 | A1 |
20100055904 | Chen | Mar 2010 | A1 |
20100062149 | Ma et al. | Mar 2010 | A1 |
20100072623 | Prindle et al. | Mar 2010 | A1 |
20100130002 | Dao et al. | May 2010 | A1 |
20100130003 | Lin et al. | May 2010 | A1 |
20100155846 | Mukherjee et al. | Jun 2010 | A1 |
20100159694 | Chandrashekar | Jun 2010 | A1 |
20100244141 | Beyer et al. | Sep 2010 | A1 |
20100244260 | Hinomura | Sep 2010 | A1 |
20100267230 | Chandrashekar et al. | Oct 2010 | A1 |
20100267235 | Chen et al. | Oct 2010 | A1 |
20100273327 | Chan et al. | Oct 2010 | A1 |
20100330800 | Ivanov et al. | Dec 2010 | A1 |
20110059608 | Gao et al. | Mar 2011 | A1 |
20110151670 | Lee et al. | Jun 2011 | A1 |
20110156154 | Hoentschel et al. | Jun 2011 | A1 |
20110221044 | Danek et al. | Sep 2011 | A1 |
20110223763 | Chan et al. | Sep 2011 | A1 |
20110233778 | Lee et al. | Sep 2011 | A1 |
20110236594 | Haverkamp et al. | Sep 2011 | A1 |
20120009785 | Chandrashekar et al. | Jan 2012 | A1 |
20120015518 | Chandrashekar et al. | Jan 2012 | A1 |
20120040530 | Humayun et al. | Feb 2012 | A1 |
20120077342 | Gao et al. | Mar 2012 | A1 |
20120199887 | Chan et al. | Aug 2012 | A1 |
20120225192 | Yudovsky et al. | Sep 2012 | A1 |
20120231626 | Lee et al. | Sep 2012 | A1 |
20120244699 | Khandelwal et al. | Sep 2012 | A1 |
20120294874 | Macary et al. | Nov 2012 | A1 |
20130043554 | Piper | Feb 2013 | A1 |
20130062677 | Li et al. | Mar 2013 | A1 |
20130109172 | Collins et al. | May 2013 | A1 |
20130168864 | Lee et al. | Jul 2013 | A1 |
20130171822 | Chandrashekar et al. | Jul 2013 | A1 |
20130285195 | Piper | Oct 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20140011358 | Chen et al. | Jan 2014 | A1 |
20140027664 | Lee et al. | Jan 2014 | A1 |
20140030889 | Chen et al. | Jan 2014 | A1 |
20140061784 | Kang | Mar 2014 | A1 |
20140061931 | Kang | Mar 2014 | A1 |
20140073135 | Guan et al. | Mar 2014 | A1 |
20140154883 | Humayun et al. | Jun 2014 | A1 |
20140162451 | Chen et al. | Jun 2014 | A1 |
20140308812 | Arghavani et al. | Oct 2014 | A1 |
20140319614 | Paul et al. | Oct 2014 | A1 |
20150037972 | Danek et al. | Feb 2015 | A1 |
20150056803 | Chandrashekar et al. | Feb 2015 | A1 |
20150179461 | Bamnolker et al. | Jun 2015 | A1 |
20150279732 | Lee et al. | Oct 2015 | A1 |
20160118345 | Chen et al. | Apr 2016 | A1 |
20160190008 | Chandrashekar et al. | Jun 2016 | A1 |
20160233220 | Danek et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
101899649 | Dec 2010 | CN |
103125013 | May 2013 | CN |
0 437 110 | Jul 1991 | EP |
1 156 132 | Nov 2001 | EP |
1 179 838 | Feb 2002 | EP |
S5629648 | Mar 1981 | JP |
08-115984 | May 1996 | JP |
09-027596 | Jan 1997 | JP |
H10-144688 | May 1998 | JP |
H10-163132 | Jun 1998 | JP |
11-330006 | Nov 1999 | JP |
2000-208516 | Jul 2000 | JP |
2000-235962 | Aug 2000 | JP |
2001-525889 | Dec 2001 | JP |
2002-124488 | Apr 2002 | JP |
2003-193233 | Jul 2003 | JP |
2004-235456 | Aug 2004 | JP |
2004-273764 | Sep 2004 | JP |
2005-029821 | Feb 2005 | JP |
2005-518088 | Jun 2005 | JP |
2007-009298 | Jan 2007 | JP |
2007-027627 | Feb 2007 | JP |
2007-027680 | Feb 2007 | JP |
2007-507892 | Mar 2007 | JP |
2007-520052 | Jul 2007 | JP |
