Not Applicable
1. Field of the Invention
The present invention relates generally to integrated circuit chip package technology and, more particularly, to a package-in-package (PIP) semiconductor device which is configured to minimize the electrical interference between one internal semiconductor package and another internal semiconductor package or die from each other or from the surrounding environment, while minimizing the stack-up height of these internal electronic components. The configuration of the semiconductor device of the present invention also allows for ease in the testing thereof.
2. Description of the Related Art
Radio frequency (RF) shielding is required on certain semiconductor devices in order to minimize electro-magnetic interference (EMI) radiation from the semiconductor device. RF shielding is further sometimes required to prevent RF radiation from external sources from interfering with the operation of the semiconductor device.
RF shielding is generally accomplished in one of three ways. A first method is to attach a metal can over an electronic component such as a semiconductor package or a semiconductor die after such electronic component has been attached to an underlying support surface such as a printed circuit board. One alternative to the shield attach method is to embed an RF shield directly into a semiconductor package. In this embedded shield method, the RF shield (which is typically made of metal) is directly attached to the substrate of the semiconductor package through the use of solder or a conductive adhesive. The shield may be fully embedded within the mold compound of the finished semiconductor package, or can be exposed after assembly. Another method for facilitating RF shielding, often referred to as a conventional conformal shield, involves initially placing electronic components such as those described above on an underlying substrate or strip, and thereafter over-molding such substrate or strip in a manner defining individual mold caps thereon. These individual mold caps are oriented such that upwardly facing pads of the substrate or strip are exposed, i.e., not covered by the mold caps. A conductive coating is then applied to the substrate or strip such that it covers the units and also makes electrical contact to the upwardly facing pads. The substrate or strip is then singulated into individual units. Alternatively, the individual units may be singulated, thus exposing the metal layer(s) on the package edge, allowing the conformal coated shield to contact the exposed grounded metal.
In the electronics industry, there is also an increasing need for semiconductor devices of increased functional capacity, coupled with reduced size. This particular need is often being satisfied through the use of package-in-package (PIP) semiconductor devices. A typical PIP semiconductor device comprises various combinations of electronic components including passive devices, semiconductor dies, semiconductor packages, and/or other elements which are arranged in a horizontal direction, or stacked in a vertical direction on an underlying substrate. In many PIP devices, the substrate and the electronic components are interconnected to one another through the use of conductive wires alone or in combination with conductive bumps, with such electronic components thereafter being encapsulated by a suitable encapsulant material which hardens into a package body of the PIP device.
The present invention provides a unique combination of the above-described RF shielding and PIP technologies, and provides a PIP semiconductor device wherein an RF package and a die are stacked, with conformal shielding also being included to provide RF noise mitigation (i.e., minimize noise interference) between the RF package and the die (or any other component in the PIP device), or between the RF package and the external environment. These, as well as other features of the PIP device of the present invention, will be described in more detail below.
In accordance with the present invention, there is provided multiple embodiments of a package-in-package semiconductor device wherein a conformally shielded RF package is stacked with a digital semiconductor die. The semiconductor device of the present invention provides adequate electrical isolation between the RF package and the semiconductor die, and further allows for the testing of the RF package prior to attachment. Thus, the semiconductor device makes use of vertical stacking with a conformally shielded RF package to integrate the functionality of the RF package into a single device, while still allowing for RF signal isolation.
