The following disclosure relates generally to microelectronic devices and, more particularly, to methods for filling vias in microelectronic workpieces.
Conventional packaged microelectronic devices can include a singulated microelectronic die, an interposer substrate or lead frame attached to the die, and a moulded casing around the die. The die generally includes an integrated circuit and a plurality of bond-pads coupled to the integrated circuit. The bond-pads are typically coupled to terminals on the interposer substrate or lead frame, and serve as external electrical contacts on the die through which supply voltage, signals, etc., are transmitted to and from the integrated circuit. In addition to the terminals, the interposer substrate can also include ball-pads coupled to the terminals by conductive traces supported in a dielectric material. Solder balls can be attached to the ball-pads in one-to-one correspondence to define a “ball-grid array.” Packaged microelectronic devices with ball-grid arrays are generally higher grade packages having lower profiles and higher pin counts than conventional packages using lead frames.
Packaging processes for conventional microelectronic devices typically include (a) cutting the wafer to separate or singulate the dies, (b) attaching the individual dies to an interposer substrate, (c) wire-bonding the bond-pads of the dies to the terminals of the interposer substrate, and (d) encapsulating the dies with a suitable molding compound. One challenge of conventional packaging processes is that mounting the individual dies to interposer substrates or lead frames is time-consuming and expensive. Another challenge is forming wire-bonds that can withstand the forces of the molding compound during encapsulation; this issue is particularly problematic as the wire-bonds become smaller to accommodate higher pin counts and smaller packages. Yet another challenge of conventional packaging processes is that attaching individual dies to interposer substrates or lead frames may damage the bare dies. As such, processes for packaging the dies has become a significant factor in manufacturing microelectronic devices.
Another process for packaging microelectronic devices is wafer-level packaging. In this process, a plurality of microelectronic dies are formed on a wafer, and then a redistribution layer is formed over the dies. The redistribution layer can include a dielectric layer and a plurality of exposed ball-pads forming arrays on the dielectric layer. Each ball-pad array is typically arranged over a corresponding die, and the ball-pads in each array are coupled to corresponding bond-pads of the die by conductive traces extending through the dielectric layer. After forming the redistribution layer on the wafer, discrete masses of solder paste are deposited onto the individual ball-pads. The solder paste is then reflowed to form small solder balls or “solder bumps” on the ball-pads. After forming the solder balls, the wafer is singulated to separate the individual microelectronic devices from each other.
Wafer-level packaging is a promising development for increasing efficiency and reducing the cost of microelectronic devices. By “pre-packaging” individual dies with a redistribution layer before cutting the wafers to singulate the dies, sophisticated semiconductor processing techniques can be used to form smaller arrays of solder balls. Additionally, wafer-level packaging is an efficient process that simultaneously packages a plurality of dies, thereby reducing costs and increasing throughput.
Packaged microelectronic devices such as those described above are used in cellphones, pagers, personal digital assistants, computers, and many other electronic products. To meet the demand for smaller electronic products, there is a continuing drive to increase the performance of packaged microelectronic devices, while at the same time reducing the height and the surface area or “footprint” of such devices on printed circuit boards. Reducing the size of high performance devices, however, is difficult because the sophisticated integrated circuitry requires more bond-pads, which results in larger ball-grid arrays and thus larger footprints. One technique for increasing the component density of microelectronic devices within a given footprint is to stack one device on top of another.
The second solder balls 21 on the second microelectronic device 20 are positioned outboard of the first microelectronic device 10 to facilitate installation of the wire-bonds 13. Positioning the second solder balls 21 in this manner undesirably increases the footprint of the stacked-die arrangement. In addition, installation of the wire-bonds 13 can be a complex and/or expensive process because it requires placing individual wires between each pair of solder balls. Further, this type of installation may not be feasible for the high-density, fine-pitch arrays of some high-performance devices because the solder balls are not spaced apart far enough to be connected to individual wire-bonds.
A. Overview
The following disclosure describes several embodiments of microelectronic devices, methods for packaging microelectronic devices, and methods for filling vias in dies and other substrates to form conductive interconnects. One aspect of the invention is directed toward a method of forming a conductive interconnect in a microelectronic device. In one embodiment, the method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The method can further include forming a conductive plug in the passage adjacent to the first side of the microelectronic workpiece. A conductive material is then deposited in the passage to at least generally fill the passage from the conductive plug to the second side of the microelectronic workpiece.
In one aspect of this embodiment, forming a conductive plug in the passage can include depositing an electrically conductive material in the passage using a maskless mesoscale materials deposition process. In another embodiment, forming the conductive plug can include applying an electronic ink in the passage using an electronic printing process. In a further embodiment, forming the conductive plug can include depositing an electrically conductive material in the passage using a nano-particle deposition process.
A further aspect of the invention is directed toward another method of forming a conductive interconnect in a microelectronic device. In one embodiment, this method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The passage can define a first opening in the first side of the microfeature workpiece and a second opening in the second side of the microfeature workpiece. The method can further include applying a sealing layer to the first side of the microfeature workpiece to at least generally seal the first opening of the passage. A first portion of conductive material can then be deposited through the second opening of the passage to form a plug in the passage adjacent to the sealing layer. After the plug has been formed, a second portion of conductive material can be deposited through the second opening of the passage to at least generally fill the passage from the plug to the second side of the microelectronic workpiece.
Many specific details of the present invention are described below with reference to semiconductor devices. The term “microfeature workpiece,” however, as used throughout this disclosure includes substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, such microelectronic workpieces can include semiconductor wafers (e.g., silicon or gallium arsenide wafers), glass substrates, insulated substrates, and many other types of substrates. The feature signs in microfeature workpieces can include very small features of 0.11 μm or less, but larger features are also included on microfeature workpieces.
