The invention generally relates to microwave circuit assemblies, and more particularly relates to providing an interconnect device to electrically couple the characteristic impedance of a flip-chip attached microwave integrated circuit die to the characteristic impedance of a substrate.
It is known to directly attach a gallium arsenide (GaAs) microwave integrated circuit die with the active side down to a substrate or circuit board. Such an attachment method, commonly known as flip-chip, uses solder balls to both mechanically attach the die to the substrate and make electrical connections. However, the initial performance of the flip-chip GaAs microwave die was restricted due to inductance from long vias required for ground connections to the backside of the GaAs microwave die. Consequently, coplanar waveguide (CPW) circuits comprising a coplanar arrangement of a signal path between two ground planes were developed to avoid the inductive ground connections and increase the operating frequency of the flip-chip GaAs microwave die.
Subsequently, silicon (Si) microwave integrated circuit die were developed that have microwave frequency performance competitive with GaAs at significantly lower die cost. Further development increased the operating frequencies of the Si die. However, the CPW circuits at these increased operating frequencies had spurious modes that lost power and degraded isolation. Air bridges may be used to prevent mode conversion, but are expensive to implement and their effectiveness is limited. Furthermore, CPW circuits had increased loss due to current concentration at the edges of the thin strips.
In accordance with one embodiment of this invention, a microwave circuit assembly is provided. The microwave circuit assembly comprises an integrated circuit die, a substrate, and an interconnect device. The integrated circuit die is suitable for operation at microwave frequencies. The integrated circuit die has a first connection pad. The integrated circuit die also has a first microstrip transmission line configured to exhibit a first characteristic impedance. The substrate comprises a second connection pad. The substrate also comprises a second microstrip transmission line configured to exhibit a second characteristic impedance. The interconnect device is configured to attach the integrated circuit die to the substrate such that the first connection pad faces the second connection pad. The interconnect device is also configured to form a transmission line effective to electrically couple the first characteristic impedance to the second characteristic impedance.
In another embodiment of the present invention, a microwave circuit assembly is provided. The microwave circuit assembly comprises an integrated circuit die, a substrate, and an interconnect device. The integrated circuit die is suitable for operation at microwave frequencies. The integrated circuit die has an active side comprising a first connection pad suitable for flip-chip attachment and a first microstrip transmission line configured to exhibit a first characteristic impedance. The substrate comprises a second connection pad suitable for flip-chip attachment and a second microstrip transmission line configured to exhibit a second characteristic impedance. The interconnect device is configured to flip-chip attach the integrated circuit die to the substrate such that the first connection pad faces the second connection pad. The interconnect device is also configured to form a transmission line having a third characteristic impedance effective to electrically couple the first characteristic impedance to the second characteristic impedance.
Further features and advantages of the invention will appear more clearly on a reading of the following detail description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
In accordance with an embodiment of the invention,
The integrated circuit die 12 may be an arrangement of one or more transistors, an amplifier, a modulator, or other device suitable for use at microwave frequencies. The integrated circuit die 12 may have a first connection pad 18 formed of a material suitable for forming a secure attachment to the interconnect device 16. For example, a suitable material may be tinned nickel plating, silver plating, or gold plating. However, it is understood by those skilled in the art that the preferred material is generally selected based on the material used for the interconnect device 16. In one embodiment, the integrated circuit die 12 has an active side 13. As used herein the active side 13 is the side of the die where metal traces and structures such as transistors are formed. It is desirable to locate the first connection pad 18 and on the active side 13 so as to avoid two sided wafer processing during fabrication of the integrated circuit die 12, and avoid long vias through the body of the integrated circuit die that may exhibit objectionable inductance.
In one embodiment, the integrated circuit die is formed substantially of silicon. The arrangement of metal layers forming the first microstrip transmission line may be readily formed on silicon (Si) based integrated circuits, and is fundamentally different from the ground plane arrangement typically found on gallium arsenide (GaAs) based integrated circuits, where a layer of metal on the backside surface opposite the active side provides the ground plane, and the GaAs die is use as the insulator. Connections to this backside ground plane are made using long vias reaching through the thickness of the GaAs die that lead to undesirably high inductance in the ground plane connection. The reduced insulator thickness of the passivation layer 22 provides for a low inductance connection from the substrate 14 to the ground plane 24 via the interconnect device 16, thereby minimizing losses and maximizing bandwidth. As such, the configuration of the first microstrip transmission line may exhibit a first characteristic impedance. Microstrip transmission lines provide flexible routing, reduced loss, and reduced coupling to spurious modes, as compared to coplanar waveguide (CPW) circuits.
