This invention relates to semiconductor chip packaging.
Portable electronic products such as mobile telephones, mobile computers, and various consumer products require higher semiconductor functionality and performance in a limited footprint and minimal thickness and weight at the lowest cost. This has driven the industry to increase integration on the individual semiconductor chips.
More recently the industry has begun implementing integration on the “z-axis,” that is, by stacking chips, and stacks of up to five chips in one package have been used. This provides a dense chip structure having the footprint of a one-chip package, in the range of 5×5 mm to 40×40 mm, and obtaining thicknesses that have been continuously decreasing, as the technology develops, from 2.3 mm to 0.5 mm. The packaging cost for a stacked die package is only incrementally higher than the packaging cost for a single chip package, and assembly yields have been high enough to assure a competitive final cost compared to packaging the chips in individual packages.
A primary practical limitation to the number of chips that can be stacked in a stacked die package is the low final test yield of the stacked-die package. Inevitably one or more of the chips in some packages will be defective. Therefore, the final package test yield, which is the product of the individual die test yields, always will be significantly less than 100%. Where one die in a package has low yield because of design complexity or technology, final package yields can be unacceptably low even if only two die are stacked in each package.
The dimensions of the various die that may be supplied for use in a particular device can vary significantly, and this presents challenges in construction of stacked die packages. For example, in a conventional stacked die package the upper die may be a memory die and the lower die may be a digital signal processor (DSP). The assembler's favored memory die may be larger than the favored DSP die. Or, adjacent stacked die in the package may both be memory die, with the upper die being the same size as, or larger than the lower die. The yield of DSP is typically low, and where the lower die in a stacked die package is a DSP, it may be impossible in practice to test the DSP until after it is placed on the substrate; and where the DSP is wire bonded it may be impossible in practice to test the die on the substrate because the handling during testing causes damage to exposed wires. In a conventional stacked die package, therefore, the upper die must be stacked over the lower die before the lower die can be tested, and where the lower die proves at that point in the process to be unacceptable, the stacked package must be discarded, resulting in a waste both of the spacer and the upper die and of processing steps for stacking them.
Another limitation in stacked die packages is the low power dissipation capability of the package. The heat is transmitted from one die to the other and the only significant path for heat dissipation out from the package is through the solder balls to the motherboard. Conduction of heat to the ambient through the top of the package is very limited because the molding compound typically does not conduct heat well.
Any of various substrate types may be used, including for example: a laminate with 2-6 metal layers, or a build up substrate with 4-8 metal layers, or a flexible polyimide tape with 1-2 metal layers, or a ceramic multilayer substrate. The substrate 12 shown by way of example in
The first die 14 is conventionally attached to a surface of the substrate using an adhesive, typically referred to as the die attach epoxy, shown at 13 in
In the stacked die package of
As will be appreciated, the wire bonds 16 have a characteristic “loop height”, which (together with a loop height tolerance) is a parameter of the wire-bonding process, and sufficient spacing must be provided between the second and the first die to avoid damage to the wire bonds by impact with the second die. Accordingly, the spacer 22 is provided as a pedestal to support the second die 24 over the first die 14. The spacer is made narrow enough so that it does not impact the wire bonds at its edges, and thick enough to provide spacing sufficient to hold the second die above the wire loops; that is, the spacer itself does not impact the wires, and it provides sufficient distance between the first and second die so that the downward-facing side of the second die does not damage the wire bonds 16.
The stacked die package as shown in
Contributions to the thickness of such a stacked die package by the various parts are shown by way of illustration in various two-die stacked die package configurations in the Table, following. Abbreviations such as “CT” for die thickness are placed on
A principal limitation of such a structure is the low final test yield of the package, particularly if at least one die has a low yield. For instance, a memory die may be stacked over a processor die. Memory usually requires a “burn-in” test to eliminate “infant mortality”. A processor usually is a complex design, and yields of processor die are typically less than 99%. The final test yield of the package is the product of the yields of the individual die. It is possible in principle to increase the final yield by obtaining Known Good Die (“KGD”). But KGD are of limited availability and higher cost, and KGD memory die are particularly costly.