The PIP semiconductor device constructed in accordance with each embodiment of the present invention essentially combines two technologies, namely, conformal shielding to isolate RF emitting devices from other devices and the ambient, and three-dimensional packaging which enables stacking different devices into a single package with space and cost savings. In the present invention, the RF package of the semiconductor device can be tested separately and prior to stacking as a way to provide for binning and selective application, with existing assembly capabilities thereafter being used to incorporate the RF package into any one of multiple vertical stacking configurations which will be described in more detail below. Thus, the present invention provides for great flexibility using off-the-shelf RF packages in new applications, providing adequate electrical isolation between the RF package and other electronic components integrated into the semiconductor device to minimize interference and allow for proper performance.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring now to the drawings wherein the showings are for purposes of illustrating various embodiments of the present invention only, and not for purposes of limiting the same,
The substrate 102 further comprises one or more electrically conductive lands 112 which are formed on the bottom surface 108 in a prescribed pattern or arrangement. The substrate 102 also includes an electrically conductive pattern 114 which is formed on the top surface 106. The conductive pattern 114 may comprise various pads, lands, traces, or combinations thereof. In the substrate 102, the lands 112 and the conductive pattern 114 are electrically connected to each other in a prescribed pattern or arrangement through the use of conductive vias 116 which extend through the insulative layer 104 between the top and bottom surfaces 106, 108 thereof in the manner shown in
The substrate 102 further preferably includes a solder mask 118 which is formed on the bottom surface 108 of the insulative layer 104. As seen in
The semiconductor device 100 further comprises a semiconductor package, and more particularly an RF package 124, which is mounted and electrically connected to the substrate 102 in a manner which will be described in more detail below. The RF package 124 comprises a package substrate 126 which includes an insulating layer defining opposed top and bottom surfaces and electrically conductive patterns formed on respective ones of the opposed top and bottom surfaces of the insulating layer. In the package substrate 126, the conductive patterns disposed on respective ones of the opposed top and bottom surfaces of the insulating layer are electrically connected to each other in a prescribed pattern or arrangement through the use of vias which extend through the insulating layer. The package substrate 126 of the RF package 124 can itself be selected from rigid circuit boards, flexible circuit boards and equivalents thereto, with the structure of the package substrate 126 potentially being the same as that of the substrate 102 described above.
Attached to the insulating layer of the package substrate 126 are one or more electronic components 128. As shown in
In addition to the above-described components, the RF package 124 includes an RF shield 132 which is applied to the package substrate 126 and, in some cases, to the outer surface of the package body 142 described below. The RF shield 132 may be applied by plating, vacuum printing, vacuum deposition, insert molding, spray coating, and the like. More particularly, as also shown in
In the semiconductor device 100, the RF package 124 is electrically connected to the conductive pattern 114 of the substrate 102 through the use of a plurality of conductive bumps 134. More particularly, as seen in
The semiconductor device 100 of the present invention further comprises a semiconductor die 136 which it attached to the RF package 124 and electrically connected to the substrate 102. More particularly, as seen in
In the semiconductor device 100, the RF package 124, the semiconductor die 136, the conductive bumps 134 and a portion of the substrate 102 (including portions of the solder mask 122 and any exposed portions of the top surface of the insulating layer 104 and conductive pattern 114) are each encapsulated or covered by an encapsulant material which ultimately hardens into a package body 142 of the semiconductor device 100. The present invention is not intended to be limited to any specific material which could be used to facilitate the fabrication of the package body 142. For example, and not by way of limitation, the package body 142 can be formed from epoxy molding compounds or equivalents thereto. The fully formed package body 142 preferably includes side surfaces which extend in generally flush or co-planar relation to respective side surfaces of the insulating layer 104 of the substrate 102.
Referring now to
In the semiconductor device 200, an aluminized spacer 144 is interposed between the RF package 124 and the semiconductor die 136. More particularly, as seen in
In the semiconductor device 200, the spacer 144 is preferably placed into electrical communication with the substrate 102 through the use of one or more conductive wires 148. More particularly, as seen in
In the semiconductor device 200 as shown in
In the semiconductor device 200, the widths of the semiconductor die 136 and the FOW 150 are preferably substantially equal to each other, with the bottom surface of the semiconductor die 136 being directly engaged to the top surface of the FOW 150 when viewed from the perspective shown in
In the semiconductor device 200, the package body 142 covers the FOW 150 and spacer 144, in addition to those components described above in relation to the semiconductor device 100. The spacer 144 included in the semiconductor device 200 supplements the effect of the RF shield 132 of the RF package 124 in minimizing noise interference between the RF package 124 and semiconductor die 136, and further assists in preventing exposure of the RF package 124 to noise interference from the ambient environment.