Specific details of several embodiments of the invention are described below with reference to microelectronic dies and other microelectronic devices in order to provide a thorough understanding of such embodiments. Other details describing well-known structures often associated with microelectronic devices are not set forth in the following description to avoid unnecessarily obscuring the description of the various embodiments. Persons of ordinary skill in the art will understand, however, that the invention may have other embodiments with additional elements or without several of the elements shown and described below with reference to
In the Figures, identical reference numbers identify identical or at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. For example, element 210 is first introduced and discussed with reference to
B. Embodiments of Microfeature Workpieces
In the embodiment illustrated in
After the passage 342 has been formed, a dielectric layer 344 can be applied to the inner wall of the passage 342. In one embodiment, the dielectric layer 344 is an oxide applied in a low temperature chemical vapor deposition (CVD) process. In other embodiments, the dielectric layer 344 is a polyamide material or other materials suitable for insulating the die 212 from electrical leakage after the passage 342 has been filled with conductive metal (not shown) as described in greater detail below.
One shortcoming associated with the method described above with reference to
Referring next to
Referring next to
As shown in
Referring to
Referring next to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/583,500, filed May 1, 2017; which is a continuation of U.S. patent application Ser. No. 14/300,004, filed Jun. 9, 2014, now U.S. Pat. No. 9,653,420; which is a continuation of U.S. patent application Ser. No. 13/337,943, filed Dec. 27, 2011, now U.S. Pat. No. 8,748,311; which is a divisional of U.S. patent application Ser. No. 10/733,226, filed Dec. 10, 2003, now U.S. Pat. No. 8,084,866; each of which is incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 10/713,878 filed Nov. 13, 2003, now U.S. Pat. No. 7,091,124, entitled MICROELECTRONIC DEVICES, METHODS FOR FORMING VIAS IN MICROELECTRONIC DEVICES, AND METHODS FOR PACKAGING MICROELECTRONIC DEVICES, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2821959 | Franz | Feb 1958 | A |
3006318 | Monroe, Jr. et al. | Oct 1961 | A |
3345134 | Heymer et al. | Oct 1967 | A |
3865298 | Allen et al. | Feb 1975 | A |
3902036 | Zaleckas | Aug 1975 | A |
4040168 | Huang | Aug 1977 | A |
4368106 | Anthony | Jan 1983 | A |
4534100 | Lane | Aug 1985 | A |
4581301 | Michaelson | Apr 1986 | A |
4608480 | Bizot et al. | Aug 1986 | A |
4614427 | Koizumi et al. | Sep 1986 | A |
4627971 | Ayer | Dec 1986 | A |
4660063 | Anthony | Apr 1987 | A |
4700473 | Freyman et al. | Oct 1987 | A |
4756765 | Woodroffe | Jul 1988 | A |
4768291 | Palmer | Sep 1988 | A |
4818728 | Rai et al. | Apr 1989 | A |
4907127 | Lee | Mar 1990 | A |
4959705 | Lemnios et al. | Sep 1990 | A |
4964212 | Deroux-Dauphin et al. | Oct 1990 | A |
4984597 | McConnell et al. | Jan 1991 | A |
5024966 | Dietrich et al. | Jun 1991 | A |
5026964 | Somers | Jun 1991 | A |
5027184 | Soclof | Jun 1991 | A |
5037782 | Nakamura et al. | Aug 1991 | A |
5107328 | Kinsman | Apr 1992 | A |
5123902 | Stiftung | Jun 1992 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5145099 | Wood et al. | Sep 1992 | A |
5158911 | Quentin | Oct 1992 | A |
5219344 | Yoder | Jun 1993 | A |
5233448 | Wu | Aug 1993 | A |
5237148 | Aoki et al. | Aug 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5289631 | Koopman et al. | Mar 1994 | A |
5292686 | Riley et al. | Mar 1994 | A |
5294568 | McNeilly et al. | Mar 1994 | A |
5304743 | Sen et al. | Apr 1994 | A |
5378312 | Gifford et al. | Jan 1995 | A |
5378313 | Pace | Jan 1995 | A |
5380681 | Hsu | Jan 1995 | A |
5402435 | Shiono et al. | Mar 1995 | A |
5406630 | Piosenka et al. | Apr 1995 | A |
5424573 | Kato et al. | Jun 1995 | A |
5438212 | Okaniwa | Aug 1995 | A |
5447871 | Goldstein | Sep 1995 | A |
5464960 | Hall et al. | Nov 1995 | A |
5481483 | Ebenstein | Jan 1996 | A |
5496755 | Bayraktaroglu | Mar 1996 | A |
5515167 | Ledger et al. | May 1996 | A |
5518956 | Liu et al. | May 1996 | A |
5518957 | Kim | May 1996 | A |
5585308 | Sardella | Dec 1996 | A |
5585675 | Knopf | Dec 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5614743 | Mochizuki | Mar 1997 | A |
5618752 | Gaul | Apr 1997 | A |
5624437 | Freeman et al. | Apr 1997 | A |
5627106 | Hsu | May 1997 | A |