The use of a “dummy” die as a spacer, as illustrated above, requires steps of applying adhesive layers between the spacer and the die between which the spacer is interposed. There is a limit on how thin the dummy die can in practice be made, and this imposes a lower limit on the spacer die thickness. Accordingly various approaches have been suggested for providing a separation between adjacent die in stacked die packages. In some approaches a thick adhesive layer between the adjacent die provides the separation. To the extent the adhesive may collapse during the stacking process, the standoff may be difficult to control, and the planes of the adjacent die may be not be parallel. In some such approaches the spacer adhesive is filled with particles having a dimension suitable to provide the standoff between the die and to prevent die tilt. Various spacer adhesives are described in, for example, in U.S. Pat. No. 6,472,758 and U.S. Pat. No. 6,340,846, each of which is hereby incorporated herein by reference in its entirety.
Another approach to integrating on the “z-axis” is to stack die packages to form a multi-package module. Stacked packages can provide numerous advantages as compared to stacked-die packages.
For instance, each package in a stacked package module can be electrically tested, and rejected unless it shows satisfactory performance, before the packages are stacked. As a result the final stacked multi-package module yields can be maximized. While “naked” die can be tested, testing can be more readily carried out in the package, particularly where the pad pitch on the die is very small.
This invention is directed to multiple chip modules (“MCM”), including a bottom (lower) package, and an inverted top (upper) package stacked over a die on the bottom package. Generally, rather than having an upper die stacked over a lower die, as in a stacked die package, an inverted upper package (such as a land grid array package) is stacked over the lower die, with provision where necessary (such as by a spacer) for a standoff between the upper package and the lower die. The standoff or spacer, where provided, physically separates the upper package from the lower die; as a consequence, the lower die can be wire bonded to the lower substrate, and z-interconnect can be made by wire bonding between the upper package substrate and the lower package substrate (or the lower die). The MCM according to the invention can be built using existing manufacture infrastructure as employed in die stacking with provision for spacing between adjacent die.
According to an aspect of the invention, a package such as a land grid array (“LGA”) package is inverted and stacked over a ball grid array (“BGA”) package. The BGA package includes at least one die mounted on a substrate. Where the lower package die is connected to the lower substrate by wire bonds a spacer can be affixed onto the upward facing (active) side of the die; and the inverted package is affixed onto the upward facing side of the spacer. Z-interconnection between the inverted package and the BGA package in the MCM is wire bond based; that is, wire bonds connect z-interconnect wire bond pads on the upward facing side of the inverted upper (LGA) package with pads on the die itself on the lower (BGA) package, or with z-interconnect wire bond pads on the upward-facing side of the lower (BGA) package substrate, or both with pads on the lower package die and with pads on the lower package substrate. Generally, the invention features various configurations of various such stacked packages, having an inverted LGA package stacked upon a die on a BGA package, and methods for stacking and interconnecting the various packages by wire-bonding based z-interconnection.
In various aspects of the invention the connection of the upper package die and the upper package substrate can be by flip chip or wire bond interconnection; the inverted upper package can include any of a variety of LGA packages, such as a laminate or buildup substrate-based LGA or a tape-based LGA, and/or any of a variety of “QFN” packages or bump chip carrier (“BCC”) packages; the inverted package can include one die or can include two or more die, and where two or more die are included in the inverted package the die can be stacked or they can be arranged side-by side on the inverted package substrate; the lower package can include one die or can include two or more die, and where two or more die are included in the lower package the die can be stacked or they can be arranged side-by side on the inverted package substrate, and where the lower package is a stacked die package the inverted package is mounted over the uppermost one of the stacked die; the package stack can include one or more packages having a flip chip die bonded either to the top or to the bottom of the BGA or LGA; the package stack can include a thermal enhancement feature enabled by a heat spreader over the upper package; and the stack can include any substrate, laminate or build-up or flexible or ceramic, provided that the z-interconnect pads are made available for bonding on the periphery of the packages.
In one general aspect the invention features a multiple chip module having stacked first (lower) and second (upper) packages, each package including a die attached to a substrate, in which the upper package is inverted, and in which the upper package is stacked over a die on the lower package with provision for spacing between the upper package and the lower package die. Because the die and wire bonds on the lower package are not encapsulated before the upper package is stacked over the lower die, the spacing is provided to prevent damage to the wire bonds connecting the lower die to the lower package substrate. Accordingly, the thickness dimension of the spacing is determined according to the loop height of the wire bonds.
The invention provides for excellent manufacturability, high design flexibility, and low cost to produce a multiple chip package module having a low profile and a small footprint.