Referring now to
In the semiconductor device 300, the conductive bumps 134 included in the semiconductor devices 100, 200 and used to electrically connect the RF package 124 to the substrate 102 are eliminated. In this regard, the electrical connection of the RF package 124 of the semiconductor device 300 to the substrate 102 thereof is facilitated by conductive wires 152. More particularly, as seen in
In the semiconductor device 300, the above-described spacer 144 is interposed between the RF package 124 and the semiconductor die 136 in the manner shown in
As shown in
In the semiconductor device 300, the package body 142 covers the FOW 156, in addition to those components described above in relation to the semiconductor devices 100, 200. The spacer 144 included in the semiconductor device 300 also supplements the effect of the RF shield 132 of the RF package 124 in minimizing noise interference between the RF package 124 and semiconductor die 136, and further assists in preventing exposure of the RF package 124 to noise interference from the ambient environment.
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
The present application is a continuation of U.S. application Ser. No. 12/351,690 entitled PACKAGE IN PACKAGE STRUCTURE FOR RF TRANSCEIVER MODULE filed Jan. 9, 2009 now U.S. Pat. No. 8,058,715.
Number | Name | Date | Kind |
---|---|---|---|
2596993 | Gookin | May 1952 | A |
3435815 | Forcier | Apr 1969 | A |
3734660 | Davies et al. | May 1973 | A |
3838984 | Crane et al. | Oct 1974 | A |
4054238 | Lloyd et al. | Oct 1977 | A |
4189342 | Kock | Feb 1980 | A |
4221925 | Finley et al. | Sep 1980 | A |
4258381 | Inaba | Mar 1981 | A |
4289922 | Devlin | Sep 1981 | A |
4301464 | Otsuki et al. | Nov 1981 | A |
4332537 | Slepcevic | Jun 1982 | A |
4417266 | Grabbe | Nov 1983 | A |
4451224 | Harding | May 1984 | A |
4530152 | Roche et al. | Jul 1985 | A |
4541003 | Otsuka et al. | Sep 1985 | A |
4646710 | Schmid et al. | Mar 1987 | A |
4707724 | Suzuki et al. | Nov 1987 | A |
4727633 | Herrick | Mar 1988 | A |
4737839 | Burt | Apr 1988 | A |
4756080 | Thorp, Jr. et al. | Jul 1988 | A |
4812896 | Rothgery et al. | Mar 1989 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4862246 | Masuda et al. | Aug 1989 | A |
4907067 | Derryberry | Mar 1990 | A |
4920074 | Shimizu et al. | Apr 1990 | A |
4935803 | Kalfus et al. | Jun 1990 | A |
4942454 | Mori et al. | Jul 1990 | A |
4987475 | Sclesinger et al. | Jan 1991 | A |
5018003 | Yasunaga et al. | May 1991 | A |
5029386 | Chao et al. | Jul 1991 | A |
5041902 | McShane | Aug 1991 | A |
5057900 | Yamazaki | Oct 1991 | A |
5059379 | Tsutsumi et al. | Oct 1991 | A |
5065223 | Matsuki et al. | Nov 1991 | A |
5070039 | Johnson et al. | Dec 1991 | A |
5087961 | Long et al. | Feb 1992 | A |
5091341 | Asada et al. | Feb 1992 | A |
5096852 | Hobson et al. | Mar 1992 | A |
5118298 | Murphy | Jun 1992 | A |
5122860 | Kichuchi et al. | Jun 1992 | A |
5134773 | LeMaire et al. | Aug 1992 | A |
5151039 | Murphy | Sep 1992 | A |