5646067 | Gaul | Jul 1997 | A |
5654221 | Cronin et al. | Aug 1997 | A |
5673846 | Gruber | Oct 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5684642 | Zumoto et al. | Nov 1997 | A |
5690841 | Elderstig | Nov 1997 | A |
5718791 | Spengler | Feb 1998 | A |
5723904 | Shiga | Mar 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5767010 | Mis | Jun 1998 | A |
5771158 | Yamagishi et al. | Jun 1998 | A |
5773359 | Mitchell et al. | Jun 1998 | A |
5776824 | Farnworth et al. | Jul 1998 | A |
5807439 | Akatsu et al. | Sep 1998 | A |
5811799 | Wu | Sep 1998 | A |
5821532 | Beaman et al. | Oct 1998 | A |
5825080 | Imaoka et al. | Oct 1998 | A |
5826628 | Hamilton | Oct 1998 | A |
5847454 | Shaw et al. | Dec 1998 | A |
5851845 | Wood et al. | Dec 1998 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5861654 | Johnson | Jan 1999 | A |
5870289 | Tokuda et al. | Feb 1999 | A |
5870823 | Bezama et al. | Feb 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5893828 | Uram | Apr 1999 | A |
5904499 | Pace | May 1999 | A |
5925930 | Farnworth et al. | Jul 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5998240 | Hamilton et al. | Dec 1999 | A |
5998292 | Black et al. | Dec 1999 | A |
6004867 | Kim et al. | Dec 1999 | A |
6008070 | Farnworth | Dec 1999 | A |
6008914 | Sasagawa et al. | Dec 1999 | A |
6018249 | Akram et al. | Jan 2000 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6066514 | King et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6081429 | Barrett | Jun 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107180 | Munroe et al. | Aug 2000 | A |
6107679 | Noguchi | Aug 2000 | A |
6110825 | Mastromatteo et al. | Aug 2000 | A |
6114240 | Akram et al. | Sep 2000 | A |
6119335 | Park et al. | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6130141 | Degani et al. | Oct 2000 | A |
6130474 | Corisis | Oct 2000 | A |
6133622 | Corisis et al. | Oct 2000 | A |
6137182 | Hause et al. | Oct 2000 | A |
6140604 | Somers et al. | Oct 2000 | A |
6143588 | Glenn | Nov 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6175149 | Akram | Jan 2001 | B1 |
6180518 | Layadi et al. | Jan 2001 | B1 |
6184060 | Siniaguine | Feb 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6187615 | Kim et al. | Feb 2001 | B1 |
6188232 | Akram et al. | Feb 2001 | B1 |
6191487 | Rodenbeck et al. | Feb 2001 | B1 |
6201304 | Moden | Mar 2001 | B1 |
6203539 | Shimmick et al. | Mar 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6214716 | Akram | Apr 2001 | B1 |
6221769 | Dhong et al. | Apr 2001 | B1 |
6222136 | Appelt et al. | Apr 2001 | B1 |
6222270 | Lee | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228687 | Akram et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232666 | Corisis et al. | May 2001 | B1 |
6235552 | Kwon et al. | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239489 | Jiang | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6247629 | Jacobson et al. | Jun 2001 | B1 |
6252300 | Hsuan et al. | Jun 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6268114 | Wen et al. | Jul 2001 | B1 |
6271580 | Corisis | Aug 2001 | B1 |
6277757 | Lin | Aug 2001 | B1 |
6281042 | Ahn et al. | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6285204 | Farnworth | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294837 | Akram et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297155 | Simpson et al. | Oct 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6324253 | Yuyama et al. | Nov 2001 | B1 |
6326689 | Thomas | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329222 | Corisis et al. | Dec 2001 | B1 |
6329632 | Fournier et al. | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6341009 | O'Connor et al. | Jan 2002 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6359254 | Brown | Mar 2002 | B1 |
6359328 | Dubin | Mar 2002 | B1 |
6372548 | Bessho et al. | Apr 2002 | B2 |
6383362 | Satoh | May 2002 | B2 |
6388208 | Kiani et al. | May 2002 | B1 |
6391770 | Kosaki et al. | May 2002 | B2 |
6406636 | Vaganov | Jun 2002 | B1 |
6429528 | King et al. | Aug 2002 | B1 |
6432796 | Peterson | Aug 2002 | B1 |
6432821 | Dubin et al. | Aug 2002 | B1 |
6433303 | Liu et al. | Aug 2002 | B1 |
6433304 | Okumura et al. | Aug 2002 | B2 |
6437284 | Okamoto et al. | Aug 2002 | B1 |
6437441 | Yamamoto | Aug 2002 | B1 |
6437586 | Robinson | Aug 2002 | B1 |
6441487 | Elenius et al. | Aug 2002 | B2 |
6452270 | Huang | Sep 2002 | B1 |
6457515 | Vafai et al. | Oct 2002 | B1 |
6459039 | Bezama et al. | Oct 2002 | B1 |
6459150 | Wu et al. | Oct 2002 | B1 |