2007-250907 | Sep 2007 | JP |
2007-251164 | Sep 2007 | JP |
2008-016803 | Jan 2008 | JP |
2008-060603 | Mar 2008 | JP |
2008-091844 | Apr 2008 | JP |
2008-283220 | Nov 2008 | JP |
2009-024252 | Feb 2009 | JP |
2009-144242 | Jul 2009 | JP |
2009-533877 | Sep 2009 | JP |
2009-540123 | Nov 2009 | JP |
10-2002-0049730 | Jun 2002 | KR |
10-2005-0022261 | Mar 2005 | KR |
10-2005-0087428 | Aug 2005 | KR |
10-2006-0087844 | Aug 2006 | KR |
10-2007-705936 | Apr 2007 | KR |
10-2008-0036679 | Apr 2008 | KR |
10-2008-0110897 | Dec 2008 | KR |
10-2009-0103815 | Oct 2009 | KR |
WO 9851838 | Nov 1998 | WO |
WO 0127347 | Apr 2001 | WO |
WO 0129893 | Apr 2001 | WO |
WO 0241379 | May 2002 | WO |
WO 03029515 | Apr 2003 | WO |
WO 2005027211 | Mar 2005 | WO |
WO 2005034223 | Apr 2005 | WO |
WO 2007121249 | Oct 2007 | WO |
WO 2007146537 | Dec 2007 | WO |
WO 2010025357 | Mar 2010 | WO |
WO 2011119293 | Sep 2011 | WO |
WO 2013148444 | Oct 2013 | WO |
WO 2013148880 | Oct 2013 | WO |
WO 2014058536 | Apr 2014 | WO |
Entry |
---|
U.S. Appl. No. 14/723,270, filed May 27, 2015, entitled “Deposition of Low Fluorine Tungsten by Sequential CVD Process”. |
U.S. Appl. No. 13/758,928, filed Feb. 4, 2013, entitled “Methods for Forming All Tungsten Contacts and Lines.” |
US Office Action, dated Apr. 7, 2014, issued in U.S. Appl. No. 13/633,502. |
US Final Office Action, dated Nov. 5, 2014, issued in U.S. Appl. No. 13/633,502. |
US Notice of Allowance, dated Mar. 2, 2015, issued in U.S. Appl. No. 13/633,502. |
US Notice of Allowance (Supplemental Notice of Allowability), dated Apr. 16, 2015, issued in U.S. Appl. No. 13/633,502. |
US Office Action, dated May 30, 2014, issued in U.S. Appl. No. 13/862,048. |
US Final Office Action, dated Oct. 16, 2014, issued in U.S. Appl. No. 13/862,048. |
US Notice of Allowance, dated Apr. 28, 2015, issued in U.S. Appl. No. 13/862,048. |
US Notice of Allowance, dated Jun. 17, 2015, issued in U.S. Appl. No. 13/862,048. |
US Office Action, dated May 6, 2015, issued in U.S. Appl. No. 14/135,375. |
US Final Office Action, dated Sep. 29, 2015, issued in U.S. Appl. No. 14/135,375. |
US Office Action, dated Dec. 11, 2014, issued in U.S. Appl. No. 14/173,733. |
US Notice of Allowance, dated Jun. 2, 2015, issued in U.S. Appl. No. 14/173,733. |
US Office Action, dated Jul. 17, 2002, issued in U.S. Appl. No. 09/975,074. |
US Notice of Allowance, dated Mar. 12, 2003, issued in U.S. Appl. No. 09/975,074. |
US Office Action, dated Feb. 8, 2005, issued in U.S. Appl. No. 10/649,351. |
US Final Office Action, dated Jul. 14, 2005, issued in U.S. Appl. No. 10/649,351. |
US Office Action, dated Dec. 30, 2005, issued in U.S. Appl. No. 10/649,351. |
US Notice of Allowance, dated Jul. 21, 2006, issued in U.S. Appl. No. 10/649,351. |
US Office Action, dated Jun. 22, 2004, issued in U.S. Appl. No. 10/435,010. |
US Notice of Allowance, dated Oct. 7, 2004, issued in U.S. Appl. No. 10/435,010. |
US Notice of Allowance, dated Jan. 19, 2005, issued in U.S. Appl. No. 10/435,010. |
US Office Action, dated Nov. 23, 2005, issued in U.S. Appl. No. 10/984,126. |
US Final Office Action, dated May 17, 2006, issued in U.S. Appl. No. 10/984,126. |
