The present invention is related to microelectronic imaging units having solid state image sensors and methods for manufacturing such imaging units.
Microelectronic imagers are used in digital cameras, wireless devices with picture capabilities, and many other applications. Cell phones and Personal Digital Assistants (PDAs), for example, are incorporating microelectronic imagers for capturing and sending pictures. The growth rate of microelectronic imagers has been steadily increasing as they become smaller and produce better images with higher pixel counts.
Microelectronic imagers include image sensors that use Charged Coupled Device (CCD) systems, Complementary Metal-Oxide Semiconductor (CMOS) systems, or other solid state systems. CCD image sensors have been widely used in digital cameras and other applications. CMOS image sensors are also quickly becoming very popular because they are expected to have low production costs, high yields, and small sizes. CMOS image sensors can provide these advantages because they are manufactured using technology and equipment developed for fabricating semiconductor devices. CMOS image sensors, as well as CCD image sensors, are accordingly “packaged” to protect their delicate components and to provide external electrical contacts.
One problem with the microelectronic imaging unit 1 illustrated in
Another problem with conventional microelectronic imaging units is that they have relatively large footprints. For example, the footprint of the imaging unit 1 in
A. Overview
The following disclosure describes several embodiments of methods for manufacturing microelectronic imaging units and microelectronic imaging units that are formed using such methods. One aspect of the invention is directed toward methods for manufacturing a plurality of microelectronic imaging units. An embodiment of one such method includes placing a plurality of singulated imaging dies on a support member. The individual imaging dies include a first height, an image sensor, -an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member and forming a base on the support member between adjacent imaging dies. The base has a second height less than or approximately equal to the first height of the dies. The method further includes attaching a plurality of covers to the base so that the covers are positioned over corresponding image sensors.
In another embodiment, a method includes providing a plurality of singulated imaging dies and coupling the singulated imaging dies to a support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit. The method further includes electrically connecting the external contacts of the imaging dies to corresponding terminals on the support member, depositing a flowable material onto the support member to form a base between adjacent imaging dies such that the base contacts at least one end of the individual imaging dies, and attaching a cover to the base with the cover over at least one image sensor.
In another embodiment, a method includes attaching a plurality of singulated imaging dies to a support member, wire-bonding external contacts of the imaging dies to corresponding terminals on the support member, and building a footing on the support member between adjacent imaging dies such that the footing encapsulates a distal portion of the individual wire-bonds proximate to the terminals. The method further includes depositing discrete portions of an adhesive onto the footing and/or a plurality of covers and coupling the covers to the footing so that the covers are positioned over corresponding image sensors.
Another aspect of the invention is directed to microelectronic imaging units. In one embodiment, an assembly of microelectronic imaging units includes a support member having a plurality of terminal arrays and a plurality of imaging dies attached to the support member. The individual imaging dies include an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit and electrically coupled to corresponding terminals on the support member. The assembly further includes a footing on the support member between adjacent imaging dies and a plurality of covers attached to the footing and positioned over corresponding image sensors. The footing is formed with a flowable material that contacts and encapsulates a portion of the individual imaging dies.
In another embodiment, a microelectronic imaging unit includes a support member having an array of terminals, an imaging die projecting a first distance from the support member, and a base projecting a second distance from the support member, with the second distance less than or approximately equal to the first distance. The imaging die includes an image sensor, an integrated circuit operably coupled to the image sensor, and a plurality of external contacts operably coupled to the integrated circuit and electrically coupled to corresponding terminals on the support member. The imaging unit further includes a cover positioned over the image sensor and an adhesive attaching the cover to the base and/or the imaging die.
Specific details of several embodiments of the invention are described below with reference to CMOS imaging units to provide a thorough understanding of these embodiments, but other embodiments can use CCD imaging units or other types of solid state imaging devices. Several details describing structures or processes that are well known and often associated with other types of microelectronic devices are not set forth in the following description for purposes of brevity. Moreover, although the following disclosure sets forth several embodiments of different aspects of the invention, several other embodiments of the invention can have different configurations or different components than those described in this section. As such, it should be understood that the invention may have other embodiments with additional elements or without several of the elements described below with reference to
B. Embodiments of Methods for Manufacturing Microelectronic Imaging Units
The individual imaging dies 110 further include an image sensor 112 on the first side 111, an integrated circuit 114 (shown schematically) operably coupled to the image sensor 112, and a plurality of external contacts 116 (e.g., bond-pads) operably coupled to the integrated circuit 114. The image sensors 112 can be CMOS devices or CCD image sensors for capturing pictures or other images in the visible spectrum. The image sensors 112 may also detect radiation in other spectrums (e.g., IR or UV ranges). In the illustrated embodiment, the imaging dies 110 on the support member 160 have the same structure. However, in several embodiments, the imaging dies on the support member can have different features to perform different functions.