6468889 | Iacoponi et al. | Oct 2002 | B1 |
6483044 | Ahmad | Nov 2002 | B1 |
6486083 | Mizuno et al. | Nov 2002 | B1 |
6486549 | Paek | Nov 2002 | B1 |
6521516 | Monzon et al. | Feb 2003 | B2 |
6521530 | Peters et al. | Feb 2003 | B2 |
6534192 | Abys et al. | Mar 2003 | B1 |
6534863 | Walker et al. | Mar 2003 | B2 |
6545563 | Smith | Apr 2003 | B1 |
6548376 | Jiang | Apr 2003 | B2 |
6552910 | Moon et al. | Apr 2003 | B1 |
6555782 | Isaji et al. | Apr 2003 | B2 |
6560047 | Choi et al. | May 2003 | B2 |
6560117 | Moon et al. | May 2003 | B2 |
6564979 | Savaria | May 2003 | B2 |
6566232 | Hara | May 2003 | B1 |
6569711 | Susko et al. | May 2003 | B1 |
6569777 | Hsu et al. | May 2003 | B1 |
6572606 | Kliewer et al. | Jun 2003 | B2 |
6576531 | Peng et al. | Jun 2003 | B2 |
6580174 | McCormick et al. | Jun 2003 | B2 |
6582987 | Jun et al. | Jun 2003 | B2 |
6582992 | Poo et al. | Jun 2003 | B2 |
6593644 | Chiu et al. | Jul 2003 | B2 |
6599436 | Matzke et al. | Jul 2003 | B1 |
6606251 | Kenny, Jr. et al. | Aug 2003 | B1 |
6607937 | Corisis | Aug 2003 | B1 |
6614033 | Suguro et al. | Sep 2003 | B2 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6620031 | Renteln | Sep 2003 | B2 |
6620731 | Farnworth et al. | Sep 2003 | B1 |
6621045 | Liu et al. | Sep 2003 | B1 |
6638410 | Chen et al. | Oct 2003 | B2 |
6653236 | Wai et al. | Nov 2003 | B2 |
6658818 | Kurth et al. | Dec 2003 | B2 |
6660622 | Chen et al. | Dec 2003 | B2 |
6660630 | Chang et al. | Dec 2003 | B1 |
6664129 | Siniaguine | Dec 2003 | B2 |
6664485 | Bhatt et al. | Dec 2003 | B2 |
6667551 | Hanaoka et al. | Dec 2003 | B2 |
6680459 | Kanaya et al. | Jan 2004 | B2 |
6699787 | Mashino et al. | Mar 2004 | B2 |
6703310 | Mashino et al. | Mar 2004 | B2 |
6708405 | Hasler et al. | Mar 2004 | B2 |
6746971 | Ngo et al. | Jun 2004 | B1 |
6750144 | Taylor | Jun 2004 | B2 |
6756564 | Tian | Jun 2004 | B2 |
6770958 | Wang et al. | Aug 2004 | B2 |
6774486 | Kinsman | Aug 2004 | B2 |
6777244 | Pepper et al. | Aug 2004 | B2 |
6780749 | Masumoto et al. | Aug 2004 | B2 |
6790775 | Fartash | Sep 2004 | B2 |
6797616 | Kinsman | Sep 2004 | B2 |
6809025 | Sandhu et al. | Oct 2004 | B2 |
6809421 | Hayasaka | Oct 2004 | B1 |
6818464 | Heschel | Nov 2004 | B2 |
6825127 | Ouellet et al. | Nov 2004 | B2 |
6825557 | DiBattista et al. | Nov 2004 | B2 |
6828175 | Wood et al. | Dec 2004 | B2 |
6828223 | Chuang | Dec 2004 | B2 |
6838377 | Tonami et al. | Jan 2005 | B2 |
6841849 | Miyazawa | Jan 2005 | B2 |
6852621 | Hanaoka et al. | Feb 2005 | B2 |
6856023 | Muta et al. | Feb 2005 | B2 |
6858891 | Farnworth et al. | Feb 2005 | B2 |
6864172 | Noma et al. | Mar 2005 | B2 |
6864457 | Alexander et al. | Mar 2005 | B1 |
6867390 | Clauer et al. | Mar 2005 | B2 |
6873054 | Miyazawa et al. | Mar 2005 | B2 |
6882030 | Siniaguine | Apr 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6903012 | Geefay et al. | Jun 2005 | B2 |
6903442 | Wood et al. | Jun 2005 | B2 |
6903443 | Farnworth et al. | Jun 2005 | B2 |
6910268 | Miller | Jun 2005 | B2 |
6913952 | Moxham et al. | Jul 2005 | B2 |
6916725 | Yamaguchi | Jul 2005 | B2 |
6936536 | Sinha | Aug 2005 | B2 |
6939343 | Sumiya | Sep 2005 | B2 |
6943056 | Nemoto | Sep 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
6951627 | Li et al. | Oct 2005 | B2 |
6953748 | Yamaguchi | Oct 2005 | B2 |
6962867 | Jackson et al. | Nov 2005 | B2 |
6970775 | Lederle et al. | Nov 2005 | B2 |
6982487 | Kim et al. | Jan 2006 | B2 |
7022609 | Yamamoto et al. | Apr 2006 | B2 |
7023090 | Huang et al. | Apr 2006 | B2 |
7029937 | Miyazawa | Apr 2006 | B2 |
7033927 | Cohen et al. | Apr 2006 | B2 |
7037836 | Lee | May 2006 | B2 |
7041598 | Sharma | May 2006 | B2 |
7045015 | Renn et al. | May 2006 | B2 |
7083425 | Chong et al. | Aug 2006 | B2 |
7084073 | Lee et al. | Aug 2006 | B2 |
7091124 | Rigg et al. | Aug 2006 | B2 |
7092284 | Braun et al. | Aug 2006 | B2 |
7094677 | Yamamoto et al. | Aug 2006 | B2 |
7109068 | Akram et al. | Sep 2006 | B2 |
7129112 | Matsuo | Oct 2006 | B2 |
7151009 | Kim et al. | Dec 2006 | B2 |
7164565 | Takeda | Jan 2007 | B2 |
7166247 | Kramer | Jan 2007 | B2 |
7170183 | Kim et al. | Jan 2007 | B1 |
7183176 | Sankarapillai et al. | Feb 2007 | B2 |
7183653 | Myers et al. | Feb 2007 | B2 |
7186650 | Dakshina-Murthy | Mar 2007 | B1 |
7190061 | Lee | Mar 2007 | B2 |
7199050 | Hiatt | Apr 2007 | B2 |
7214615 | Miyazawa | May 2007 | B2 |
7217596 | Cobbley et al. | May 2007 | B2 |
7217888 | Sunohara et al. | May 2007 | B2 |
7223634 | Yamaguchi | May 2007 | B2 |
7232754 | Kirby et al. | Jun 2007 | B2 |
7256073 | Noma et al. | Aug 2007 | B2 |