The wire bond z-interconnect is well established in the industry; it is the lowest cost interconnect technique and it is directly applicable, without significant modification, to the stacked multiple chip modules of the invention. It provides design flexibility to the relative size of the BGA to LGA that can be bridged by wire length. Using available techniques and equipment the wire in a wire bond can be as short as 0.5 mm or as long as 5 mm. The arrangement of the z-interconnect pads can be implemented through either or both BGA and LGA substrate designs. Moreover, using wire bonds according to the invention z-interconnect can be formed between pads that are not precisely aligned over one another, by employing so-called “out of sequence bonding” that is in current use in the industry. The wire bonding pitch is the finest available technology in the industry at 50 microns currently, and projected to go to 25 microns. This is finer than any other interconnect including flip chip (around 200 microns) or solder balls (at about 500 microns), and therefore provides for more interconnects between packages (z-interconnects) in the same available space.
Wire bonding using a wire bonding machine provides design flexibility for interconnecting pads, because the connections are programmed in the wire bonder, avoiding the need for hard tooling substrates to match each other and connect with solder balls. When the relative BGA and LGA package sizes change, the wire bonding can be reconfigured to accommodate the differences by program changes. If the top package must be smaller than the bottom, wire bonding can accommodate size differences at least up to 9 mm. This allows for use of the smallest package needed to accommodate the chip size, and thus optimizes the total cost of the MCM.
Wire bonding can interconnect pads that are “out of sequence,” that is, not situated in the desired order and not precisely above each other in either package, so long as they are not too far apart. Where necessary, the pads can be appropriately routed to a location close enough for wire bonding. This flexibility allows stacking of packages that do not have the “desired” order or location of interconnect pads. As the chip technology advances usually the chip size shrinks and design variants are developed with either more connections or some connections with different order. The bonding flexibility provided by wire bonding allows the user to maintain the same package size but vary the substrate design. This results in lower cost and faster time to market, both critical for new products.
The BGAs and LGAs, including chip scale packages, are standard in the industry, providing the lowest cost and the widest availability. This provides significant flexibility in selecting the packages to be stacked and, therefore, in the kinds of functions that can be integrated into the MCM according to the invention.
A typical LGA thickness is 0.8 mm. A typical die thickness can range from less than about 0.09 mm to about 0.15 mm, and a typical silicon spacer (“dummy” die spacer) thickness can range from less than about 0.09 mm to about 0.125 mm. The stacking of the spacer over the lower die and of the inverted LGA over the spacer according to the invention can be completed using an adhesive having a finished thickness in the range 10-50 microns.
Or, a “filled” spacer adhesive can be employed to provide adhesion and spacing between the lower package die and the upper package. Such an adhesive spacer can provide for an even closer spacing between the upper package and the lower die, approaching the loop height of the wire bonds connecting the lower package die to the lower package substrate. This structure can provide for a lower profile MCM. The footprint of the MCM according to the invention is determined by the maximum chip size of the stack. A typical minimum footprint for the BGA or LGA is 1.7 mm larger than the die size. The wire bond z-interconnect generally requires that the top LGA be minimally smaller than the bottom BGA, by about 0.1 mm to 0.8 mm, to accommodate the wires without shorting to the substrate metal edges. If the top package must be significantly smaller than the bottom package, wire bonding can accommodate size differences at least up to 9 mm. This allows for minimizing the size of the package needed to accommodate the chip size, and thus for optimizing the total cost of the MCM. Both the footprint and the thickness of the stacked package MCM according to the invention fall within accepted ranges for most applications.
Alternatively, where the top package is much smaller than the lower package die, so that pads on the upward-facing side (active) side of the lower package die project beyond the margin of the inverted upper package substrate, z-interconnect between the upper package and the lower die can be made by wire bonding directly from the z-interconnect pads on the upward-facing side of the upper package substrate and the pads on the die.
In some embodiments the multiple chip module can include an additional package, mounted over the inverted LGA package; in some such embodiments the additional package is an LGA package, and in some such embodiments the additional LGA package is wire bonded to the inverted LGA package substrate and/or is wire bonded to the lower package substrate. In some embodiments the MCM can include one or more additional die, mounted over the inverted LGA package; in some such embodiments the additional die can be wire-bonded to the upper package substrate and/or to the lower package substrate.
In one general aspect the invention features a multi-package module having stacked first (“bottom”) and second (“top”) packages, the first package being a BGA package having a die attached to a substrate, and the second package being an LGA package, including a die attached to a substrate, in which the second package is inverted so that the substrate surface to which its die is attached is downward-facing, and in which the inverted package is affixed over the first package die, with provision for spacing between the first package die and the inverted second package. In some embodiments the second package is an LGA package, and in some embodiments the second package is a saw-singulated package, and it may be a chip scale package. In some embodiments the second package has a tape-based package substrate. In some embodiments the second package is a bump chip carrier package.