US Notice of Allowance, dated Aug. 25, 2006, issued in U.S. Appl. No. 10/984,126. |
US Office Action, dated Mar. 23, 2005, issued in U.S. Appl. No. 10/690,492. |
US Notice of Allowance, dated Sep. 14, 2005, issued in U.S. Appl. No. 10/690,492. |
US Office Action, dated Jun. 27, 2008, issued in U.S. Appl. No. 11/305,368. |
US Office Action, dated Apr. 3, 2009, issued in U.S. Appl. No. 11/305,368. |
US Notice of Allowance, dated Nov. 17, 2009, issued in U.S. Appl. No. 11/305,368. |
US Office Action, dated Jul. 12, 2005, issued in U.S. Appl. No. 10/815,560. |
US Final Office Action, dated Dec. 28, 2005, issued in U.S. Appl. No. 10/815,560. |
US Office Action, dated Apr. 17, 2006, issued in U.S. Appl. No. 10/815,560. |
US Office Action, dated Sep. 28, 2006, issued in U.S. Appl. No. 10/815,560. |
US Notice of Allowance dated Apr. 24, 2007, issued in U.S. Appl. No. 10/815,560. |
US Office Action, dated Aug. 21, 2008, issued in U.S. Appl. No. 11/265,531. |
US Final Office Action, dated Feb. 26, 2009, issued in U.S. Appl. No. 11/265,531. |
US Notice of Allowance, dated May 4, 2009, issued in U.S. Appl. No. 11/265,531. |
US Office Action, dated Nov. 23, 2010, issued in U.S. Appl. No. 12/538,770. |
US Notice of Allowance, dated Jun. 30, 2011, issued in U.S. Appl. No. 12/538,770. |
US Office Action, dated Oct. 16, 2008, issued in U.S. Appl. No. 11/349,035. |
US Final Office Action, dated Feb. 25, 2009, issued in U.S. Appl. No. 11/349,035. |
US Office Action, dated Jun. 4, 2009, issued in U.S. Appl. No. 11/349,035. |
US Final Office Action, dated Nov. 20, 2009, issued in U.S. Appl. No. 11/349,035. |
US Notice of Allowance, dated Mar. 2, 2010, issued in U.S. Appl. No. 11/349,035. |
US Office Action, dated Sep. 29, 2008, issued in U.S. Appl. No. 11/782,570. |
US Final Office Action, dated Apr. 28, 2009, issued in U.S. Appl. No. 11/782,570. |
US Notice of Allowance, dated Sep. 17, 2009, issued in U.S. Appl. No. 11/782,570. |
US Office Action, dated Jan. 25, 2011, issued in U.S. Appl. No. 12/636,616. |
US Final Office Action, dated Jun. 15, 2011, issued in U.S. Appl. No. 12/636,616. |
US Notice of Allowance, dated Sep. 30, 2011, issued in U.S. Appl. No. 12/636,616. |
US Office Action, dated Jun. 24, 2009, issued in U.S. Appl. No. 12/030,645. |
US Final Office Action, dated Jan. 13, 2010, issued in U.S. Appl. No. 12/030,645. |
US Final Office Action, dated Jul. 23, 2010, issued in U.S. Appl. No. 12/030,645. |
US Notice of Allowance and Fee Due, dated Jan. 24, 2011, issued in U.S. Appl. No. 12/030,645. |
US Office Action, dated Aug. 6, 2012, issued in U.S. Appl. No. 13/095,734. |
Notice of Allowance dated Dec. 3, 2012, issued in U.S. Appl. No. 13/095,734. |
US Office Action, dated Aug. 5, 2009, issued in U.S. Appl. No. 11/951,236. |
US Final Office Action, dated Jan. 26, 2010 from U.S. Appl. No. 11/951,236. |
US Notice of Allowance, dated Apr. 6, 2010, issued in U.S. Appl. No. 11/951,236. |
US Office Action, dated Jun. 30, 2011, issued in U.S. Appl. No. 12/829,119. |
US Final Office Action, dated Nov. 17, 2011, issued in U.S. Appl. No. 12/829,119. |
US Office Action, dated Apr. 19, 2012, issued in U.S. Appl. No. 12/829,119. |