The width of a microstrip, the thickness of an insulating layer, and the dielectric constant of the insulating layer influence the characteristic impedance of a microstrip transmission line. By way of a non-limiting example, a typical integrated circuit may have the integrated circuit microstrip 20 and the integrated circuit ground plane 24 separated by an insulating layer having a thickness of about 9.2 micrometers (μm), the integrated circuit microstrip 20 having a width of about 16 micrometers, and the insulating layer having a dielectric constant relative to air of about 4.1. With this arrangement, the first characteristic impedance may be calculated using equations known to those skilled in the art to be about 50 Ohms.
In one embodiment, the substrate 14 formed using a known low temperature co-fired ceramic (LTCC) multi-layer arrangement of alumina insulators and thick film ink conductors. Alternately, the substrate 14 may be formed in an alumina substrate with alternating layers of thick film conductors and dielectric or insulating layers, or may be formed using a known FR-4 type circuit board assembly. The substrate 14 includes a second connection pad 30 adapted to form an attachment to the interconnect device 16. The substrate 14 also includes a second microstrip transmission line formed by an arrangement of a substrate microstrip 32 overlying a substrate ground plane 34. As such, the second microstrip transmission line may exhibit a second characteristic impedance. While not explicitly shown, it should be appreciated that there may be other layers in the substrate 14 below the substrate ground plane for routing power and other signals to and from the integrated circuit die 12.
As discussed above, the width of a microstrip, the thickness of an insulating layer, and the dielectric constant of the insulating layer influence the characteristic impedance of a microstrip transmission line. By way of a non-limiting example, the arrangement of the substrate 14 may correspond to a typical LTCC circuit board where the substrate microstrip 32 and the substrate ground plane 34 are separated by about 100 micrometers (μm), the substrate microstrip 32 has a width of about 100 micrometers, and the dielectric constant of the insulating layer relative to air is about 9.7. With this arrangement, the second characteristic impedance is about 50 Ohms.
The interconnect device 16 is adapted to attach the integrated circuit die 12 to the substrate 14 such that the first connection pad 18 faces the second connection pad 30. Such an arrangement is commonly called a flip-chip attachment. In one embodiment the interconnect device includes a solder ball. One way to assemble such an arrangement is to apply liquid solder flux to the integrated circuit die 12 and the substrate 14 to temporarily hold a solder ball in place, and then apply sufficient heat to melt the solder ball and thereby form a solder joint between the solder ball and the first and second connection pads 18 and 30. Alternately, the interconnect device may be formed of electrically conductive epoxy using known materials and processes.
The interconnect device 16 may be configured to form a transmission line that exhibits a third characteristic impedance to electrically couple or match the first characteristic impedance to the second characteristic impedance. In one embodiment, the interconnect device 16 may include an attachment device either along side an attachment device coupling the first microstrip 20 to the second microstrip 32, or two attachment devices on opposite sides of the attachment device coupling the first microstrip 20 to the second microstrip 32 as illustrated in
In another embodiment the interconnect device 16 may also include a microwave short circuit or stub 36 arranged to provide a ground element for the transmission line formed by the interconnect device.
In one embodiment of the microwave circuit assembly 10, the first characteristic impedance, the second characteristic impedance, and the third characteristic impedance are substantially equal as suggested by the examples above. However if one of the characteristic impedances is not equal to the other two, or all three characteristic impedances are substantially unequal, then the microwave circuit assembly 10 may include one or more impedance structures to influence or compensate one or more of the characteristic impedances.
In one embodiment the integrated circuit die 12 includes an impedance structure formed by a structure of thin film configured to influence the first characteristic impedance. Examples of known impedance structures formed of thin film include, but are not limited to, a capacitor formed by overlaying layers of conductive thin film material separated by layers of dielectric material, or an inductor formed with a spiral arrangement of conductive thin film material. In one embodiment the substrate 14 includes an impedance structure configured to influence the second characteristic impedance. Examples of known impedance structures include, but are not limited to, a filter formed by an arrangement of conductor material to form a quarter wave transformer, or an inductor formed with a spiral arrangement of conductor material.
Accordingly, a microwave circuit assembly 10 is provided. The microwave circuit assembly 10 has a flip-chip attachable integrated circuit die 12 attached to a substrate 14. Both the integrated circuit die 12 and the substrate 14 have microstrip transmission lines electrically coupled through an interconnect device 16 forming a transmission line configured to electrically couple the microstrip transmission lines. Additionally, a novel termination structure that adds stubs 36 to ground elements of the interconnect device 16 transmission line provides a microwave short for the integrated circuit die 12 circuit that increases bandwidth.
The arrangement of the integrated circuit die 12, the substrate 14 and the interconnect device 16 transforms or matches signals between the first microstrip transmission line and the second microstrip transmission line. Testing has shown that a microwave circuit assembly 10 that has dimensions similar to those given in the examples above provides microwave circuit assemblies suitable for use around 77 GHz. Adding the stubs 36 further enhances the assembly to provide bandwidths greater than 25 GHz.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/151,891, filed Feb. 12, 2009, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61151891 | Feb 2009 | US |