7262134 | Kirby et al. | Aug 2007 | B2 |
7262495 | Chen et al. | Aug 2007 | B2 |
7265052 | Sinha | Sep 2007 | B2 |
7271482 | Kirby | Sep 2007 | B2 |
7279776 | Morimoto | Oct 2007 | B2 |
7300857 | Akram et al. | Nov 2007 | B2 |
7317256 | Williams et al. | Jan 2008 | B2 |
7491582 | Yokoyama et al. | Feb 2009 | B2 |
7498661 | Matsuo | Mar 2009 | B2 |
8084866 | Hiatt et al. | Dec 2011 | B2 |
8748311 | Hiatt et al. | Jun 2014 | B2 |
9653420 | Hiatt et al. | May 2017 | B2 |
20010020739 | Honda | Sep 2001 | A1 |
20020005583 | Harada et al. | Jan 2002 | A1 |
20020017710 | Kurashima | Feb 2002 | A1 |
20020020898 | Vu et al. | Feb 2002 | A1 |
20020027293 | Hoshino | Mar 2002 | A1 |
20020056925 | Kang et al. | May 2002 | A1 |
20020057468 | Segawa et al. | May 2002 | A1 |
20020059722 | Murakami | May 2002 | A1 |
20020060208 | Liu et al. | May 2002 | A1 |
20020092676 | Jimarez | Jul 2002 | A1 |
20020094607 | Gebauer et al. | Jul 2002 | A1 |
20020096729 | Tu et al. | Jul 2002 | A1 |
20020113312 | Clatanoff et al. | Aug 2002 | A1 |
20020130390 | Ker et al. | Sep 2002 | A1 |
20020190371 | Mashino et al. | Dec 2002 | A1 |
20030014895 | Lizotte | Jan 2003 | A1 |
20030042564 | Taniguchi et al. | Mar 2003 | A1 |
20030060000 | Umetsu | Mar 2003 | A1 |
20030119308 | Geefay et al. | Jun 2003 | A1 |
20030148597 | Tan et al. | Aug 2003 | A1 |
20030210534 | Swan | Nov 2003 | A1 |
20030216023 | Wark et al. | Nov 2003 | A1 |
20040004280 | Shibata | Jan 2004 | A1 |
20040018712 | Plas et al. | Jan 2004 | A1 |
20040023447 | Hirakata et al. | Feb 2004 | A1 |
20040041261 | Kinsman | Mar 2004 | A1 |
20040043607 | Farnworth et al. | Mar 2004 | A1 |
20040046251 | Lee | Mar 2004 | A1 |
20040073607 | Su et al. | Apr 2004 | A1 |
20040087441 | Bock | May 2004 | A1 |
20040094389 | Boyce | May 2004 | A1 |
20040137661 | Murayama | Jul 2004 | A1 |
20040137701 | Takao | Jul 2004 | A1 |
20040141536 | Liu et al. | Jul 2004 | A1 |
20040159668 | Vasiadis | Aug 2004 | A1 |
20040159958 | Funaki | Aug 2004 | A1 |
20040178491 | Akram et al. | Sep 2004 | A1 |
20040180539 | Yamamoto et al. | Sep 2004 | A1 |
20040188260 | Bonkabeta et al. | Sep 2004 | A1 |
20040192033 | Hara | Sep 2004 | A1 |
20040198033 | Lee et al. | Oct 2004 | A1 |
20040198040 | Geefay et al. | Oct 2004 | A1 |
20040219342 | Boggs et al. | Nov 2004 | A1 |
20040219763 | Kim et al. | Nov 2004 | A1 |
20040222082 | Gopalraja et al. | Nov 2004 | A1 |
20040245649 | Imaoka | Dec 2004 | A1 |
20040255258 | Li | Dec 2004 | A1 |
20040262753 | Kashiwazaki | Dec 2004 | A1 |
20050026443 | Goo et al. | Feb 2005 | A1 |
20050037608 | Andricacos et al. | Feb 2005 | A1 |
20050046002 | Lee et al. | Mar 2005 | A1 |
20050064707 | Sinha | Mar 2005 | A1 |
20050067620 | Chan et al. | Mar 2005 | A1 |
20050069782 | Elenius et al. | Mar 2005 | A1 |
20050101054 | Mastromatteo et al. | May 2005 | A1 |
20050101116 | Tseng | May 2005 | A1 |
20050104228 | Rigg et al. | May 2005 | A1 |
20050106834 | Andry et al. | May 2005 | A1 |
20050110095 | Shih et al. | May 2005 | A1 |
20050110889 | Tuttle et al. | May 2005 | A1 |
20050127478 | Hiatt et al. | Jun 2005 | A1 |
20050136646 | Larnerd et al. | Jun 2005 | A1 |
20050139390 | Kim et al. | Jun 2005 | A1 |
20050150683 | Farnworth et al. | Jul 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20050164500 | Lindgren | Jul 2005 | A1 |
20050184219 | Kirby | Aug 2005 | A1 |
20050191861 | Verhaverbeke | Sep 2005 | A1 |
20050194169 | Tonomura | Sep 2005 | A1 |
20050208766 | Kirby et al. | Sep 2005 | A1 |
20050227382 | Hui | Oct 2005 | A1 |
20050231626 | Tuttle et al. | Oct 2005 | A1 |
20050236708 | Farnworth et al. | Oct 2005 | A1 |
20050247894 | Watkins et al. | Nov 2005 | A1 |
20050253213 | Jiang et al. | Nov 2005 | A1 |
20050254133 | Akram et al. | Nov 2005 | A1 |
20050258530 | Vindasius et al. | Nov 2005 | A1 |
20050272221 | Yen et al. | Dec 2005 | A1 |
20050275048 | Farnworth et al. | Dec 2005 | A1 |
20050275049 | Kirby et al. | Dec 2005 | A1 |
20050275051 | Farnworth et al. | Dec 2005 | A1 |
20050275750 | Akram et al. | Dec 2005 | A1 |
20050277293 | Kim et al. | Dec 2005 | A1 |
20050282374 | Hwang et al. | Dec 2005 | A1 |
20050285154 | Akram et al. | Dec 2005 | A1 |
20060003566 | Emesh | Jan 2006 | A1 |
20060011809 | Farnworth et al. | Jan 2006 | A1 |
20060014313 | Hall et al. | Jan 2006 | A1 |
20060023107 | Bolken et al. | Feb 2006 | A1 |
20060024856 | Derderian et al. | Feb 2006 | A1 |
20060035402 | Street et al. | Feb 2006 | A1 |
20060035415 | Wood et al. | Feb 2006 | A1 |
20060038183 | Oliver | Feb 2006 | A1 |
20060038272 | Edwards | Feb 2006 | A1 |