US Notice of Allowance, dated Aug. 7, 2012, issued in U.S. Appl. No. 12/829,119. |
US Office Action, dated Jun. 11, 2009, issued in U.S. Appl. No. 11/963,698. |
US Final Office Action, dated Dec. 9, 2009, issued in U.S. Appl. No. 11/963,698. |
US Office Action, dated Jun. 11, 2010, issued in U.S. Appl. No. 11/963,698. |
US Final Office Action, dated Dec. 30, 2010, issued in U.S. Appl. No. 11/963,698. |
US Notice of Allowance, dated Sep. 2, 2011, issued in U.S. Appl. No. 11/963,698. |
US Office Action, dated Apr. 16, 2012, issued in U.S. Appl. No. 13/276,170. |
US Notice of Allowance, dated Oct. 4, 2012, issued in U.S. Appl. No. 13/276,170. |
US Notice of Allowance, dated Jul. 25, 2011, issued in U.S. Appl. No. 12/363,330. |
US Office Action dated Oct. 21, 2009, issued in U.S. Appl. No. 12/202,126 |
US Final Office Action, dated May 7, 2010, issued in U.S. Appl. No. 12/202,126. |
US Office Action, dated Jul. 26, 2010 issued in U.S. Appl. No. 12/202,126. |
US Final Office Action, dated Feb. 7, 2011, issued in U.S. Appl. No. 12/202,126. |
US Office Action, dated Jan. 7, 2013, issued in U.S. Appl. No. 12/202,126 |
US Notice of Allowance, dated Jun. 7, 2013, issued in U.S. Appl. No. 12/202,126. |
US Office Action, dated May 3, 2010, issued in U.S. Appl. No. 12/407,541. |
US Final Office Action, dated Oct. 19, 2010, issued in U.S. Appl. No. 12/407,541. |
US Office Action, dated May 2, 2011, issued in U.S. Appl. No. 12/407,541. |
US Notice of Allowance, dated Sep. 19, 2011, issued in U.S. Appl. No. 12/407,541. |
US Office Action, dated Mar. 6, 2012, issued in U.S. Appl. No. 13/244,016. |
US Notice of Allowance dated Nov. 29, 2012, issued in U.S. Appl. No. 13/244,016. |
US Office Action, dated Jun. 14, 2011, issued in U.S. Appl. No. 12/556,490. |
US Notice of Allowance, dated Mar. 2, 2012, issued in U.S. Appl. No. 12/556,490. |
US Office Action, dated May 13, 2011, issued in U.S. Appl. No. 12/755,248. |
US Office Action, dated Oct. 28, 2011, issued in U.S. Appl. No. 12/755,248. |
US Final Office Action, dated Apr. 30, 2012, issued in U.S. Appl. No. 12/755,248. |
US Office Action, dated Feb. 15, 2013, issued in U.S. Appl. No. 12/755,248. |
US Office Action dated Dec. 18, 2012, issued in U.S. Appl. No. 12/723,532. |
US Office Action dated Jul. 18, 2013, issued in U.S. Appl. No. 12/723,532. |
US Notice of Allowance dated Dec. 24, 2013, issued in U.S. Appl. No. 12/723,532. |
US Office Action, dated Feb. 16, 2012, issued in U.S. Appl. No. 12/755,259. |
US Final Office Action, dated Sep. 12, 2012, issued in U.S. Appl. No. 12/755,259. |
US Notice of Allowance, dated Jul. 10, 2013, issued in U.S. Appl. No. 12/755,259. |
US Notice of Allowance dated Sep. 4, 2013 issued in U.S. Appl. No. 12/755,259. |
US Office Action, dated Dec. 18, 2014, issued in U.S. Appl. No. 14/097,160. |
US Final Office Action, dated Jun. 2, 2015, issued in U.S. Appl. No. 14/097,160. |
US Notice of Allowance, dated Sep. 9, 2015, issued in U.S. Appl. No. 14/097,160. |
US Office Action, dated May 10, 2012, issued in U.S. Appl. No. 13/020,748. |
US Final Office Action, dated Nov. 16, 2012, issued in U.S. Appl. No. 13/020,748. |