5157475 | Yamaguchi | Oct 1992 | A |
5157480 | McShane et al. | Oct 1992 | A |
5168368 | Gow, 3rd et al. | Dec 1992 | A |
5172213 | Zimmerman | Dec 1992 | A |
5172214 | Casto | Dec 1992 | A |
5175060 | Enomoto et al. | Dec 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200809 | Kwon | Apr 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5218231 | Kudo | Jun 1993 | A |
5221642 | Burns | Jun 1993 | A |
5250841 | Sloan et al. | Oct 1993 | A |
5252853 | Michii | Oct 1993 | A |
5258094 | Furui et al. | Nov 1993 | A |
5266834 | Nishi et al. | Nov 1993 | A |
5273938 | Lin et al. | Dec 1993 | A |
5277972 | Sakumoto et al. | Jan 1994 | A |
5278446 | Nagaraj et al. | Jan 1994 | A |
5279029 | Burns | Jan 1994 | A |
5281849 | Singh Deo et al. | Jan 1994 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5294897 | Notani et al. | Mar 1994 | A |
5327008 | Djennas et al. | Jul 1994 | A |
5332864 | Liang et al. | Jul 1994 | A |
5335771 | Murphy | Aug 1994 | A |
5336931 | Juskey et al. | Aug 1994 | A |
5343076 | Katayama et al. | Aug 1994 | A |
5358905 | Chiu | Oct 1994 | A |
5365106 | Watanabe | Nov 1994 | A |
5381042 | Lerner et al. | Jan 1995 | A |
5391439 | Tomita et al. | Feb 1995 | A |
5406124 | Morita et al. | Apr 1995 | A |
5410180 | Fujii et al. | Apr 1995 | A |
5414299 | Wang et al. | May 1995 | A |
5417905 | LeMaire et al. | May 1995 | A |
5424576 | Djennas et al. | Jun 1995 | A |
5428248 | Cha | Jun 1995 | A |
5435057 | Bindra et al. | Jul 1995 | A |
5444301 | Song et al. | Aug 1995 | A |
5452511 | Chang | Sep 1995 | A |
5454905 | Fogelson | Oct 1995 | A |
5467032 | Lee | Nov 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5484274 | Neu | Jan 1996 | A |
5493151 | Asada et al. | Feb 1996 | A |
5508556 | Lin | Apr 1996 | A |
5517056 | Bigler et al. | May 1996 | A |
5521429 | Aono et al. | May 1996 | A |
5528076 | Pavio | Jun 1996 | A |
5534467 | Rostoker | Jul 1996 | A |
5539251 | Iverson et al. | Jul 1996 | A |
5543657 | Diffenderfer et al. | Aug 1996 | A |
5544412 | Romero et al. | Aug 1996 | A |
5545923 | Barber | Aug 1996 | A |
5581122 | Chao et al. | Dec 1996 | A |
5592019 | Ueda et al. | Jan 1997 | A |
5592025 | Clark et al. | Jan 1997 | A |
5594274 | Suetaki | Jan 1997 | A |
5595934 | Kim | Jan 1997 | A |
5604376 | Hamburgen et al. | Feb 1997 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5608267 | Mahulikar et al. | Mar 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5633528 | Abbott et al. | May 1997 | A |
5637922 | Fillion et al. | Jun 1997 | A |
5639990 | Nishihara et al. | Jun 1997 | A |
5640047 | Nakashima | Jun 1997 | A |
5641997 | Ohta et al. | Jun 1997 | A |
5643433 | Fukase et al. | Jul 1997 | A |
5644169 | Chun | Jul 1997 | A |
5646831 | Manteghi | Jul 1997 | A |
5650663 | Parthasaranthi | Jul 1997 | A |
5661088 | Tessier et al. | Aug 1997 | A |
5665996 | Williams et al. | Sep 1997 | A |
5673479 | Hawthorne | Oct 1997 | A |
5683806 | Sakumoto et al. | Nov 1997 | A |
5683943 | Yamada | Nov 1997 | A |
5689135 | Ball | Nov 1997 | A |
5696666 | Miles et al. | Dec 1997 | A |