20060040421 | Farnworth et al. | Feb 2006 | A1 |
20060040428 | Johnson | Feb 2006 | A1 |
20060042952 | Oliver et al. | Mar 2006 | A1 |
20060043262 | Akram | Mar 2006 | A1 |
20060043509 | Watkins et al. | Mar 2006 | A1 |
20060043512 | Oliver et al. | Mar 2006 | A1 |
20060043569 | Benson et al. | Mar 2006 | A1 |
20060043599 | Akram et al. | Mar 2006 | A1 |
20060044433 | Akram | Mar 2006 | A1 |
20060046332 | Derderian et al. | Mar 2006 | A1 |
20060046438 | Kirby | Mar 2006 | A1 |
20060046468 | Akram et al. | Mar 2006 | A1 |
20060046471 | Kirby et al. | Mar 2006 | A1 |
20060046537 | Chong et al. | Mar 2006 | A1 |
20060057776 | Tao | Mar 2006 | A1 |
20060057836 | Nagarajan et al. | Mar 2006 | A1 |
20060071347 | Dotta | Apr 2006 | A1 |
20060148250 | Kirby | Jul 2006 | A1 |
20060151880 | Tang et al. | Jul 2006 | A1 |
20060154153 | Chiang et al. | Jul 2006 | A1 |
20060160367 | Wai et al. | Jul 2006 | A1 |
20060177959 | Boettiger et al. | Aug 2006 | A1 |
20060177999 | Hembree et al. | Aug 2006 | A1 |
20060180941 | Kirby et al. | Aug 2006 | A1 |
20060186097 | Watkins et al. | Aug 2006 | A1 |
20060186492 | Boettiger et al. | Aug 2006 | A1 |
20060191882 | Watkins et al. | Aug 2006 | A1 |
20060195729 | Huppenthal et al. | Aug 2006 | A1 |
20060199363 | Kirby et al. | Sep 2006 | A1 |
20060204651 | Wai et al. | Sep 2006 | A1 |
20060208360 | Yiu et al. | Sep 2006 | A1 |
20060216862 | Rigg et al. | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060240687 | Chong et al. | Oct 2006 | A1 |
20060249849 | Cohen | Nov 2006 | A1 |
20060252254 | Basol | Nov 2006 | A1 |
20060252262 | Kazemi | Nov 2006 | A1 |
20060255443 | Hwang et al. | Nov 2006 | A1 |
20060264041 | Rigg et al. | Nov 2006 | A1 |
20060270108 | Farnworth et al. | Nov 2006 | A1 |
20060278979 | Rangel | Dec 2006 | A1 |
20060278980 | Trezza et al. | Dec 2006 | A1 |
20060278988 | Trezza et al. | Dec 2006 | A1 |
20060278989 | Trezza | Dec 2006 | A1 |
20060281224 | Edelstein et al. | Dec 2006 | A1 |
20060281243 | Trezza | Dec 2006 | A1 |
20060289967 | Heck et al. | Dec 2006 | A1 |
20060289968 | Sulfridge | Dec 2006 | A1 |
20060290001 | Sulfridge | Dec 2006 | A1 |
20060292877 | Lake | Dec 2006 | A1 |
20070004079 | Geefay et al. | Jan 2007 | A1 |
20070012655 | Kwon et al. | Jan 2007 | A1 |
20070020805 | Kim et al. | Jan 2007 | A1 |
20070020935 | Taylor et al. | Jan 2007 | A1 |
20070023121 | Jones et al. | Feb 2007 | A1 |
20070032061 | Farnworth et al. | Feb 2007 | A1 |
20070035033 | Ozguz et al. | Feb 2007 | A1 |
20070037379 | Enquist et al. | Feb 2007 | A1 |
20070042598 | Park | Feb 2007 | A1 |
20070045120 | Tiwari et al. | Mar 2007 | A1 |
20070045388 | Farnworth et al. | Mar 2007 | A1 |
20070045515 | Farnworth et al. | Mar 2007 | A1 |
20070045632 | Oliver et al. | Mar 2007 | A1 |
20070045779 | Hiatt | Mar 2007 | A1 |
20070045806 | Hsuan | Mar 2007 | A1 |
20070045812 | Heng | Mar 2007 | A1 |
20070045826 | Lee et al. | Mar 2007 | A1 |
20070045834 | Chong et al. | Mar 2007 | A1 |
20070048896 | Andry et al. | Mar 2007 | A1 |
20070048994 | Tuttle | Mar 2007 | A1 |
20070049016 | Hiatt et al. | Mar 2007 | A1 |
20070049019 | Wai et al. | Mar 2007 | A1 |
20070057028 | Lake et al. | Mar 2007 | A1 |
20070077753 | Iwatake et al. | Apr 2007 | A1 |
20070082427 | Shirahama et al. | Apr 2007 | A1 |
20070096263 | Furukawa et al. | May 2007 | A1 |
20070099395 | Sridhar et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070122940 | Gautham | May 2007 | A1 |
20070138562 | Trezza | Jun 2007 | A1 |
20070145563 | Punzalan et al. | Jun 2007 | A1 |
20070152342 | Tsao et al. | Jul 2007 | A1 |
20070155997 | Li et al. | Jul 2007 | A1 |
20070158839 | Trezza | Jul 2007 | A1 |
20070158853 | Sinha | Jul 2007 | A1 |
20070161235 | Trezza | Jul 2007 | A1 |
20070166991 | Sinha | Jul 2007 | A1 |
20070166997 | Knorr | Jul 2007 | A1 |
20070167004 | Trezza | Jul 2007 | A1 |
20070170574 | Lauxtermann et al. | Jul 2007 | A1 |
20070178694 | Hiatt | Aug 2007 | A1 |
20070182020 | Trezza et al. | Aug 2007 | A1 |
20070190803 | Singh et al. | Aug 2007 | A1 |
20070197013 | Trezza | Aug 2007 | A1 |
20070202617 | Hembree | Aug 2007 | A1 |
20070222050 | Lee et al. | Sep 2007 | A1 |
20070222054 | Hembree | Sep 2007 | A1 |
20070228576 | Trezza | Oct 2007 | A1 |
20070228926 | Teo et al. | Oct 2007 | A1 |
20070262424 | Hiatt | Nov 2007 | A1 |
20070267138 | White et al. | Nov 2007 | A1 |
20070281473 | Clark et al. | Dec 2007 | A1 |
20070293040 | Emesh et al. | Dec 2007 | A1 |
20080006850 | Ribnicek et al. | Jan 2008 | A1 |
20080050904 | Lake | Feb 2008 | A1 |
20080050911 | Borthakur | Feb 2008 | A1 |