In some embodiments the second package is provided with a heat spreader, and an upward-facing surface of the heat spreader is exposed to ambient at the topmost surface of the MCM. In some embodiments the heat spreader can be affixed to the upward facing surface of the topmost LGA package or, where an additional die is provided on the second package, the heat spreader can be affixed to the upward facing surface of the topmost die, and where the inverted second package is the uppermost package in the module the heat spreader can be affixed to the upward facing side of the inverted second package; in other embodiments the heat spreader is not affixed to the topmost package or die but is molded in at the topmost surface of the MCM, and in these embodiments too the heat spreader is exposed to ambient at the topmost surface of the MCM. Heat dissipation may additionally be enhanced by employing an electrically nonconductive heat-conducting molding for the module encapsulation.
In another general aspect, methods for making multiple chip package modules according to the invention include providing a first package having a first die attached onto an upward facing side of a first package substrate, and stacking an inverted second package over the die on the first package, provision being made for a standoff between the second package and the first package die to avoid damaging impact between the downward-facing side of the second package and wire bonds connecting the first die to the first package substrate.
According to the invention, the inverted upper package can be an array molded and saw-singulated package or a cavity-molded and punch-singulated package; the lower package, on the other hand, is not molded prior to stacking the upper package over the lower package die. The package module according to the invention is molded following stacking, and the MCM accordingly can be array molded and saw singulated, or, it can be cavity molded and punch singulated.
The invention provides for modules having more than one chip in a thin package having a minimal footprint. Modules according to the invention can have thickness profiles of, for example, about 1.2 mm or 1.4 mm, or other profiles accepted as standard.
Standard packages can be used for both the bottom and top packages. The top package can be assembled for example as a cavity-molded and punch singulated land grid array (LGA) package or as a standard saw singulated LGA package having a laminate substrate, for example, or as a QFN package, or a tape-substrate-based LGA package, or “bump chip carrier” (BCC) package, for example.
The invention is useful particularly in devices employing multiple die modules known variously as “multi chip package” (“MCP”) or “system in package” (“SiP”) or “multi package module” (“MPM”). Multiple chip package modules according to the invention can be used in construction of computers, telecommunications, and consumer and industrial electronics. The invention can be particularly useful in portable electronic devices.
The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGs. illustrating embodiments of the invention, elements corresponding to elements shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGs.
With reference still to
In the bottom BGA package of
A spacer 222 is affixed using an adhesive 221 onto the upward facing (active) surface of the lower die 214. The spacer may be a solid piece, as shown here, which may be glass or a dummy silicon chip, for example; or spacing may be provided by a spacer adhesive. As in the conventional stacked die package the spacer must be thick enough to provide sufficient standoff to accommodate the loop height of the bottom package wire bonds 216, and—where a solid spacer such as a dummy die is employed—the footprint of the spacer must be small enough that it does not contact the wire bonds at or near the die pads.
Where the spacer is a solid piece, such as a dummy die, it is affixed onto the upward facing surface of the die using a die attach adhesive of a type that has a soft filler, such as Teflon particles, that will not damage the circuitry of the die.
Other spacer constructs can be employed in the modules according to the invention. Where the spacer is a solid piece, as shown in the FIGs., one or both of the adhesives may be provided as an adhesive film. Spacer constructs having film adhesives, and methods for constructing device stacks using them, are described for example in U.S. patent application Ser. Nos. 10/959,713, 10/976,601, 10/959,659. Where the spacer is a spacer adhesive, any of various adhesive spacer configurations may be employed, for example as described in U.S. patent application Ser. Nos. 10/966,572, 10/966,574, 10/969,116, 10/969,303. Each of the aforementioned patent applications is incorporated by reference herein.
The inverted LGA package 202 includes a die 224 mounted on a substrate 212 using a die attach adhesive 213. The die 224 is electrically connected to the substrate 212 by wire bonds 226, and the die and wire bonds and the die attach side of the substrate are encapsulated or molded 217 using a molding compound or encapsulant. The inverted package 202 is electrically interconnected (“z-interconnect”) to the bottom package 102 by wire bonds 236, and the top package 202, the bottom die 214 and the spacer 222, the wires 236 and 216, and the die attach surface of the substrate 12 are encapsulated with an encapsulant 27. The wire bonds 236 are in direct contact with an upward facing side 237 of the substrate 212. The wire bonds 236 are attached directly to a top side 239 of the substrate 12 and the upward facing side 237 of the substrate 212.