5701034 | Marrs | Dec 1997 | A |
5703407 | Hori | Dec 1997 | A |
5710064 | Song et al. | Jan 1998 | A |
5723899 | Shin | Mar 1998 | A |
5724233 | Honda et al. | Mar 1998 | A |
5726493 | Yamashita | Mar 1998 | A |
5736432 | Mackessy | Apr 1998 | A |
5745984 | Cole, Jr. et al. | May 1998 | A |
5753532 | Sim | May 1998 | A |
5753977 | Kusaka et al. | May 1998 | A |
5766972 | Takahashi et al. | Jun 1998 | A |
5767566 | Suda | Jun 1998 | A |
5770888 | Song et al. | Jun 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783861 | Son | Jul 1998 | A |
5801440 | Chu et al. | Sep 1998 | A |
5814877 | Diffenderfer et al. | Sep 1998 | A |
5814881 | Alagaratnam et al. | Sep 1998 | A |
5814883 | Sawai et al. | Sep 1998 | A |
5814884 | Davis et al. | Sep 1998 | A |
5817540 | Wark | Oct 1998 | A |
5818105 | Kouda | Oct 1998 | A |
5821457 | Mosley et al. | Oct 1998 | A |
5821615 | Lee | Oct 1998 | A |
5834830 | Cho | Nov 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5844306 | Fujita et al. | Dec 1998 | A |
5854511 | Shin et al. | Dec 1998 | A |
5854512 | Manteghi | Dec 1998 | A |
5856911 | Riley | Jan 1999 | A |
5859471 | Kuraishi et al. | Jan 1999 | A |
5866939 | Shin et al. | Feb 1999 | A |
5866942 | Suzuki et al. | Feb 1999 | A |
5871782 | Choi | Feb 1999 | A |
5874784 | Aoki et al. | Feb 1999 | A |
5877043 | Alcoe et al. | Mar 1999 | A |
5886397 | Ewer | Mar 1999 | A |
5973935 | Schoenfeld et al. | Oct 1999 | A |
5977630 | Woodworth et al. | Nov 1999 | A |
RE36773 | Nomi et al. | Jul 2000 | E |
6107679 | Noguchi | Aug 2000 | A |
6143981 | Glenn | Nov 2000 | A |
6150709 | Shin et al. | Nov 2000 | A |
6166430 | Yamaguchi | Dec 2000 | A |
6169329 | Farnworth et al. | Jan 2001 | B1 |
6177718 | Kozono | Jan 2001 | B1 |
6181002 | Juso et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6184573 | Pu | Feb 2001 | B1 |
6194777 | Abbott et al. | Feb 2001 | B1 |
6197615 | Song et al. | Mar 2001 | B1 |
6198171 | Huang et al. | Mar 2001 | B1 |
6201186 | Daniels et al. | Mar 2001 | B1 |
6201292 | Yagi et al. | Mar 2001 | B1 |
6204554 | Ewer et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208021 | Ohuchi et al. | Mar 2001 | B1 |
6208023 | Nakayama et al. | Mar 2001 | B1 |
6211462 | Carter, Jr. et al. | Apr 2001 | B1 |
6218731 | Huang et al. | Apr 2001 | B1 |
6222258 | Asano et al. | Apr 2001 | B1 |
6222259 | Park et al. | Apr 2001 | B1 |
6225146 | Yamaguchi et al. | May 2001 | B1 |
6229200 | McClellan et al. | May 2001 | B1 |
6229205 | Jeong et al. | May 2001 | B1 |
6238952 | Lin et al. | May 2001 | B1 |
6239367 | Hsuan et al. | May 2001 | B1 |
6239384 | Smith et al. | May 2001 | B1 |
6242281 | McClellan et al. | Jun 2001 | B1 |
6256200 | Lam et al. | Jul 2001 | B1 |
6258629 | Niones et al. | Jul 2001 | B1 |
6261864 | Jung et al. | Jul 2001 | B1 |
6281566 | Magni | Aug 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6282094 | Lo et al. | Aug 2001 | B1 |
6282095 | Houghton et al. | Aug 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6291271 | Lee et al. | Sep 2001 | B1 |