US Office Action, dated Feb. 24, 2014, issued in U.S. Appl. No. 13/020,748. |
US Final Office Action, dated Jul. 2, 2014, issued in U.S. Appl. No. 13/020,748. |
US Office Action, dated Jan. 15, 2015, issued in U.S. Appl. No. 13/774,350. |
US Office Action, dated Oct. 8, 2015, issued in U.S. Appl. No. 13/774,350. |
US Office Action, dated Dec. 23, 2014, issued in U.S. Appl. No. 13/851,885. |
US Office Action, dated Dec. 18, 2014, issued in U.S. Appl. No. 14/502,817. |
US Final Office Action, dated Jul. 17, 2015, issued in U.S. Appl. No. 14/502,817. |
US Notice of Allowance, dated Sep. 25, 2015, issued in U.S. Appl. No. 14/502,817. |
US Office Action, dated Sep. 18, 2014, issued in U.S. Appl. No. 13/928,216. |
US Notice of Allowance, dated Jan. 22, 2015, issued in U.S. Appl. No. 13/928,216. |
US Office Action, dated Jun. 20, 2013, issued in U.S. Appl. No. 13/560,688. |
US Final Office Action, dated Feb. 14, 2014, issued in U.S. Appl. No. 13/560,688. |
US Notice of Allowance, dated Nov. 4, 2014, issued in U.S. Appl. No. 13/560,688. |
US Office Action, dated May 29, 2015, issued in U.S. Appl. No. 13/949,092. |
US Office Action, dated Jun. 14, 2013, issued in U.S. Appl. No. 13/633,798. |
US Final Office Action, dated Nov. 26, 2013, issued in U.S. Appl. No. 13/633,798. |
US Notice of Allowance, dated May 23, 2014, issued in U.S. Appl. No. 13/633,798. |
PCT Search Report and Written Opinion, dated Jan. 19, 2005, issued in PCT/US2004/006940. |
Korean First Notification of Provisional Rejection, dated Dec. 8, 2010, issued in Application No. 2004-0036346. |
Korean Office Action, dated Jun. 13, 2011, issued in Application No. 2011-0032098. |
Korean Office Action, dated Nov. 24, 2010, issued in Application No. KR 10-2004-0013210. |
Korean Office Action, dated Mar. 28, 2013, issued in Application No. KR 10-2007-0012027. |
Japanese Office Action dated May 7, 2013, issued in Application No. JP 2008-310322. |
Japanese Office Action dated Sep. 3, 2013, issued in Application No. JP 2008-325333. |
PCT International Search Report and Written Opinion, dated Apr. 12, 2010, issued in PCT/US2009/055349. |
PCT International Preliminary Report on Patentability and Written Opinion, dated Mar. 10, 2011, issued in PCT/US2009/055349. |
Chinese First Office Action dated Sep. 18, 2012 issued in Application No. 200980133560.1. |
Chinese Second Office Action dated Aug. 7, 2013 issued in Application No. 200980133560.1. |
Chinese Third Office Action dated Apr. 22, 2014 issued in Application No. 200980133560.1. |
Chinese Fourth Office Action dated Jan. 5, 2015 issued in Application No. 200980133560.1. |
Chinese Fifth Office Action dated May 5, 2015 issued in Application No. 200980133560.1. |
Japanese Office Action dated Dec. 3, 2013 issued in Application No. 2011-525228. |
Korean Office Action dated Sep. 6, 2012 issued in Application No. 2011-7004322. |
Korean Office Action dated Jul. 19, 2013 issued in Application No. 2011-7004322. |
Korean Office Action dated Nov. 4, 2013 issued in Application No. 10-2013-7027117. |
Korean Office Action dated Jun. 17, 2014 issued in Application No. 10-2013-7027117. |