20080054444 | Tuttle | Mar 2008 | A1 |
20080057620 | Pratt | Mar 2008 | A1 |
20080079120 | Foster et al. | Apr 2008 | A1 |
20080079121 | Han | Apr 2008 | A1 |
20080081386 | Raravikar et al. | Apr 2008 | A1 |
20080081398 | Lee et al. | Apr 2008 | A1 |
20080265933 | Tanioka et al. | Oct 2008 | A1 |
20090007934 | Hutto | Jan 2009 | A1 |
20090014859 | Jeung et al. | Jan 2009 | A1 |
20090057912 | Kheng | Mar 2009 | A1 |
20090146312 | Sulfridge | Jun 2009 | A1 |
20090166846 | Pratt et al. | Jul 2009 | A1 |
20120094482 | Hiatt et al. | Apr 2012 | A1 |
20140284796 | Hiatt et al. | Sep 2014 | A1 |
20170301639 | Hiatt et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
10205026 | May 2003 | DE |
0127946 | Dec 1984 | EP |
127946 | Dec 1984 | EP |
1154474 | Nov 2001 | EP |
1415950 | May 2004 | EP |
63052432 | Mar 1988 | JP |
01252308 | Oct 1989 | JP |
02235589 | Sep 1990 | JP |
05104316 | Apr 1993 | JP |
2001077496 | Mar 2001 | JP |
2001082931 | Mar 2001 | JP |
2001298147 | Oct 2001 | JP |
2002018585 | Jan 2002 | JP |
2005093980 | Apr 2005 | JP |
2005310817 | Nov 2005 | JP |
20010018694 | Mar 2001 | KR |
20020022122 | Mar 2002 | KR |
20020061812 | Jul 2002 | KR |
250597 | Jul 1995 | TW |
2004109770 | Dec 2004 | WO |
2005022965 | Mar 2005 | WO |
2005036940 | Apr 2005 | WO |
2006053036 | May 2006 | WO |
2006124597 | Nov 2006 | WO |
2007025812 | Mar 2007 | WO |
2007043718 | Apr 2007 | WO |
Entry |
---|
Aachboun, S. and P. Ranson, “Cryogenic etching of deep narrow trenches in silicon,” J. Vac. Sci. Technol. A 18(4), Jul./Aug. 2000, pp. 1848-1852. |
Aachboun, S. and P. RANSON, “Deep anisotropic etching of silicon,” J. Vac. Sci. Technol. A 17(4), Jul./Aug. 1999, pp. 2270-2273. |
Amazawa, T. et al., “Planarized Multilevel Interconnection Using Chemical Mechanical Polishing of Selective CVD-Al Via Plugs,” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 815-820, Apr. 1998. |
Armacost, M. et al., “Plasma-Etching Processes for ULSI Semiconductor Circuits,” IBM J. Res. Develop., vol. 43, No. 1/2, pp. 39-72, Jan./Mar. 1999, <http://www.research.ibm.com/journal/rd/431/armacost.pdf>. |
Arunasalam, P. et al., “Thermo-Mechanical Analysis of Thru-Silicon-Via Based High Density Compliant Interconnect,” Electronic Components and Technology Conference, 2007, ECTC '07, Proceedings, 57th, May 29, 2007-Jun. 1, 2007, pp. 1179-1185. |
Bernstein, K. et al., “Interconnects in the Third Dimension: Design Challenges for 3D ICs,” Design Automation Conference, 2007, DAC '07, 44th ACM/IEEE, Jun. 4-8, 2007, pp. 562-567. |
Blackburn, J.M. et al., “Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide,” Science, vol. 94, Oct. 2001, pp. 141-145. |
Cheung, T.S.D. et al., “On-Chip Interconnect for mm-Wave Applications Using an All-Copper Technology and Wavelength Reduction,” 2003 IEEE International Solid-State Circuits Conference. |
Chou, Bill et al., “Ultra Via Substrate for Advanced BGA Applications,” Pan Pacific Symposium, Jan. 25, 2000, <http://www.smta.org/files/PanPac00-ChouBill.pdf>. |
De Boer, M.J. et al., “Micromachining of Buried Micro Channels in Silicon,” Journal of Microelectromechanical Systems, vol. 9, No. 1, Mar. 2000, IEEE, ISSN: 1057-7157. |
Gutmann, R.J., “Wafer-Level Three-Dimensional Monolithic Integration for Heterogeneous Silicon ICs,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, IEEE, Sep. 8-10, 2004, pp. 45-48. |
Hirafune, S. et al., “Packaging Technology for Imager Using Through-hole Interconnection in Si Substrate,” Proceeding of HDP'04, IEEE, pp. 303-306, Jul. 2004. |
Jang, D.M. et al., “Development and Evaluation of 3-D SiP with Vertically Interconnected Through Silicon Vias (TSV),” Proceedings of the 57th Electronic Components and Technology Conference, IEEE, May 29, 2007-Jun. 1, 2007, pp. 847-852, ISBN: 1-4244-0985-3. |
Kada, M. et al., “Advancements in Stacked Chip Scale Packaging (S-CSP) Provides System-in-a-Package Functionality for Wireless and Handheld Applications,” Future Fab Inti., vol. 9, Jan. 7, 2000. |
Keigler, A. et al., “Enabling 3-D Design,” Semiconductor International, Aug. 2007. |
Kim, J.Y. et al., “S-RCAT (Sphere-shaped-Recess-Channel-Array Transistor) Technology for 70nm DRAM Feature Size and Beyond,” 2005 Symposium on VLSI Technology, Digest of Technical Papers, Jun. 14-16, 2005, pp. 34-35, IEEE, ISBN: 4-900784-02-8. |
King, B. et al., Optomec, Inc., M3Dä Technology, Maskless Mesoscaleä Materials Deposition, 5 pages, <http://www.optomec.com/downloads/M3D%20White%Paper%20080502.pdf>, retrieved from the Internet on Jun. 17, 2005. |