In the stacked package embodiment of
The arrangements of the z-interconnect pads on the upper and lower substrates are shown by way of example in diagrammatic plan view in
Referring again to
In the embodiment shown in
In the configuration in
In the top LGA package in the embodiment of
Because according to the invention the upper package (and, hence, the upper die) can be tested, it may be preferred, for purposes of maximizing yield, to place the die having the expected higher yield in the lower package, and to mount the die having expected lesser yield in the top package. In that way, rejected upper packages can be discarded prior to assembly of the stack, so that the overall yield of completed packages is affected principally by the yield of the expected higher yield die, rather than by the yield of the expected lower yield die. However, the assembler may prefer to have the lower yield die in the lower package. For instance, the assembler may wish to have a memory die over a DSP. In such a case the assembler accepts a known yield risk for the lower die, but, according to the invention, the assembler need not accept a yield risk for the upper die, because the upper die can be tested in its package (and rejected ones can be discarded) prior to forming the stack.
The z-interconnect between the upper die (upper package) package and the lower die (lower package) is made by way of wire bonds connecting traces on the upward facing metal layer (the “lower” metal layer) of the top package substrate with traces on the upper metal layer of the bottom package substrate. At one end each wire bond is electrically connected to upward facing surfaces of pads (323 in
The top LGA package may be either array molded and saw singulated (giving vertical walls at the edges, as shown for example in
The structure according to the invention allows for pre-testing of the upper LGA package before assembly into the module, to permit rejection of nonconforming packages prior to assembly, and thereby to assure high final module test yields.
Once the z-interconnect wire bonds have been formed, a module encapsulation (27 in
Solder balls 18 are then attached to the underside of the module, using standard materials and process. Solder ball attachment can be done prior to singulation of the modules, on the whole strip or array, using the same or similar tooling used for making standard CSPs. Then the modules are singulated from the strip or module using standard techniques, to form the modules having standard CSP formats.
As noted, the structure allows for stacking of a fully packaged and tested die onto another die in a standard CSP format. The top LGA containing one or more die can be tested to be “good” before stacking it in the MCM; LGA not testing as “good” are discarded prior to stacking, thus reducing waste of “good” materials and avoiding unproductive processing steps on materials that are not good.
For improved heat dissipation from the module, a heat spreader may be provided over the top package. The top heat spreader is formed of a thermally conductive material having at least the more central area of its upper surface exposed at the upper surface of the MCM to ambient for efficient heat exchange away from the MCM. The top heat spreader may be, for example, a sheet of metal (such as copper or aluminum) or of any of a variety of other thermally conductive materials, such as aluminum nitride. The heat spreader has a size and shape to substantially cover the module. The heat spreader can be made thicker in a central area over the top package to increase metal content, and thinner at the periphery so that it does not interfere with the z-interconnect wire bonds. If made thicker in a central area the heat spreader may be affixed to the upward facing surface of the top package; in such embodiments a thermally conductive (electrically nonconductive) adhesive is preferred. Or, a spacer may be placed over the upward facing surface of the package inboard of the wire bond sites, and the heat spreader may be affixed to the upper surface of the spacer. Alternately the heatspreader can be molded-in, resulting in a similar structure but without the adhesive; that is, the heat spreader may be dropped into the MCM encapsulant mold and affixed at the upper surface of the module during the molding material curing process. Heat dissipation can be further enhanced by use of a heat-conducting (electrically nonconductive) molding.
For example, a top heat spreader having a thicker central region can be affixed to the upward facing surface of the top package as shown diagrammatically in a sectional view at 40 in
In the embodiment of
The heat spreader may be made, for example, by partially etching a sheet of the heat spreader material to provide the various thicknesses (peripheral portion and/or re-entrant feature) and by fully etching to produce the edges. A number of heat spreaders may be made in an array on a sheet or strip of heat spreader material, and the individual heat spreaders may be separated subsequently.
As a further alternative, an MCM as in
An MCM structure having a heat spreader can provide significant thermal enhancement and may provide electrical shielding over the module, which can be critical, for example, to MCMs that combine RF and digital chips.