Japanese Office Action dated Jun. 17, 2014 issued in Application No. JP 2010-055163. |
Korean Office Action dated Mar. 21, 2013 issued in KR Application No. 10-2010-0024905. |
Taiwan Office Action dated Jun. 8, 2015 issued in TW 099107504. |
Korean Notification of Provisional Rejection dated Jul. 17, 2012, issued in Application No. 2010-0087997. |
Taiwan Office Action and Search Report dated Feb. 12, 2015 issued in TW 099130354. |
Japanese Office Action dated Mar. 4, 2014 issued in JP 2010-093522. |
Korean Office Action dated Mar. 4, 2013 in KR Application No. 2010-0035449. |
Taiwan Office Action dated Dec. 27, 2014 issued in TW 099111860. |
Japanese Office Action dated Jul. 29, 2014 issued in JP 2010-093544. |
Korean Second Office Action dated Jan. 25, 2014 in KR Application No. 10-2010-0035453. |
Korean First Office Action dated Jul. 10, 2015 issued in KR Application No. 10-2014-0090283. |
Taiwan Office Action dated Aug. 4, 2015 issued in TW Application No. 099111859. |
PCT International Search Report and Written Opinion, dated Jun. 28, 2013, issued in PCT/US2013/033174. |
PCT International Preliminary Report on Patentability and Written Opinion, dated Oct. 9, 2014, issued in PCT/US2013/033174. |
PCT International Search Report and Written Opinion, dated Jul. 26, 2013, issued in PCT/US2013/034167. |
PCT International Preliminary Report on Patentability and Written Opinion, dated Oct. 9, 2014, issued in PCT/US2013/034167. |
Chinese Office Action [no translation] dated Sep. 6, 2015 issued in CN 201310320848.8. |
Becker, Jill (Apr. 7, 2003) “Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia,” Applied Physics Letters, 82(14):2239-2241, [Retrieved online Dec. 13, 2013 at http://dx.doi.org/10.1063/1.1565699]. |
Bell et al. (Jan. 1996) “Batch Reactor Kinetic Studies of Tungsten LPCVD from Silane and Tungsten Hexafluoride”, J. Electrochem. Soc., 143(1):296-302. |
Collins et al. (Jan. 21, 2003) “Pulsed Deposition of Ultra Thin Tungsten for Plugfill of High Aspect Ratio Contacts,” Presentation made at Semicon Korea, 9 pages. |
Diawara, Y. et al. (1993) “Rapid thermal annealing for reducing stress in tungsten x-ray mask absorber,” http://dx.doi.org/10.1116/1.586673, Journal of Vacuum Science & Technology B 11:296-300 (per table of contents of journal). |
Elam et al. (2001) “Nucleation and Growth During Tungsten Atomic Layer Deposition on SiO2 Surfaces,” Thin Solid Films, 13pp. |
Fair, James A. (1983) Presentation by Inventor “Chemical Vapor Deposition of Refractory Metal Silicides,” GENUS Incorporated, 27 pp. |
George et al. (1996) “Surface Chemistry for atomic Layer Growth”, J. Phys. Chem, 100(31):13121-13131. |
Gonohe, Narishi (2002) “Tungsten Nitride Deposition by Thermal Chemical Vapor Deposition as Barrier Metal for Cu Interconnection,” [http://www.jim.co.jp/journal/e/pdf3/43/07/1585.pdf.], Materials Transactions, 43(7):1585-1592. |
Hoover, Cynthia (Jul. 2007) “Enabling Materials for Contact Metallization,” Praxair Electronic Materials R&D, pp. 1-16. |
Klaus et al. (2000) “Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction,” Thin Solid Films 360:145-153. |