6291273 | Miyaki et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6294830 | Fjelstad | Sep 2001 | B1 |
6295977 | Ripper et al. | Oct 2001 | B1 |
6297548 | Moden et al. | Oct 2001 | B1 |
6303984 | Corisis | Oct 2001 | B1 |
6303997 | Lee | Oct 2001 | B1 |
6306685 | Liu et al. | Oct 2001 | B1 |
6307272 | Takahashi et al. | Oct 2001 | B1 |
6309909 | Ohgiyama | Oct 2001 | B1 |
6316822 | Vekateshwaran et al. | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6323550 | Martin et al. | Nov 2001 | B1 |
6326243 | Suzuya et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326678 | Karmezos et al. | Dec 2001 | B1 |
6335564 | Pour | Jan 2002 | B1 |
6337510 | Chun-Jen et al. | Jan 2002 | B1 |
6339252 | Niones et al. | Jan 2002 | B1 |
6339255 | Shin | Jan 2002 | B1 |
6342730 | Jung et al. | Jan 2002 | B1 |
6348726 | Bayan et al. | Feb 2002 | B1 |
6355502 | Kang et al. | Mar 2002 | B1 |
6359221 | Yamada et al. | Mar 2002 | B1 |
6362525 | Rahim | Mar 2002 | B1 |
6369447 | Mori | Apr 2002 | B2 |
6369454 | Chung | Apr 2002 | B1 |
6373127 | Baudouin et al. | Apr 2002 | B1 |
6377464 | Hashemi et al. | Apr 2002 | B1 |
6380048 | Boon et al. | Apr 2002 | B1 |
6384472 | Huang | May 2002 | B1 |
6388336 | Venkateshwaran et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6399415 | Bayan et al. | Jun 2002 | B1 |
6400004 | Fan et al. | Jun 2002 | B1 |
6410979 | Abe | Jun 2002 | B2 |
6414385 | Huang et al. | Jul 2002 | B1 |
6420779 | Sharma et al. | Jul 2002 | B1 |
6421013 | Chung | Jul 2002 | B1 |
6423643 | Furuhata et al. | Jul 2002 | B1 |
6429508 | Gang | Aug 2002 | B1 |
6437429 | Su et al. | Aug 2002 | B1 |
6444499 | Swiss et al. | Sep 2002 | B1 |
6448633 | Yee et al. | Sep 2002 | B1 |
6452279 | Shimoda | Sep 2002 | B2 |
6459148 | Chun-Jen et al. | Oct 2002 | B1 |
6464121 | Reijinders | Oct 2002 | B2 |
6465883 | Oloffson | Oct 2002 | B2 |
6472735 | Isaak | Oct 2002 | B2 |
6475646 | Park et al. | Nov 2002 | B2 |
6476469 | Huang et al. | Nov 2002 | B2 |
6476474 | Hung | Nov 2002 | B1 |
6482680 | Khor et al. | Nov 2002 | B1 |
6483178 | Chuang | Nov 2002 | B1 |
6492718 | Ohmori et al. | Dec 2002 | B2 |
6495909 | Jung et al. | Dec 2002 | B2 |
6498099 | McClellan et al. | Dec 2002 | B1 |
6498392 | Azuma | Dec 2002 | B2 |
6507096 | Gang | Jan 2003 | B2 |
6507120 | Lo et al. | Jan 2003 | B2 |
6518089 | Coyle | Feb 2003 | B2 |
6525942 | Huang et al. | Feb 2003 | B2 |
6528893 | Jung et al. | Mar 2003 | B2 |
6534849 | Gang | Mar 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545345 | Glenn et al. | Apr 2003 | B1 |
6552421 | Kishimoto et al. | Apr 2003 | B2 |
6559525 | Huang | May 2003 | B2 |
6566168 | Gang | May 2003 | B2 |
6580161 | Kobayakawa | Jun 2003 | B2 |
6583503 | Akram et al. | Jun 2003 | B2 |
6585905 | Fan et al. | Jul 2003 | B1 |
6603196 | Lee et al. | Aug 2003 | B2 |
6624005 | DiCaprio et al. | Sep 2003 | B1 |
6627977 | Foster | Sep 2003 | B1 |
6646339 | Ku | Nov 2003 | B1 |
6667546 | Huang et al. | Dec 2003 | B2 |
6677663 | Ku et al. | Jan 2004 | B1 |
6686649 | Matthews et al. | Feb 2004 | B1 |