According to the invention the top package can be a stacked die package, as shown by way of example generally at 60 in
As in the embodiment of
The inverted LGA package 602 includes stacked first and second die 614, 624 separated by a spacer 622. The stacked die package 602 can be provided as a conventional stacked die package, as described generally with reference to
Any of various substrate types may be used, including for example: a laminate with 2-6 metal layers, or a build up substrate with 4-8 metal layers, or a flexible polyimide tape with 1-2 metal layers, or a ceramic multilayer substrate. The substrate 612 shown by way of example in
The first die 614 is conventionally attached to a surface of the substrate using an adhesive, typically referred to as the die attach epoxy, shown at 213 in
In the stacked die package 602 of
As will be appreciated, the wire bonds 626 in the stacked die package 602 have a characteristic “loop height”, which (together with a loop height tolerance) is a parameter of the wire-bonding process, and sufficient spacing must be provided between the second and the first die 624, 614 to avoid damage to the wire bonds by impact with the second die. Accordingly, the spacer 622 is provided as a pedestal to support the second die 624 over the first die 614. The spacer is made narrow enough so that it does not impact the wire bonds at its edges, and thick enough to provide spacing sufficient to hold the second die above the wire loops; that is, the spacer itself does not impact the wires, and it provides sufficient distance between the first and second die so that the downward-facing side of the second die does not damage the wire bonds 626.
The inverted package 602 is electrically interconnected (“z-interconnect”) to the bottom substrate 102 by wire bonds 636, and the top package 602, the bottom die 214 and the spacer 222, the wires 236 and 216, and the die attach surface of the substrate 12 are encapsulated with a module encapsulant 627.
One or both of the spacers 222 and 622 can be a solid material, such as a dummy silicon die or glass; or one or both of them can be an adhesive spacer, as described above with reference to
Solder balls 18 are reflowed onto bonding pads on the lower metal layer of the BGA lower package substrate (which constitutes the module substrate in the completed module) to provide interconnection to the motherboard (not shown) of a final product, such as a computer, for example, or a mobile communications device. Solder masks 125, 127 are patterned over the metal layers 121, 123 to expose the underlying metal at bonding sites for electrical connection, for example the wire bond sites and bonding pads for bonding the wire bonds 636, 216 and solder balls 18.
In some embodiments of the invention, additional die may be stacked over the second (upper) inverted package, as shown in
In some embodiments of the invention, additional die may be stacked over the second (upper) inverted package, as shown in
Various semiconductor chips (die) can be employed in various combinations at the various places in the multiple chip modules according to the invention. For example, referring to
Or, for example, referring again to
In modules as illustrated for example in
In modules as illustrated for example in
An advantage of modules as illustrated for example in
In some embodiments of the invention, an additional stacked over the second (upper) inverted package may be a photosensor die (such as an imaging die), as shown in
In other embodiments of the invention the lower package may include two or more die, which may be stacked one over another, as shown in
The methods employ established manufacturing infrastructure, and can provide lower cost of manufacture as compared to alternative stacked package structures that require new methods and tools.
Modules made according to the invention can have lower cost than comparable stacked die packages (that is, stacked die packages containing similar sets of die), owing to the fact that according to the invention the upper die can be tested in their respective upper packages prior to assembly, and only those packages tested as “good” are selected for further processing. Materials and processing waste are accordingly reduced.
Also, modules according to the invention can be more reliable than comparable stacked die packages, because the upper packages employed in the invention can be subjected to more rigorous reliability tests than can the stacked die package; particularly, a memory “burn-in” test can be performed where the upper package contains a memory die.
Also, packaged die can be more readily sourced from different suppliers than bare die; even more difficult to obtain, and significantly more expensive, are Known Good Die.
The use of wire bonding for the z-interconnect in the modules of the invention provides an additional advantage over stacked package technologies that employ other z-interconnects between stacked packages. Wire bonding is well established in the industry and has the lowest cost structure. Because the wire bond process is programmable it provides has high flexibility in response to design changes; and it allows for lower cost substrates and assembly tooling. The fine pitch nature of wire bonding, currently at 50 micron pitch, allows a high number of interconnects between the LGA and the CSP substrate. That capability often translates into high performance and design flexibility.
The spacer adds further flexibility to the design. The spacer technology allows for a significantly larger LGA to be assembled on top of a smaller die, and this can be of high value particularly in applications where the lower die is a memory, that usually is a larger die. Where the lower die is a processor with large I/O running at high frequency, the die usually is smaller and must be on the bottom to insure short wire lengths, which is very desirable for their low inductance that allows for high electrical performance.