Kuhn, Markus and Jose A. Rodriguez, “Adsorption of sulfur on bimetallic surfaces: Formation of copper sulfides on Pt(111) and Ru(001),” J. Vac. Sci. Technol. A 13(3), pp. 1569-1573, May/Jun. 1995. |
Kurita, Y. et al., “A 3D Stacked Memory Integrated on a Logic Device Using SMAFTI Technology,” 2007 IEEE Electronic Components and Technology Conference, pp. 821-829, May 29-Jun. 1, 2007, ISBN 1-4244-0985-3. |
Kyocera Corporation, Memory Package, 1 page, retrieved from the Internet on Dec. 3, 2004, <http://global.kyocera.com/prdct/semicon/ic_pkg/memory_p.html>. |
Lee, H.M. et al., Abstract of “Abatement of Sulfur Hexaflouride Emissions from the Semiconductor Manufacturing Process by Atmospheric-Pressure Plasmas,” 1 page, Aug. 2004, <http:www.awma.org/journal/ShowAbstract.asp?Year=&PaperID=1256>. |
Lee, Rex A. et al., “Laser Created Silicon Vias for Stacking Dies in MCMs,” IEEE/CHMT IEMT Symposium, 1991, pp. 262-265. |
Lee, T.K. et al., “A Novel Joint-in-Via Flip-Chip Chip-Scale Package,” IEEE Transactions on Advanced Packaging, vol. 29, No. 1, pp. 186-194, Feb. 2006. |
Morrow, P.R. et al., “Three-Dimensional Wafer Stacking Via Cu—Cu Bonding Integrated With 65-nm Strained-Si/Low-k CMOS Technology,” IEEE Electron Device Letters, vol. 27, No. 5, pp. 335-337, May 2006, ISBN: 0741-3106. |
Optomec, Inc., M3Dä Technology, Maskless Mesoscale Materials Deposition (M3D), 1 page, <http://www.optomec.com/html/m3d.htm>, retrieved from the Internet on Aug. 15, 2003. |
Optomec, Inc., M3Dä, Maskless Mesoscaleä Materials Deposition, 2 pages, <http://www.optomec.com/downloads/M3DSheet.pdf>, retrieved from the Internet on Jun. 17, 2005. |
Pienimaa, S.K. et al., “Stacked Thin Dice Package,” Proceedings of the 51st Electronic Components and Technology Conference, 2001, pp. 361-366, IEEE. |
Rasmussen, F.E., et al., “Fabrication of High Aspect Ratio Through-Wafer Vias in CMOS Wafers for 3-D Packaging Applications,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003. |
Savastiouk, S. et al., “Thru-silicon interconnect technology,” 26th IEEE/CPMT International Electronics Manufacturing Technology Symposium, 2000, abstract. |
Schaper, L. et al., “Integrated System Development for 3-D VLSI,” Electronic Components and Technology Conference, 2007, ECTC '07, Proceedings, 57th, May 29, 2007-Jun. 1, 2007, pp. 853-857. |
Solberg, V., “Innovative 3-D Solutions for Multiple Die Packaging,” SMTA International Conference, Sep. 21, 2003. |
Takahashi, K. et al., “Current Status of Research and Development for Three-Dimensional Chip Stack Technology,” Jpn. J. Appl. Phys., vol. 40 (2001), pp. 3032-3037, Part 1, No. 4B, Apr. 30, 2001, abstract. |
Takahashi, K. et al., “Through Silicon Via and 3-D Wafer/Chip Stacking Technology,” 2006 Symposium on VLSI Circuits Digest of Technical Papers. |
Takizawa, T. et al., “Conductive Interconnections Through Thick Silicon Substrates for 3D Packaging,” The Fifteenth International Conference on Micro Electro Mechanical Systems, Las Vegas, Jan. 20-24, 2002. |
Tezcan, D.S. et al., “Sloped Through Wafer Vias for 3D Wafer Level Packaging,” Electronic Components and Technology Conference, 2007, ECTC '07, Proceedings, 57th, May 29, 2007-Jun. 1, 2007, pp. 643-647. |
Thomas, D.J. et al., “Etching of Vias and Trenches Through Low k Dielectrics with Feature Sizes Down to 0.1 mm Using M0RIÔ High Density Plasmas,” presented at the 197th Meeting of The Electrochemical Society, Toronto 2000, <http://www.trikon.com/pdfs/ECS2b.pdf>. |
Trigas, C., “System-In-Package or System-On-Chip?,” EE Times, Sep. 19, 2003, <http://www.eetimes.com/story/OEG20030919S0049>. |
Xsil, Via Applications, 1 page, <http://www.xsil.com/viaapplications/index.htm>, retrieved from the Internet on Jul. 22, 2003. |
Xsil, Vias for 3D Packaging, 1 page, <http://www.xsil.com/viaapplications/3dpackaging/index.htm>, retrieved from the Internet on Jul. 22, 2003. |
XSiL, xise200 for vias and micro-machining, <http://www.xsil.com/products/index/html>, retrieved from the Internet on Aug. 16, 2003. |
Yamamoto, S. et al., “Si Through-Hole Interconnections Filled with Au—Sn Solder by Molten Metal Suction Method,” pp. 642-645, IEEE, MEMS-03 Kyoto, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 2003, ISBN 0-7803-7744-3. |
Number | Date | Country | |
---|---|---|---|
20180342477 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10733226 | Dec 2003 | US |
Child | 13337943 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15583500 | May 2017 | US |
Child | 16055492 | US | |
Parent | 14300004 | Jun 2014 | US |
Child | 15583500 | US | |
Parent | 13337943 | Dec 2011 | US |
Child | 14300004 | US |