6696752 | Su et al. | Feb 2004 | B2 |
6700189 | Shibata | Mar 2004 | B2 |
6713375 | Shenoy | Mar 2004 | B2 |
6757178 | Okabe et al. | Jun 2004 | B2 |
6800936 | Kosemura et al. | Oct 2004 | B2 |
6812552 | Islam et al. | Nov 2004 | B2 |
6818973 | Foster | Nov 2004 | B1 |
6858919 | Seo et al. | Feb 2005 | B2 |
6867492 | Auburger et al. | Mar 2005 | B2 |
6876068 | Lee et al. | Apr 2005 | B1 |
6878571 | Isaak et al. | Apr 2005 | B2 |
6897552 | Nakao | May 2005 | B2 |
6927478 | Paek | Aug 2005 | B2 |
6967125 | Fee et al. | Nov 2005 | B2 |
6995459 | Lee et al. | Feb 2006 | B2 |
7002805 | Lee et al. | Feb 2006 | B2 |
7005327 | Kung et al. | Feb 2006 | B2 |
7015571 | Chang et al. | Mar 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7053469 | Koh et al. | May 2006 | B2 |
7075816 | Fee et al. | Jul 2006 | B2 |
7102209 | Bayan et al. | Sep 2006 | B1 |
7109572 | Fee et al. | Sep 2006 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7193298 | Hong et al. | Mar 2007 | B2 |
7211471 | Foster | May 2007 | B1 |
7242081 | Lee | Jul 2007 | B1 |
7245007 | Foster | Jul 2007 | B1 |
7253503 | Fusaro et al. | Aug 2007 | B1 |
8058715 | Roa et al. | Nov 2011 | B1 |
20010008305 | McClellan et al. | Jul 2001 | A1 |
20010014538 | Kwan et al. | Aug 2001 | A1 |
20020011654 | Kimura | Jan 2002 | A1 |
20020024122 | Jung et al. | Feb 2002 | A1 |
20020027297 | Ikenaga et al. | Mar 2002 | A1 |
20020038873 | Hiyoshi | Apr 2002 | A1 |
20020072147 | Sayanagi et al. | Jun 2002 | A1 |
20020111009 | Huang et al. | Aug 2002 | A1 |
20020140061 | Lee | Oct 2002 | A1 |
20020140068 | Lee et al. | Oct 2002 | A1 |
20020140081 | Chou et al. | Oct 2002 | A1 |
20020158318 | Chen | Oct 2002 | A1 |
20020163015 | Lee et al. | Nov 2002 | A1 |
20020167060 | Buijsman et al. | Nov 2002 | A1 |
20030006055 | Chien-Hung et al. | Jan 2003 | A1 |
20030030131 | Lee et al. | Feb 2003 | A1 |
20030059644 | Datta et al. | Mar 2003 | A1 |
20030064548 | Isaak | Apr 2003 | A1 |
20030073265 | Hu et al. | Apr 2003 | A1 |
20030102537 | McLellan et al. | Jun 2003 | A1 |
20030164554 | Fee et al. | Sep 2003 | A1 |
20030168719 | Cheng et al. | Sep 2003 | A1 |
20030198032 | Collander et al. | Oct 2003 | A1 |
20040027788 | Chiu et al. | Feb 2004 | A1 |
20040056277 | Karnezos | Mar 2004 | A1 |
20040061212 | Karnezos | Apr 2004 | A1 |
20040061213 | Karnezos | Apr 2004 | A1 |
20040063242 | Karnezos | Apr 2004 | A1 |
20040063246 | Karnezos | Apr 2004 | A1 |
20040065963 | Karnezos | Apr 2004 | A1 |
20040080025 | Kasahara et al. | Apr 2004 | A1 |
20040089926 | Hsu et al. | May 2004 | A1 |
20040164387 | Ikenaga et al. | Aug 2004 | A1 |
20040253803 | Tomono et al. | Dec 2004 | A1 |
20060087020 | Hirano et al. | Apr 2006 | A1 |
20060097402 | Pu et al. | May 2006 | A1 |
20060157843 | Hwang | Jul 2006 | A1 |
20060186524 | Aiba et al. | Aug 2006 | A1 |
20060216868 | Yang et al. | Sep 2006 | A1 |
20060231939 | Kawabata et al. | Oct 2006 | A1 |
20070023202 | Shibata | Feb 2007 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20090001599 | Foong et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