All patents and patent applications referred to above are hereby incorporated by reference herein.
Other embodiments are within the following claims. For example, one or more of the packages in the multiple chip module may be a short range radio package, such as a so-called “Bluetooth” package, which may include one or more radio frequency chips and one or more passive devices, providing short range wireless interconnection for the functionality of the various devices in the multiple chip module.
This application claims the benefit of U.S. Provisional Application No. 60/530,423, filed 17 Dec. 2003, titled “Multiple chip package module having inverted package stacked over die”, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5222014 | Lin | Jun 1993 | A |
5229960 | De Givry | Jul 1993 | A |
5340771 | Rostoker | Aug 1994 | A |
5373189 | Massit et al. | Dec 1994 | A |
5436203 | Lin | Jul 1995 | A |
5444296 | Kaul et al. | Aug 1995 | A |
5495398 | Takiar et al. | Feb 1996 | A |
5550711 | Burns et al. | Aug 1996 | A |
5652185 | Lee | Jul 1997 | A |
5675180 | Pedersen et al. | Oct 1997 | A |
5677247 | Hundt et al. | Oct 1997 | A |
5744863 | Culnane et al. | Apr 1998 | A |
5898219 | Barrow | Apr 1999 | A |
5899705 | Akram | May 1999 | A |
5903049 | Mori | May 1999 | A |
5977640 | Bertin et al. | Nov 1999 | A |
5982633 | Jeansonne | Nov 1999 | A |
5994166 | Akram et al. | Nov 1999 | A |
6025648 | Takahashi et al. | Feb 2000 | A |
6034875 | Heim et al. | Mar 2000 | A |
6075289 | Distefano | Jun 2000 | A |
6118176 | Tao et al. | Sep 2000 | A |
6133626 | Hawke et al. | Oct 2000 | A |
6157080 | Tamaki et al. | Dec 2000 | A |
6168973 | Hubbard | Jan 2001 | B1 |
6201266 | Ohuchi et al. | Mar 2001 | B1 |
6201302 | Tzu | Mar 2001 | B1 |
6238949 | Nguyen et al. | May 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6274930 | Vaiyapuri et al. | Aug 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6333552 | Kakimoto et al. | Dec 2001 | B1 |
6340846 | LoBianco et al. | Jan 2002 | B1 |
6376904 | Haba et al. | Apr 2002 | B1 |
6388313 | Lee et al. | May 2002 | B1 |
6400007 | Wu et al. | Jun 2002 | B1 |
6407456 | Ball | Jun 2002 | B1 |
6413798 | Asada | Jul 2002 | B2 |
6414381 | Takeda | Jul 2002 | B1 |
6424050 | Komiyama | Jul 2002 | B1 |
6441496 | Chen et al. | Aug 2002 | B1 |
6445064 | Ishii et al. | Sep 2002 | B1 |
6462421 | Hsu et al. | Oct 2002 | B1 |
6472732 | Terui | Oct 2002 | B1 |
6472741 | Chen et al. | Oct 2002 | B1 |
6489676 | Taniguchi et al. | Dec 2002 | B2 |
6492726 | Quek et al. | Dec 2002 | B1 |
6501165 | Farnworth et al. | Dec 2002 | B1 |
6512303 | Moden | Jan 2003 | B2 |
6538319 | Terui | Mar 2003 | B2 |
6545365 | Kondo et al. | Apr 2003 | B2 |
6545366 | Michii et al. | Apr 2003 | B2 |
6552423 | Song et al. | Apr 2003 | B2 |
6555902 | Lo et al. | Apr 2003 | B2 |
6570249 | Liao et al. | May 2003 | B1 |
6583503 | Akram et al. | Jun 2003 | B2 |
6590281 | Wu et al. | Jul 2003 | B2 |
6593647 | Ichikawa | Jul 2003 | B2 |
6593648 | Emoto | Jul 2003 | B2 |
6593662 | Pu et al. | Jul 2003 | B1 |
6599779 | Shim et al. | Jul 2003 | B2 |
6600222 | Levardo | Jul 2003 | B1 |
6607937 | Corisis | Aug 2003 | B1 |