The support member 160 can be a lead frame or a substrate, such as a printed circuit board, for carrying the imaging dies 110 in the illustrated embodiment, the support member 160 includes a first side 162 having a plurality of terminals 166 and a second side 164 having a plurality of pads 168. The terminals 166 can be arranged in arrays for attachment to corresponding external contacts 116 on the dies 110, and the pads 168 can be arranged in arrays for attachment to a plurality of conductive couplers (e.g., solder balls). The support member 160 further includes a plurality of conductive traces 169 electrically coupling the terminals 166 to corresponding pads 168.
After wire-bonding the dies 110 to the support member 160, a flowable material is dispensed onto the support member 160 to form a footing or base 130 for supporting a plurality of covers. The flowable material can be an epoxy mold compound or another suitable material to at least partially fill the space between adjacent dies 110. As such, the base 130 contacts at least a portion of the ends 115 of the individual dies 110 and encapsulates at least the distal portion 144 of the individual wire-bonds 140. The flowable material can also be a self-leveling material with a sufficiently low viscosity so that the base 130 has a generally planar support surface 132 to which the covers can be attached. A dam (not shown) can be placed around the perimeter of the support member 160 to inhibit material from flowing off the edge of the member 160 and ensure the flowable material has a generally uniform thickness across the member 160. In several embodiments, however, the base 130 may not have a generally planar support surface across the support member 160.
The volume of flowable material deposited onto the support member 160 is selected so that the base 130 has a predetermined height for supporting covers at a precise distance over the image sensors 112. For example, the imaging dies 110 project a first distance D1 from the support member 160, and the base 130 projects a second distance D2 from the support member 160. In the illustrated embodiment, the first distance D1 is generally equal to the second distance D2. In other embodiments, however, the first distance D1 can be greater than the second distance D2 so that the individual imaging dies 110 project above the support surface 132. In additional embodiments, the second distance D2 can be slightly greater than the first distance D1 provided that the flow material does not encroach upon the image sensors 112.
After dispensing the fill material 180, the assembly 100 can be heated to at least partially cure (i.e., B-stage) the fill material 180 and/or the adhesive 135. Alternatively, before the fill material 180 is deposited, the adhesive 135 can be cured by heat, exposure to UV light, or another suitable method depending on the type of adhesive. After curing the fill material 180 and/or the adhesive 135, the assembly 100 can be cut along lines A-A by scribing, sawing, or another suitable process to singulate the individual imaging units 102.
One feature of the imaging units 102 illustrated in
Another feature of the imaging units 102 illustrated in
One feature of the method for manufacturing imaging units 102 illustrated in
Another advantage of the method for manufacturing imaging units 102 illustrated in
C. Additional Embodiments of Microelectronic Imaging Units
One feature of the imaging units 302 illustrated in
In
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, the microelectronic imaging units can have any combination of the features described above. Accordingly, the invention is not limited except as by the appended claims.
This is a divisional application of U.S. patent application Ser. No. 10/915,180 filed Aug. 10, 2004 now U.S. Pat. No. 7,364,934, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3345134 | Heymer et al. | Oct 1967 | A |
4534100 | Lane | Aug 1985 | A |
4906314 | Farnworth et al. | Mar 1990 | A |
5130783 | McLellan | Jul 1992 | A |
5302778 | Maurinus | Apr 1994 | A |
5371397 | Maegawa et al. | Dec 1994 | A |
5424573 | Kato et al. | Jun 1995 | A |
5435887 | Rothschild et al. | Jul 1995 | A |
5505804 | Mizuguchi et al. | Apr 1996 | A |
5593913 | Aoki | Jan 1997 | A |
5605783 | Revelli et al. | Feb 1997 | A |
5672519 | Song et al. | Sep 1997 | A |
5694246 | Aoyama et al. | Dec 1997 | A |
5708293 | Ochi et al. | Jan 1998 | A |
5771158 | Yamagishi et al. | Jun 1998 | A |
5776824 | Farnworth et al. | Jul 1998 | A |
5811799 | Wu | Sep 1998 | A |