19734794 | Aug 1997 | DE |
0393997 | Oct 1990 | EP |
0459493 | Dec 1991 | EP |
0720225 | Mar 1996 | EP |
0720234 | Mar 1996 | EP |
0794572 | Oct 1997 | EP |
0844665 | May 1998 | EP |
0936671 | Aug 1999 | EP |
0989608 | Mar 2000 | EP |
1032037 | Aug 2000 | EP |
55163868 | Dec 1980 | JP |
5745959 | Mar 1982 | JP |
58160096 | Aug 1983 | JP |
59208756 | Nov 1984 | JP |
59227143 | Dec 1984 | JP |
60010756 | Jan 1985 | JP |
60116239 | Aug 1985 | JP |
60195957 | Oct 1985 | JP |
60231349 | Nov 1985 | JP |
6139555 | Feb 1986 | JP |
61248541 | Nov 1986 | JP |
629639 | Jan 1987 | JP |
6333854 | Feb 1988 | JP |
63067762 | Mar 1988 | JP |
63188964 | Aug 1988 | JP |
63205935 | Aug 1988 | JP |
63233555 | Sep 1988 | JP |
63249345 | Oct 1988 | JP |
63289951 | Nov 1988 | JP |
63316470 | Dec 1988 | JP |
64054749 | Mar 1989 | JP |
1106456 | Apr 1989 | JP |
1175250 | Jul 1989 | JP |
1205544 | Aug 1989 | JP |
1251747 | Oct 1989 | JP |
2129948 | May 1990 | JP |
369248 | Jul 1991 | JP |
3177060 | Aug 1991 | JP |
3289162 | Dec 1991 | JP |
4098864 | Mar 1992 | JP |
5129473 | May 1993 | JP |
5166992 | Jul 1993 | JP |
5283460 | Oct 1993 | JP |
6061401 | Mar 1994 | JP |
692076 | Apr 1994 | JP |
6140563 | May 1994 | JP |
652333 | Sep 1994 | JP |
6252333 | Sep 1994 | JP |
6260532 | Sep 1994 | JP |
7297344 | Nov 1995 | JP |
7312405 | Nov 1995 | JP |
8064364 | Mar 1996 | JP |
8083877 | Mar 1996 | JP |
8125066 | May 1996 | JP |
964284 | Jun 1996 | JP |
8222682 | Aug 1996 | JP |
8306853 | Nov 1996 | JP |
98205 | Jan 1997 | JP |
98206 | Jan 1997 | JP |
98207 | Jan 1997 | JP |
992775 | Apr 1997 | JP |
9260568 | Oct 1997 | JP |
9293822 | Nov 1997 | JP |
10022447 | Jan 1998 | JP |
10199934 | Jul 1998 | JP |
10256240 | Sep 1998 | JP |
11307675 | Nov 1999 | JP |
2000150765 | May 2000 | JP |
20010600648 | Mar 2001 | JP |
2002519848 | Jul 2002 | JP |
200203497 | Aug 2002 | JP |
2003243595 | Aug 2003 | JP |
2004158753 | Jun 2004 | JP |
941979 | Jan 1994 | KR |
19940010938 | May 1994 | KR |
19950018924 | Jun 1995 | KR |
19950041844 | Nov 1995 | KR |
19950044554 | Nov 1995 | KR |
19950052621 | Dec 1995 | KR |
1996074111 | Dec 1996 | KR |
9772358 | Nov 1997 | KR |
100220154 | Jun 1999 | KR |
20000072714 | Dec 2000 | KR |
20000086238 | Dec 2000 | KR |
20020049944 | Jun 2002 | KR |
9956316 | Nov 1999 | WO |
9967821 | Dec 1999 | WO |
Entry |
---|
National Semiconductor Corporation, “Leadless Leadframe Package,” Informational Pamphlet from webpage, 21 pages, Oct. 2002, www.national.com. |
Vishay, “4 Milliohms in the So-8: Vishay Siliconix Sets New Record for Power MOSFET On-Resistance,” Press Release from webpage, 3 pages, www.vishay.com/news/releases, Nov. 7, 2002. |
Patrick Mannion, “MOSFETs Break out of the Shackles of Wire Bonding,” Informational Packet, 5 pages, Electronic Design, Mar. 22, 1999 vol. 47, No. 6, www.elecdesign.com/1999/mar2299/ti/0322ti1.shtml. |
Number | Date | Country | |
---|---|---|---|
Parent | 12351690 | Jan 2009 | US |
Child | 13246564 | US |