6611063 | Ichinose et al. | Aug 2003 | B1 |
6621169 | Kikuma et al. | Sep 2003 | B2 |
6621172 | Nakayama et al. | Sep 2003 | B2 |
6649448 | Tomihara | Nov 2003 | B2 |
6650019 | Glenn et al. | Nov 2003 | B2 |
6667556 | Moden | Dec 2003 | B2 |
6690089 | Uchida | Feb 2004 | B2 |
6700178 | Chen et al. | Mar 2004 | B2 |
6716676 | Chen et al. | Apr 2004 | B2 |
6734539 | Degani et al. | May 2004 | B2 |
6734552 | Combs et al. | May 2004 | B2 |
6737750 | Hoffman et al. | May 2004 | B1 |
6746894 | Yin et al. | Jun 2004 | B2 |
6747361 | Ichinose | Jun 2004 | B2 |
6762488 | Maeda et al. | Jul 2004 | B2 |
6768191 | Wennemuth et al. | Jul 2004 | B2 |
6777799 | Kikuma et al. | Aug 2004 | B2 |
6777819 | Huang | Aug 2004 | B2 |
6787915 | Uchida et al. | Sep 2004 | B2 |
6787916 | Halahan | Sep 2004 | B2 |
6818980 | Pedron, Jr. | Nov 2004 | B1 |
6828665 | Pu et al. | Dec 2004 | B2 |
6835598 | Baek et al. | Dec 2004 | B2 |
6838761 | Karnezos | Jan 2005 | B2 |
6847105 | Koopmans | Jan 2005 | B2 |
6864566 | Choi, III | Mar 2005 | B2 |
6890798 | McMahon | May 2005 | B2 |
6900528 | Mess et al. | May 2005 | B2 |
6906415 | Jiang et al. | Jun 2005 | B2 |
6906416 | Karnezos | Jun 2005 | B2 |
6930378 | St. Amand et al. | Aug 2005 | B1 |
6930396 | Kurita et al. | Aug 2005 | B2 |
6933598 | Karnezos | Aug 2005 | B2 |
6951982 | Chye et al. | Oct 2005 | B2 |
6972481 | Karnezos | Dec 2005 | B2 |
7034387 | Karnezos | Apr 2006 | B2 |
7045887 | Karnezos | May 2006 | B2 |
7049691 | Karnezos | May 2006 | B2 |
7053476 | Karnezos | May 2006 | B2 |
7057269 | Karnezos | Jun 2006 | B2 |
7061088 | Karnezos | Jun 2006 | B2 |
7064426 | Karnezos | Jun 2006 | B2 |
7071568 | St. Amand et al. | Jul 2006 | B1 |
7081678 | Liu | Jul 2006 | B2 |
7101731 | Karnezos | Sep 2006 | B2 |
20020079573 | Akram | Jun 2002 | A1 |
20020096755 | Fukui et al. | Jul 2002 | A1 |
20020130404 | Ushijima et al. | Sep 2002 | A1 |
20030062629 | Moden | Apr 2003 | A1 |
20030113952 | Sambasivam et al. | Jun 2003 | A1 |
20030153134 | Kawata et al. | Aug 2003 | A1 |
20030203537 | Koopmans | Oct 2003 | A1 |
20040016939 | Akiba et al. | Jan 2004 | A1 |
20040018661 | Baek et al. | Jan 2004 | A1 |
20040061213 | Karnezos | Apr 2004 | A1 |
20040119152 | Karnezos et al. | Jun 2004 | A1 |
20040212096 | Wang | Oct 2004 | A1 |
20040262724 | Hsu | Dec 2004 | A1 |
20060043556 | Su et al. | Mar 2006 | A1 |
20060138631 | Tao et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
05-160170 | Jun 1993 | JP |
05152505 | Jun 1993 | JP |
05-206365 | Aug 1993 | JP |
2006-522478 | Sep 1998 | JP |
10-284683 | Oct 1998 | JP |
11-251515 | Sep 1999 | JP |
2000-294723 | Oct 2000 | JP |
2001-102515 | Apr 2001 | JP |
2001223326 | Aug 2001 | JP |
2002-170921 | Jun 2002 | JP |
2002-176136 | Jun 2002 | JP |
2002-222903 | Aug 2002 | JP |
2003-110084 | Apr 2003 | JP |
2003-197857 | Jul 2003 | JP |
2003-273317 | Sep 2003 | JP |
20010688614 | Jul 2001 | KR |
2004085348 | Oct 2004 | KR |
02089207 | Nov 2001 | WO |
Entry |
---|
Office Action for International Application No. 2006-545467. |
Number | Date | Country | |
---|---|---|---|
20050133916 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60530423 | Dec 2003 | US |