Klaus et al. (2000) “Atomically Controlled Growth of Tungsten and Tungsten Nitride Using Sequential Surface Reactions,” Applied Surface Science, pp. 162-163, 479-491. |
Lai, Ken et al. (Jul. 17, 2000) “Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films,” [http://dx.doi.org/10.1016/S0040-6090(00)00943-3], Thin Solid Films, 370:114-121. |
Lai, Ken K. and Lamb, H. Henry (1995) “Precursors for Organometallic Chemical Vapor Deposition of Tungsten Carbide Films,” Chemistry Material, 7(12):2284-2292. |
Lee et al. (Jan. 21, 2003) “Pulsed Deposition of Ultra Thin Tungsten and its Application for Plugfill of High Aspect Ratio Contacts,” Abstract, 1 page. |
Li et al. (2002) “Deposition of WNxCy Thin Films by ALCVD™ Method for Diffusion Barriers in Metallization,” IITC Conference Report, 3 pp. |
Manik. P, et al. (2012) “Fermi-level unpinning and low resistivity in contacts to n-type Ge with a thin ZnO interfacial layer,” App. Phys. Lett. 101:182105-5. |
Saito et al. (2001) “A Novel Copper Interconnection Technology Using Self Aligned Metal Capping Method,” IEEE, 3pp. |
Shioya, Yoshimi et al. (Dec. 1, 1985) “Analysis of stress in chemical vapor deposition tungsten silicide film,” [Retrieved online Dec. 18, 2013 at http://dx.doi.org/10.1063/1.335552], Journal of Applied Physics, 58(11):4194-4199. |
U.S. Appl. No. 14/723,275, filed May 27, 2015, entitled “Tungsten Films Having Low Fluorine Content.” |
US Office Action, dated Jan. 12, 2016, issued in U.S. Appl. No. 14/738,685. |
US Final Office Action, dated Jul. 25, 2016, issued in U.S. Appl. No. 14/738,685. |
US Office Action, dated Jan. 21, 2016, issued in U.S. Appl. No. 14/135,375. |
US Final Office Action, dated May 31, 2016, issued in U.S. Appl. No. 14/135,375. |
US Office Action, dated Aug. 18, 2016, issued in U.S. Appl. No. 15/040,561. |
US Office Action, dated Feb. 1, 2016, issued in U.S. Appl. No. 14/723,275. |
US Office Action, dated Jul. 28, 2016, issued in U.S. Appl. No. 14/723,275. |
US Office Action, dated Jul. 12, 2016, issued in U.S. Appl. No. 14/723,270. |
US Office Action, dated Jun. 2, 2016, issued in U.S. Appl. No. 13/774,350. |
US Notice of Allowance, dated Aug. 3, 2016, issued in U.S. Appl. No. 13/851,885. |
US Office Action, dated Sep. 2, 2016, issued in U.S. Appl. No. 14/965,806. |
US Final Office Action, dated Jan. 14, 2016, issued in U.S. Appl. No. 13/949,092. |
US Office Action, dated Sep. 19, 2016, issued in U.S. Appl. No. 13/949,092. |
Taiwan Office Action (Rejection Decision) dated Oct. 28, 2015 issued in Application No. TW 099130354. |
Chinese First Office Action dated Feb. 26, 2016, issued in CN 201380022648.2. |
Chinese First Office Action dated Mar. 18, 2016 issued in Application No. CN 201380022693.8. |
Chinese Second Office Action dated May 16, 2016 issued in Application No. CN 201310320848.8. |
Taiwan Office Action [no translation] dated Jan. 10, 2017 issued in Application No. TW 105105984. |
Number | Date | Country | |
---|---|---|---|
20160118345 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
61169954 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14097160 | Dec 2013 | US |
Child | 14989444 | US | |
Parent | 12755259 | Apr 2010 | US |
Child | 14097160 | US |