1. Field of the Invention
The present invention relates to a wired board with bump electrodes and a method of fabricating the same, and, more particularly, to a bump electrode and a method of fabricating the same.
2. Description of the Related Art
There is a fabrication method for a wired board with bump electrodes which is discussed below.
As shown in
Next, a metal film 12 is formed on the Si substrate 10 and a resist 13 is plated and formed on the metal film 12, then the plated resist 13 is opened at the upper portion of the pit 11, as shown in
Then, an Au layer 14 to be an electrode is buried in the opening in the plated resist 13 by plating, as shown in
Next, an Sn-plated copper lead 15 is aligned with the pit 11 and the Au layer 14, and an Sn plating 16 applied to the copper lead 15 is contacted to the Au layer 14 and is bonded to the Au layer 14 by thermo-compression bonding, thus yielding an Au—Sn alloy between the Sn plating 16 and the Au layer 14 as shown in
As the Sn-plated copper lead 15 is separated from the Si substrate 10 thereafter, the Au layer 14 formed on the Si substrate 10 is transferred to the Sn-plated copper lead 15, forming an Au protruding electrode on the Sn plating 16.
In this case, a high-concentration diffusion layer may be used in place of the metal film 12 (see Japanese Patent Laid-Open No. 48445/1983).
However, the prior art has a shortcoming such that it the metal film 12 is formed on the Si substrate 10, the Au layer 14 is not transferred to the Sn-plated copper lead 15 efficiently because of a high adhesion strength between the metal film 12 at the pit 11 and the Au layer 14.
On the other hand, the formation of a high-concentration diffusion layer in place of the metal film 12 requires thermal diffusion or ion injection to the Si substrate 10 over a long period of time, and thus takes time. This makes it difficult to mass-produce products, which may lead to a cost-up of the products.
Further, as the adhesion strength between the high-concentration diffusion layer of the Si substrate 10 at the pit 11 and the Au layer 14 is low, the Au layer 14 may be separated from the Si substrate 10 by external force, such as shocks, applied at the time of, for example, transporting or washing the Au-formed Si substrate, thus lowering the yield.
Accordingly, it is an object of the present invention to provide a wired board with bump electrode and a fabrication method thereof in which the production efficiency of bump electrodes is improved.
To achieve the object, a method of fabricating a wired board with bump electrode according to the present invention comprises the steps of forming a resist having an opening on a high-concentration impurity semiconductor base; forming a conductive layer in the opening in the resist; and forming a bump electrode on the wired board by aligning an electrode pad formed on the wired board with the conductive layer and then transferring the conductive layer to the electrode pad.
Specifically, the method of fabricating a wired board with bump electrode according to the invention selectively forms the pit in a semiconductor base, such as Si base, which is doped with any one of impurities B, P, As, Sb and Pt at a high concentration, forms a plated resist layer, aligns the plated resist layer with, for example, the pit, forms an opening in the plated resist layer, buries a conductor of any one of Au, Cu, Ni, Pt, Pd, Ag, Sn and Pb, or an alloy or paste containing any one of the elements in the opening, then transfers the conductor to the bonded wired board, thereby forming bump electrode on the wired board.
A wired board with bump electrodes according to the invention is fabricated by the above-described fabrication method.
Preferred embodiments of the present invention are described below with reference to the accompanying drawings.
(First Embodiment)
First, as shown in
Next, a resist 3 having a thickness of about 10 μm is plated and formed on the high-concentration impurity Si template 1 and the resist 3 is opened at the pit 2, as shown in
An electrode pad 6 of Al, Au or so with a size of, for example, 10 μm×10 μm is formed on a semiconductor chip 5. After the plated resist 3 is separated from the high-concentration impurity Si template 1, the electrode pad 6 on the semiconductor chip 5, as a wired board, is aligned with the Au-plated buried layer 4 and is bonded together by thermo-compression bonding or the like, as shown in
Finally, the Au-plated buried layer 4 is transferred is to the electrode pad 6 to form an Au bump 7 whose distal end has the shape of a pyramid in case the minute pit 2 has a pyramid shape, as shown in
An oxide layer may be formed in place of the plated resist 3. The concentration of the impurity should be in a range of 1×1015 cm−3 to 1×1022 cm−3. Further, P, As, Pt or Sb may be used as the impurity instead of boron (B). The Au-plated buried layer 4 may be replaced with a plated buried layer formed of any one of Au, Cu, Ni, Pt, Pd, Ag, Sn, and Pb, or an alloy containing any one of those metals.
The Au-plated buried layer 4 may also be replaced with a paste of any of the aforementioned materials. It is preferable that the material should have a high electric conductance. Further, the Au-plated buried layer or its equivalence may b formed by electroless plating, sputtering, vapor deposition or printing and the layer forming method is not particularly limited.
Although the use of the semiconductor chip 5 is mentioned in the foregoing description of the embodiment, it can be any substrate on wires are to be formed and which needs electric connection to an external circuit via bump electrodes.
As the high-concentration impurity Si template 1 is doped with an impurity at a high concentration and has a low electric resistance, it is unnecessary to form a seed layer of electrolytic plating again and au can be buried in the pit 2 by electrolytic plating by applying and electric field to the high-concentration impurity Si template 1 itself. This eliminates the need for a process of injecting an impurity at a high concentration, thus leading to a reduction in the number of required steps and cost reduction.
A depth of said pit may be made equal to or greater than ¼ of a thickness of said resist.