5821532 | Beaman et al. | Oct 1998 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5861654 | Johnson | Jan 1999 | A |
5877040 | Park et al. | Mar 1999 | A |
5897338 | Kaldenberg | Apr 1999 | A |
5914488 | Sone | Jun 1999 | A |
5977535 | Rostoker | Nov 1999 | A |
5998862 | Yamanaka | Dec 1999 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6104086 | Ichikawa et al. | Aug 2000 | A |
6114240 | Akram et al. | Sep 2000 | A |
6143588 | Glenn | Nov 2000 | A |
6236046 | Watabe et al. | May 2001 | B1 |
6259083 | Kimura | Jul 2001 | B1 |
6266197 | Glenn et al. | Jul 2001 | B1 |
6274927 | Glenn | Aug 2001 | B1 |
6285064 | Foster | Sep 2001 | B1 |
6351027 | Giboney et al. | Feb 2002 | B1 |
6368899 | Featherby et al. | Apr 2002 | B1 |
6372548 | Bessho et al. | Apr 2002 | B2 |
6379988 | Peterson et al. | Apr 2002 | B1 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6411439 | Nishikawa | Jun 2002 | B2 |
6420204 | Glenn | Jul 2002 | B2 |
6441453 | Tindle | Aug 2002 | B1 |
6483652 | Nakamura | Nov 2002 | B2 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6531341 | Peterson et al. | Mar 2003 | B1 |
6541762 | Knag et al. | Apr 2003 | B2 |
6560047 | Choi et al. | May 2003 | B2 |
6566745 | Beyne et al. | May 2003 | B1 |
6603183 | Hoffman | Aug 2003 | B1 |
6617623 | Rhodes | Sep 2003 | B2 |
6661047 | Rhodes | Dec 2003 | B2 |
6667551 | Hanaoka et al. | Dec 2003 | B2 |
6670986 | Ben Shoshan et al. | Dec 2003 | B1 |
6686588 | Webster et al. | Feb 2004 | B1 |
6703310 | Mashino et al. | Mar 2004 | B2 |
6709898 | Ma et al. | Mar 2004 | B1 |
6864172 | Noma et al. | Apr 2004 | B2 |
6734419 | Glenn et al. | May 2004 | B1 |
6759266 | Hoffman | Jul 2004 | B1 |
6767753 | Huang | Jul 2004 | B2 |
6774486 | Kinsman | Aug 2004 | B2 |
6778046 | Stafford et al. | Aug 2004 | B2 |
6791076 | Webster | Sep 2004 | B2 |
6794223 | Ma et al. | Sep 2004 | B2 |
6795120 | Takagi et al. | Sep 2004 | B2 |
6797616 | Kinsman | Sep 2004 | B2 |
6800943 | Adachi | Oct 2004 | B2 |
6813154 | Diaz et al. | Nov 2004 | B2 |
6825458 | Moess et al. | Nov 2004 | B1 |
6828663 | Chen et al. | Dec 2004 | B2 |
6828674 | Karpman | Dec 2004 | B2 |
6844978 | Harden et al. | Jan 2005 | B2 |
6882021 | Boon et al. | Apr 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6934065 | Kinsman | Aug 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
7091571 | Park et al. | Aug 2006 | B1 |
7122390 | Kinsman | Oct 2006 | B2 |
7321455 | Kinsman | Jan 2008 | B2 |
20020006687 | Lam | Jan 2002 | A1 |
20020057468 | Segawa et al. | May 2002 | A1 |
20020089025 | Chou | Jul 2002 | A1 |
20020096729 | Tu et al. | Jul 2002 | A1 |
20020113296 | Cho et al. | Aug 2002 | A1 |
20020145676 | Kuno et al. | Oct 2002 | A1 |
20030062601 | Harnden et al. | Apr 2003 | A1 |
20040012698 | Suda et al. | Jan 2004 | A1 |
20040023469 | Suda | Feb 2004 | A1 |
20040038442 | Kinsman | Feb 2004 | A1 |
20040041261 | Kinsman | Mar 2004 | A1 |
20040082094 | Yamamoto | Apr 2004 | A1 |
20040178495 | Yean et al. | Sep 2004 | A1 |
20040197954 | Moden | Oct 2004 | A1 |
20040214373 | Jiang et al. | Oct 2004 | A1 |
20040238909 | Boon et al. | Dec 2004 | A1 |
20040245649 | Imaoka | Dec 2004 | A1 |
20050004560 | Farnworth et al. | Jan 2005 | A1 |
20050052751 | Liu et al. | Mar 2005 | A1 |
20050063033 | Kinsman | Mar 2005 | A1 |
20050104228 | Rigg et al. | May 2005 | A1 |
20050110889 | Tuttle et al. | May 2005 | A1 |
20050127478 | Hiatt et al. | Jun 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20050151272 | Street et al. | Jul 2005 | A1 |
20050184219 | Kirby | Aug 2005 | A1 |
20050231626 | Tuttle et al. | Oct 2005 | A1 |
20050236708 | Farnworth et al. | Oct 2005 | A1 |
20050253213 | Jiang et al. | Nov 2005 | A1 |
20050254133 | Akram et al. | Nov 2005 | A1 |
20050255628 | Kinsman | Nov 2005 | A1 |
20050270651 | Boettiger et al. | Dec 2005 | A1 |
20050275048 | Farnworth et al. | Dec 2005 | A1 |
20050275049 | Kirby et al. | Dec 2005 | A1 |
20050275750 | Akram et al. | Dec 2005 | A1 |
20050285154 | Akram et al. | Dec 2005 | A1 |
20050287783 | Kirby et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
0 886 323 | Dec 1998 | EP |
1 157 967 | Nov 2001 | EP |
2 835 654 | Aug 2003 | FR |
59-101882 | Jun 1984 | JP |
59-191388 | Oct 1984 | JP |
07-263607 | Oct 1995 | JP |
2001-077496 | Mar 2001 | JP |
WO-9005424 | May 1990 | WO |
WO-02075815 | Sep 2002 | WO |
WO-02095796 | Nov 2002 | WO |
WO-2004054001 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060216850 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10915180 | Aug 2004 | US |
Child | 11444404 | US |