(Second Embodiment)
The top surface of the high-concentration impurity Si template 1 is made rough by soft etching, sand blasting or so, thereby forming a rough layer 8 as shown in
The steps as shown in
The rough layer 8 may be formed only in the pit 2.
According to the embodiment, the provision of the rough layer 8 on the high-concentration impurity Si template 1 increases the boding force between the high-concentration impurity Si template 1 and the Au-plated buried layer 4 adequately, thereby preventing separation of the Au-plated buried layer 4 during the handling of the device.
(Third Embodiment)
The resist 3 is plated and formed on the high-concentration impurity Si template 1 and is opened at the pit 2, an Au strike plating is applied to the inner surface of the pit 2 to thereby form an Au strike plated layer 9, as shown in
The steps as shown in
In this embodiment, as the semiconductor chip 5 is separated from the high-concentration impurity Si template 1 at the interface between the pit 2 and the Au strike plated layer 9, the Au strike plated layer 9 is included in the Au bump 7 as shown in
Further, the embodiment adequately increases the adhesion strength between the high-concentration impurity Si template 1 and the Au-plated buried layer 4 by forming the Au strike plated layer 9 inside the pit 2 of the high-concentration impurity Si template 1 to thereby preventing separation of the Au-plated buried layer 4 during the handling of the device.
(Fourth Embodiment)
The resist 3 is plated and coated on the high-concentration impurity Si template 1 and is opened in such a way that the size of the openings becomes smaller than that of the pit 2, Au is buried in the openings by electrolytic plating to form the Au-plated buried layer 4 having a size of, for example, 6 μm×6 μm. as shown in
The steps as shown in
It is to be noted that the rough layer 8 may be formed inside the pit 2 or on the high-concentration impurity Si template 1 as shown in
Because the size of the opening in the plated resist 3 is made smaller than the size of the pit 2 in this embodiment, it is possible to form the Au bump 7 which has a large aspect ratio and whose distal end has the shape of a pyramid. This structure makes it harder to cause short-circuiting between adjoining metal bumps. This is advantageous in forming a narrow-pitch pattern. In case where the semiconductor chip 5 with such Au bump 7 is connected to an unillustrated substrate by flip-chip connection, even if external force is applied to the substrate or the semiconductor chip 5, the Au bump 7 can relax the stress, making the separation of the An bump 7 from the electrode pad 6 harder and improving the operational reliability.
In case where the wired board is to be mounted on a product whose portability is demanded, particularly, it is necessary to make the pitch size of the Au bump 7 smaller in order to make the product lighter and thinner, so that the third embodiment which makes the size of the opening in the plated resist 3 smaller than the size of the pit 2 is desirable.
In case where the wired board is to be mounted on a low-cost product, it is often unnecessary to make the product lighter and thinner, so that the pitch size of the Au bump 7 need not be made smaller. Therefore, the size of the opening in the plated resist 3 may be made larger than the size of the pit 2 to reduce the aspect ratio, thus enhancing the strength of the metal bumps.
(Fifth Embodiment)
The resist 3 is plated and formed on the high-concentration impurity Si template 1 and is opened at that portion of the plated resist 3 which is not aligned with the pit 2, an electric field is applied to the entire high-concentration impurity Si template 1, Au is buried in the openings in the plated resist 3 by electrolytic plating to form the Au-plated buried layer 4 as shown in
The steps as shown in
It is to be noted that the rough layer 8 may be formed inside the pit 2 or on the high-concentration impurity Si template 1 as shown in
As the opening is formed in that portion of the plated resist 3 which is not aligned with the pit 2, the Au-plated buried layer 4 has such a flexible shape that a part of the pyramid shape is chipped off. Even if external force is applied to the semiconductor chip 5 having the Au bump 7 with such a shape, the external force is dispersed by the Au bump 7, making it difficult to cause deformation.
(Sixth Embodiment)
First, an Si substrate having an impurity injected therein at a high concentration of, for example, 1×1017 cm−3 or higher to have a low electric resistance of 1×10−1 Ω-cm or lower is used as the high-concentration impurity Si template 1, as shown in
Next, the plated resist 3 is formed on the high-concentration impurity Si template 1 and is opened at the is desired portion after which an electric field is applied to the entire high-concentration impurity Si template 1, Au is buried in the opening in the plated resist 3 by electrolytic plating to form the Au-plated buried layer 4 as shown in
The steps as shown in
It is to be noted that the rough layer e may be formed inside the pit 2 or on the high-concentration impurity Si template 1 as shown in
Because the high-concentration impurity Si template 1 has a low electric resistance, it is unnecessary to form a seed layer of electrolytic plating. Further, applying an electric field to the high-concentration impurity Si template 1 can allow Au to be buried in the opening in the plated resist 3 by electrolytic plating, which would reduce the number of steps and the cost.
According to the invention, as described above, a conductive layer is formed on a high-concentration impurity semiconductor base having a high strength of adhesion to the conductive layer, making it difficult for the conductive layer to be separated from the high-concentration impurity semiconductor base by external force. This can suppress reduction in yield and can therefore improve the production efficiency of bump electrodes.
Number | Date | Country | Kind |
---|---|---|---|
2003-010192 | Jan 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4564323 | Berbalk | Jan 1986 | A |
5354205 | Feigenbaum et al. | Oct 1994 | A |
5453404 | Leedy | Sep 1995 | A |
6351885 | Suzuki et al. | Mar 2002 | B2 |
6454159 | Takushima | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
58-048445 | Mar 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20040139603 A1 | Jul 2004 | US |